Advertisement

Abstract

These are the concluding words of an appreciation of the life and scientific work of Johan Frederik Eykman (1851–1915) published in Recueil Travaux Chimique des Pays-Bas, XXXV, 365–420 (1916), written by A. F.Holleman. It is very doubtful if the writer appreciated, at the time, the full significance of his words. Johan Frederik was the second of eight children born to Christiaan Eykman and his wife Johanna Alida in the village of Nijkerk. He qualified in pharmaceutical science in 1874 from the University of Amsterdam and a year later began to prepare to study for his doctorate in physical sciences at the University of Leiden. These studies were interrupted forever by an extraordinary circumstance.Eykman was approached by the Japanese government and nominated as director of a laboratory charged with the analysis of medicaments and research into indigenous materials. In 1881 he was elected to a chair in Chemistry in the Faculty of Medicine at the University of Tokyo; the first Dutchman to hold a chair in this University. In 1886 Eykman returned to Holland but before doing so he was received in audience by the Emperor who rewarded him for his services to the Empire with “l’ordre du Soleil Levant”.

Keywords

Aromatic Amino Acid Neurospora Crassa Shikimic Acid Shikimate Pathway Chorismate Mutase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles, R.H., D.L. Anton, L. Hedstrom, and S.M. Fish: Mechanism of Enolpyruvylshikimate-3-phosphate Synthase Exchange of Phosphoenolpyruvate with Solvent Protons. Biochemistry, 22, 5903 (1983).Google Scholar
  2. 2.
    Abell, C., S. Balasubramanian, and J.R. Coggins: Observation of an Isotope Effect in the Chorismate Synthase Reaction. J. Amer. Chem. Soc., 112, 8581 (1990).Google Scholar
  3. 3.
    Amrhein, N.: Specific Inhibitors as Probes into the Biosynthesis of Aromatic Amino Acids. In: The Shikimic Acid Pathway (Recent Advances in Phytochemistry, Vol. 20) (E.E. Conn, ed.), pp. 83–117. New York: Plenum Press. 1986.Google Scholar
  4. 4.
    Amrhein, N., and H.C. Steinrucken: Enolpyruvylshikimate-3-phosphate Synthase of Klebsiella pneumoniae. Purification and Properties. Eur. J. Biochem., 143, 341 (1984).Google Scholar
  5. 5.
    Amrhein, N., and H.C. Steinrucken: Enolpyruvylshikimate-3-phosphate Synthase of Klebsiella pneumoniae, II: Inhibition by Glyphosate [N-(Phosphonomethyl)-glycine]. Eur. J. Biochem., 143, 351 (1984).Google Scholar
  6. 6.
    Amrhein, N., H.C. Steinrucken, B. Deus, and P. Gherke: The Site of Inhibition of the Shikimate Pathway by Glyphosate. Plant Physiol., 66, 830 (1980).Google Scholar
  7. 7.
    Anderson, K.S., and K.A. Johnson: Kinetic and Structural Analysis of Enzyme Intermediates: Lessons from EPSP Synthase. Chem. Rev., 90, 1131 (1990).Google Scholar
  8. 8.
    Anderson, K.S., J.A. Sikorski, and K.A. Johnson: Evaluation of 5-Enolpyruvyl-shikimate-3-phosphate Synthase Substrate and Inhibitor Binding by Stopped-Flow and Equilibrium Fluorescence Methods. Biochemistry, 27, 1604 (1988); A Tetrahedral Intermediate in the EPSP Synthase Reaction Observed by Rapid Quench Kinetics. Biochemistry, 27, 7395 (1988).Google Scholar
  9. 9.
    Anderson, K.S., J.A. Sikorski, A.J. Benesi, and K.A. Johnson: Isolation and Structural Elucidation of the Intermediate in the EPSP Synthase Enzymatic Pathway. J. Amer. Chem. Soc., 110, 6577 (1988).Google Scholar
  10. 10.
    Anton, La., S. Chaudhuri, and J.R. Coggins: Shikimate Dehydrogenase from Escherichia coli. Methods in Enzymology, 142, 315 (1987).Google Scholar
  11. 11.
