Numerical Modelling and Materials Characterisation for Integrated Micro Electro Mechanical Systems

  • Henry Baltes
  • Jan G. Korvink
  • Oliver Paul


Integrated micro electro mechanical systems (iMEMS) include sensors, actuators and circuits made by silicon IC technology combined with micromachining, deposition or electroplating. We present two essential iMEMS development tools:
  1. (i)

    the data base ICMAT of material parameters obtained from measuring process-dependent IC thin film electrical, magnetic, thermal and mechanical properties by using dedicated materials characterisation microstructures and

  2. (ii)

    the toolbox SOLIDIS, providing coupled numerical modelling of the electrical, magnetic, thermal and mechanical phenomena and their boundary and interface conditions occurring in iMEMS devices in a uniform and consistent environment.



Silicon Nitride Seebeck Coefficient Electro Mechanical System Micro Electro Mechanical System CMOS Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Baltes, O. Brand, J. G. Korvink, R. Lenggenhager, O. Paul, “IMEMS — integrated micro electro mechanical systems by VLSI and micromachining, ”ESS-DERC’94 Proc. 24th European Solid State Device Research Conference, (Editions Frontires, Gif-sur-Yvette, France), pp. 273–280 (1994).Google Scholar
  2. [2]
    R. Lenggenhager, D. Jaeggi, P. Malcovati, H. Duran, H. Baltes, E. Doering, “CMOS membrane infrared sensor and improved TMAHW et chant, ”IEDM Technical Digest, (IEEE), pp. 531–534 (1994).Google Scholar
  3. [3]
    M. Schneider, R. Castagnetti, M. G. Allen, H. Baltes, “Integrated flux concentrator improves CMOS magnete-transistor, ”Proc. IEEE MEMS, pp. 151–156 (1995).Google Scholar
  4. [4]
    M. Hornung, R. Frey, O. Brand, H. Baltes, C. Hafner, “Ultrasound barrier based on packaged micromachined membrane resonators, ”Proc. IEEE MEMS, pp. 151–156 (1995).Google Scholar
  5. [5]
    O. Paul, A. Häberli, P. Malcovati, H. Baltes, “Novel integrated thermal pressure gauge and read-out circuit by CMOSIC design, ”IEDM Technical Digest, (IEEE), pp. 131–134 (1994).Google Scholar
  6. [6]
    J. Bühler, H. Baltes, “Thermally actuated CMOS micro mirrors, ”Sensors and Actuators 47, pp. 525–575 (1995).CrossRefGoogle Scholar
  7. [7]
    F.-P. Steiner, A. Hierlemann, C. Cornila, G. Noetzel, M. Bächtold, J. G. Korvink, W. Göpel, H. Baltes, “Polymer coated capacitive microintegrated gas sensor, ”Transducers’95 Digest of Technical Papers, in press (1995).Google Scholar
  8. [8]
    S. Selberherr, “Analysis and Simulation of Semiconductor Devices,” (Springer-Verlag, Wien) (1984).CrossRefGoogle Scholar
  9. [9]
    J. G. Korvink, J. Funk, H. Baltes, “IMEMS modelling, ”Sensors and Materials 6, pp. 235–243 (1994).Google Scholar
  10. [10]
    O. Paul, M. von Arx and H. Baltes, “Process-dependent thermophysical properties of CMOS IC thin films, ”Transducers’95 Digest of Technical Papers, in press (1995).Google Scholar
  11. [11]
    F. Völklein and H. Baltes, “A microstructure for measurement of thermal conductivity of polysilicon thin films, ”J. of Microelectromech. Systems, 1, pp. 193–196 (1993).CrossRefGoogle Scholar
  12. [12]
    O. Paul, M. von Arx, and H. Baltes, “CMOS IC layers: complete set of thermal conductivities, ”Proc. Intl. Workshop on Semiconductor Characterization, (NIST, Gaithersburg), in press (1995).Google Scholar
  13. [13]
    M. von Arx, O. Paul, H. Baltes, “Determination of the heat capacity of CMOS layers for optimal CMOS sensor design, ”Sensors and Actuators A, 47, pp. 428–431 (1995).CrossRefGoogle Scholar
  14. [14]
    O. Paul and H. Baltes, “Measuring thermogalvanomagnetic properties of polysilicon for the optimization of CMOS sensors, ”Transducers’93 Digest of Technical Papers (IEE, Japan, Tokyo), pp. 606–609 (1993).Google Scholar
  15. [15]
    O. Paul, J. Korvink and H. Baltes, “Determination of the thermal conductivity of CMOS IC polysilicon, ”Sensors and Actuators A, 41-42, pp. 161–164 (1994).CrossRefGoogle Scholar
  16. [16]
    P. Lin, “The in-situ measurement of biaxial modulus and residual stress of multilayer polymeric thin films,” Mat. Res. Soc. Symp. Proc., 188, pp. 41–46 (1990).CrossRefGoogle Scholar
  17. [17]
    M. G. Allen, M. Mehregany, R. T. Howe and S. D. Senturia, “Microfabricated structures for the in situ measurement of residual stress, Youngs modulus, and ultimate strain of thin films,” Appl. Phys. Lett., 51, pp. 241–243 (1987).CrossRefGoogle Scholar
  18. [18]
    D. Maier-Schneider, A. Ersoy, J. Maibach, D. Schneider and E. Obermeier, “Influence of annealing on elastic properties of LPCVD silicon nitride and LPCVD polysilicon,” Sensors and Materials, 7, pp. 121–129 (1995).Google Scholar
  19. [19]
    J. Pan, P. Lin, F. Maseeh and S. D. Senturia, “Verification of FEM analysis of load-deflection methods for measuring mechanical properties of thin films,” Tech. Digest of IEEE Solid-State Sensor and Actuator Workshop, (Hilton Head SC), pp. 70–73 (1990).CrossRefGoogle Scholar
  20. [20]
    J. G. Korvink, “An Implementation of the Adaptive Finite Element Method,” (Verlag der Fachvereine, Zurich) (1993).Google Scholar
  21. [21]
    J. Funk, J. Bühler, J. G. Korvink and H. Baltes, “Thermomechanical Modelling of an Actuated Micromirror, ”Eurosensors VIII Conf. Book of Abstracts, (LAAS, Toulouse), p.192 (1994).Google Scholar
  22. [22]
    M. Schneider, J.G. Korvink, H. Baltes, “Magnetostatic Modelling of an Integrated Microconcentrator, ”Transducers’95 Digest of Technical Papers, in press (1995).Google Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • Henry Baltes
    • 1
  • Jan G. Korvink
    • 1
  • Oliver Paul
    • 1
  1. 1.Physical Electronics LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations