Modelling Impact-Ionization in the Framework of the Spherical-Harmonics Expansion of the Boltzmann Transport Equation with Full-Band Structure Effects

  • M. C. Vecchi
  • M. Rudan


Band-structure effects have been incorporated in the framework of the Spherical-Harmonics Expansion (SHE) of the Boltzmann Transport Equation (BTE) for electrons in silicon [1], using the density of states (DOS) and the group velocity (GV) obtained from the full-band system [2]. In this paper an impactionization model is presented along with the numerical results. The model is consistent with the full-band system mentioned above and is able to fit the impact-ionization coefficient, the impact-ionization quantum yield, and the data from soft x-ray photoemission spettroscopy available in recent literature (e.g., [3]).


Impact Ionization Boltzmann Transport Equation Monte Carlo Data Silicon Dioxide Film High Scatter Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. C. Vecchi, D. Ventura, A. Gnudi, G. Baccarani, “Incorporating full band-structure effects in the spherical harmonics expansion of the Boltzmann transport equation,” Proc. of the NUPAD V Conf., Honolulu, HI, 1994.Google Scholar
  2. [2]
    M. V. Fischetti, S. E. Laux, Phys. Rev. B, “Monte-Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects,” vol. 38, pp. 9721–9745, 1988.CrossRefGoogle Scholar
  3. [3]
    E. Cartier, M. V. Fischetti, E. A. Eklund, F. R. McFeely, “Impact Ionization in Silicon,” Appl. Phys. Lett., vol. 62, no. 25, 1993.Google Scholar
  4. [4]
    A. Gnudi, D. Ventura, G. Baccarani, “Modeling Impact Ionization in a BJT by Means of Spherical Harmonics Expansion of the Boltzmann Transport Equation,” IEEE Trans. on CAD of ICAS, vol. 12, no. 11, pp. 1706–1713, 1993.Google Scholar
  5. [5]
    N. Goldsman, L. Henrickson, J. Frey, “A Physics-Based Analytical/Numerical Solution to the Boltzmann Transport Equation for Use in Device Simulation,” Solid-St. Electr., vol. 34, no. 4, p. 389, 1991.CrossRefGoogle Scholar
  6. [6]
    G. J. L. Ouwerling, “Non-destructive Measurament of 2D doping profiles by inverse modelling,” Proc. of the 6th fnt. NASECODE Conf., p. 534, Dublin, 1989.Google Scholar
  7. [7]
    E. Schöll, W. Quade, “Effect of Impact Ionization on Hot-Carrier Energy and Momentum Relaxation in Semiconductors,” Jour. Physics C, vol. 20, p. L 861, 1987.Google Scholar
  8. [8]
    D. J. DiMaria, T. N. Theis, J. R. Kirtley, F. L. Pesavento, D. W. Dong, S. D. Bror-son, “Electron heating in silicon dioxide and off-stechiometric silicon dioxide films,” Jour. of Appl. Phys., vol. 57, no. 4, p. 1214, 1985.CrossRefGoogle Scholar
  9. [9]
    E. A. Eklund, P. D. Kirchner, D. K. Shuh, F. R. McFeely, E. Cartier, “Direct determination of impact-ionization rates near threshold in semiconductors using soft-x-ray photoemission,” Phys. Rev. Lett., vol. 68, no. 6, p. 831, 1992.CrossRefGoogle Scholar
  10. [10]
    R. Van Overstraeten, H. De Man, “Impact ionization of hot electrons in silicon,” Solid-St. Electr., vol. 13, pp. 583–608, 1970.CrossRefGoogle Scholar
  11. [11]
    I. Takayanagi, K. Matsumoto, J. Nakamura, “Measuraments of electron impact ionization coefficient in bulk silicon under a low electric field,” J. of Appl.. Physrcs, vol. 72, no. 5, pp. 1989–1992, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • M. C. Vecchi
    • 1
  • M. Rudan
    • 1
  1. 1.Dipartimento di ElettronicaUniversità di BolognaBolognaItaly

Personalised recommendations