Advertisement

On Algorithmic Parametrization Methods in Algebraic Geometry

  • Josef Schicho
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

The parametrization problem can be described as the problem of finding a general closed form solution to a system of algebraic equations, where “closed form” means rational functions in one or more free parameters.

Keywords

Algebraic Geometry Double Point Regular Point Parametric Representation Computer Algebra System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castelnuovo, G. (1937): Sulle superficie di genere zero (1893). In: Castelnuovo, G.: Memorie scelte. Zanichelli, Bologna.Google Scholar
  2. Clebsch, A. (1991): Über die Abbildung algebraischer Flächen, insbesondere der vierten und fünften Ordnung. Math. Ann. 1: 253–316.MathSciNetCrossRefGoogle Scholar
  3. Gebauer, R., Kalkbrener, M., Wall, B., Winkler, F. (1991): CASA: a computer algebra package for constructive algebraic geometry. In: Watt, S. (ed.): Proc. ISSAC’ 91, Bonn, Germany, 1991, pp. 403–410.Google Scholar
  4. Hironaka, H. (1964): Resolution of singularities of an algebraic variety over a field of characteristic zero I, II. Ann. Math. 79: 187–326.MathSciNetGoogle Scholar
  5. Iskovskih, J.-I., Manin, Y. (1971): Three-dimensional quartics and counterexamples to the Lüroth problem. Mat. Sb. 15: 141–166.MathSciNetCrossRefGoogle Scholar
  6. Kalkbrener, M. (1991): Three contributions to elimination theory. Ph. D. thesis, University of Linz, Linz, Austria.Google Scholar
  7. Ocken, S., Schwartz, J. T., Sharir, M. (1987): Precise implementation of CAD primitives using rational parametrizations of standard surfaces. In: Schwartz, T., et al. (eds.): Planning, geometry, and complexity of robot motion. Ablex, Norwood, pp. 245–266.Google Scholar
  8. Schicho, J. (1992): On the choice of pencils in the parametrization of curves. J. Symb. Comput. 14: 557–576.MathSciNetMATHGoogle Scholar
  9. Schicho, J. (1994): An algorithm for the parametrization of rational surfaces. Ph. D. thesis, University of Linz, Linz, Austria.Google Scholar
  10. Shafarevich, I. R. (1974): Basic algebraic geometry. Springer, Berlin Heidelberg New York.MATHCrossRefGoogle Scholar
  11. Walker, R. (1935): Reduction of singularities of an algebraic surface. Ann. Math. 36: 336–365.CrossRefGoogle Scholar
  12. Walker, R. (1950): Algebraic curves. Springer, Berlin Göttingen Heidelberg.MATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 1995

Authors and Affiliations

  • Josef Schicho

There are no affiliations available

Personalised recommendations