    Asano, Y., J.J. Lee, T.L. Shiel, F. Spreafico, C. Kowl, and H.G. Floss: Steric Course of the Reactions Catalysed by 5-Enolpyruvylshikimate-3-phosphate Synthase, Chorismate Mutase and Anthranilate Synthase. J. Amer. Chem. Soc., 107,4314 (1995).Google Scholar
  12. 12.
    Atkinson, D.E.: Cellular Energy Metabolism and Its Regulation. New York: Academic Press. 1977.Google Scholar
  13. 13.
    Baker, I.T., and I.P. Crawford: Anthranilate Synthase. Partial Purification and Some Kinetic Studies on the Enzyme from Escherichia coli. J. Biol. Chem., 241, 5577 (1966).Google Scholar
  14. 14.
    Balasubramanian, S., G.M. Davies, J.R. Coggins, and C. Abell: Inhibition of Chorismate Synthase by (6R)-and (6S)-6-Fluoro-5-enolpyruvylshikimate-3-phos-phate. J. Amer. Chem. Soc., 113, 8945 (1991).Google Scholar
  15. 75.
    Bartlett, P.A., and C.R. Johnson: An Inhibitor of Chorismate Mutase Resembling the Transition-State Conformation. J. Amer. Chem. Soc., 107, 7792 (1985).Google Scholar
  16. 16.
    Bartlett, P.A., and K. Satake: Does Dehydroquinate Synthase Synthesise Dehydroquinate? J. Amer. Chem. Soc., 110, 1628 (1988).Google Scholar
  17. 17.
    Bauerle, R, J. Hess, and S. French: Anthranilate Synthase-Anthranilate Phosphoribosyltransferase Complex and Sub-Units of Salmonella typhimurium. Methods in Enzymology, 142, 366 (1987).Google Scholar
  18. 18.
    Bender, S. L.J.W. Frost, J.T. Kadonga, and J.R. Knowles: Dehydroquinate Synthase from Escherichia coli: Purification, Cloning and Construction of Overproducers of the Enzyme. Biochemistry, 23, 4470 (1984).Google Scholar
  19. 19.
    Bentley, R.: The Shikimate Pathway — A Metabolic Tree with Many Branches. Crit. Rev. Biochem. Mol. Biol, 25, 307 (1990).Google Scholar
  20. 20.
    Bhosedale, B.S., J.I. Rood, M.K. Sneddon, and J.F. Morrison: Production of Chorismate Mutase-Prephenate Dehydrogenase by a Strain of Escherichia coli Carrying a Multicopy tyrA Plasmid. Isolation and Properties of the Enzyme. Biochim. Biophys. Acta, 717, 6 (1982).Google Scholar
  21. 21.
    Bohm, B.A.: Shikimic Acid (3,4,5-Trihydroxy-l-cyclohexene-l-carboxylic Acid). Chem. Rev., 65, 435 (1965).Google Scholar
  22. 22.
    Bonner, C., and R.A. Jensen: Prephenate Aminotransferase. Methods in Enzymology, 142, 479 (1987).Google Scholar
  23. 23.
    Bonner, C., and R.A. Jensen: Arogenate Dehydrogenase. Methods in Enzymology, 142, 488 (1987).Google Scholar
  24. 24.
    Brown, K.D, and R.L. Somerville: Repression of Aromatic Amino Acid Biosynthesis in Escherichia coli K-12. J. Bacteriol., 108, 386 (1971).Google Scholar
  25. 25.
    Bu’lock, J.D.: The Biosynthesis of Natural Products — An Introduction to Secondary Metabolism. Maidenhead: McGraw-Hill. 1965.Google Scholar
  26. 26.
    Camarkis, H., D.E. Tribe, and J.A. Pittard: Constitutive and Repressible Enzymes of the Common Pathway of Aromatic Biosynthesis in Escherichia coli K-12: Regulation of Enzyme Synthesis at Different Growth Rates. J. Bacteriol., 127, 1085 (1979).Google Scholar
  27. 27.
    Campbell, M.M., M. Sainsbury, and P. A. Searle: The Biosynthesis and Synthesis of Shikimic Acid, Chorismic Acid and Related Compounds. Synthesis, 179 (1993).Google Scholar
  28. 28.
    Campbell, A.P, T.M. Tarasow, W. Massefski, P.E. Wright, and D. Hilvert: Binding of a High Energy Substrate Conformer in Antibody Catalysis. Proc. Natl. Acad. Sci. (U.S.A.), 90, 8663 (1993).Google Scholar
  29. 29.
