An Advanced Cellular Automaton Method with Interpolated Flux Scheme and its Application to Modeling of Gate Currents in Si MOSFETs

  • K. Fukuda
  • K. Nishi
Conference paper


An improved cellular automaton(CA) method is proposed in which an interpolated flux concept is introduced to suppress a well-known artifitial diffusion problem. The new method allows larger mesh sizes both in real and momentum space without losing numerical accuracy. Consequently, it becomes a practical modeling tool of non-linear carrier transport in semiconductor devices. In its application to Si MOSFETs, obtained results are extremely stable beyond the advanced weighted Monte Carlo method. Furthermore, making the best use of the stability, gate currents are studied in detail. 2 peaks of gate currents on gate bias, so-called drain avalanche hot carrier(DAHC) and channel hot electron(CHE), are well explained by thermionic emission and Fowler Nordheim(FN) tunneling of hot carriers respectively.


Monte Carlo Cellular Automaton Thermionic Emission Gate Bias Boltzmann Transport Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Iizuka and M. Fukuma, Solid-St. Electron., vol. 33, no. 1, pp. 27–34, 1990.CrossRefGoogle Scholar
  2. [2]
    A. Das and M.S. Lundstrom, Solid-St. Electron., vol. 33, no. 10, pp. 1299–1307, 1990.CrossRefGoogle Scholar
  3. [3]
    M.G. Ancona, Solid-St. Electron., vol. 33, no. 12, pp. 1633–1642, 1990.MathSciNetCrossRefGoogle Scholar
  4. [4]
    K. Kometer. G. Zandler and P. Volg, Phys. Rev. B, vol. 46, no. 3, pp. 1382–1394, 1992.CrossRefGoogle Scholar
  5. [5]
    R. Brunetti, C. Jacoboni, F. Venturi, E. Sangiorgi and B. Ricco, Solid-St. Electron., vol. 32, no. 12, pp. 1663–1667, 1989.CrossRefGoogle Scholar
  6. [6]
    R. Thorna, H.J. Peifer and W.L. Engl, W. Quade, R. Brunetti and C. Jacoboni, J.Appl.Phys., vol. 69, no. 4, pp. 2300–2311, 1991.CrossRefGoogle Scholar
  7. [7]
    K. Fukuda and K. Nishi, IEICE Trans. Electron., vol. E78-C, no. 3, pp. 281–287, 1995.Google Scholar
  8. [8]
    E. Sangiorgi and M.R. Pinto, IEEE Trans. Electron Devices, vol. ED-39, no. 2, pp. 356–361, 1992.CrossRefGoogle Scholar
  9. [9]
    C. Huang, T. Wang, C.N. Chen, M.C. Chang and J. Fu, IEEE Trans. Electron Devices, vol. ED-39, no. 11, pp. 2562–2568, 1992.CrossRefGoogle Scholar
  10. [10]
    K. Nishi, K. Sakamoto, S. Kuroda, J. Ueda, T. Miyoshi, and S. Ushio, IEEE Trans. Computer-Aided Design., vol. CAD-8, no. 1, pp. 23–32, 1989.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • K. Fukuda
    • 1
  • K. Nishi
    • 1
  1. 1.VLSI R&D CenterOki Electric Industry Co., Ltd.Hachioji-shi, TokyoJapan

Personalised recommendations