    Champney, W.S., and R.A. Jensen: The Enzymology of Prephenate Dehydrogenase in Bacillus subtilis. J. Biol. Chem., 245, 3763 (1970).Google Scholar
  30. 30.
    Chaudhuri, S., and J.R. Coggins: The Purification of Shikimate Dehydrogenase from Escherichia coli. Biochem. J., 226, 217 (1985).Google Scholar
  31. 31.
    Chook, Y.M., H. Ke, and W.N. Lipscomb: Crystal Structures of the Monofunctional Chorismate Mutase from Bacillus subtilis and Its Complex with a Transition-State Analog. Proc. Natl. Acad. Sci. (U.S.A.), 90, 8600 (1993).Google Scholar
  32. 32.
    Christopherson, R.I., E. Heyde, and J.F. Morrison: Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli: Spatial Relationship of the Mutase and Dehydrogenase Sites. Biochemistry, 22, 1650 (1983).Google Scholar
  33. 33.
    Coggins, J.R., M.R. Boocock, S. Chaudhuri, J.M. Lambert, J. Lumsden, G.A. Nimmo, and D.S.S. Smith: The arom Multifunctional Enzyme from Neurospora crassa. Methods in Enzymology, 142, 325 (1987).Google Scholar
  34. 34.
    Conn, E.E. (ed.): The Shikimic Acid Pathway (Recent Advances in Phytochemistry, Vol. 20). New York: Plenum Press. 1986.Google Scholar
  35. 35.
    Copley, S.D., and J.R. Knowles: The Conformational Equilibrium of Chorismate in Solution: Implications for the Mechanism of the Non-enzymic and the Enzyme Catalysed Rearrangement of Chorismate to Prephenate. J. Amer. Chem. Soc., 107, 5008 (1987).Google Scholar
  36. 36.
    Copley, S.D., and J.R. Knowles: The Uncatalysed Claisen Rearrangement of Chorismate to Prephenate Prefers a Transition-State of Chair-like Geometry. J. Amer. Chem. Soc., 107, 5306 (1987).Google Scholar
  37. 37.
    Cotton, R.G.H., and F. Gibson: The Biosynthesis of Phenylalanine and Tyrosine: Enzymes Converting Chorismic Acid into Prephenic Acid and Their Relationships to Prephenate Dehydratase and Prephenate Dehydrogenase. Biochim. Biophys. Acta, 100, 76 (1965).Google Scholar
  38. 38.
    Cotton, R.G.H., and F. Gibson: The Biosynthesis of Phenylalanine and Tyrosine in the Pea (Pisum sativum): Chorismate Mutase. Biochim. Biophys. Acta, 100, 76 (1965).Google Scholar
  39. 39.
    Courtney-gutterson, N., C. Napoli, C. Lemieux, A. Morgan, E. Firoozabady, and K.E.P. Robinson: Modification of Flower Colour in Florist’s Chrysanthemum: Production of a White-flowering Variety Through Molecular Genetics. Biotechnology, 12, 268 (1994).Google Scholar
  40. 40.
    Crawford, I.P.: Synthesis of Tryptophan from Chorismate: Comparative Aspects. Methods in Enzymology, 142, 293 (1987).Google Scholar
  41. 41.
    Creighton, T.E., and C. Yanofsky: Chorismate to Tryptophan (Escherichia coli): Anthranilate Synthetase, PR Transferase, PRA Isomerase, InGP Synthetase and Tryptophan Synthetase. Methods in Enzymology, 17A, 365 (1970).Google Scholar
  42. 42.
    Davidson, B.E.: Chorismate Mutase-Prephenate Dehydratase from Escherichia coli. Methods in Enzymology, 142, 432 (1987).Google Scholar
  43. 43.
    Davidson, B.E., E.H. Blackburn, and T.A.A. Dopheide: Chorismate Mutase-Prephenate Dehydratase from Escherichia coli K-12. J. Biol. Chem., 247, 4441 (1972).Google Scholar
  44. 44.
    Davies, J.: Secondary Metabolites: Their Function and Evolution (Ciba Foundation Symposium, No. 171). Chichester: Wiley. 1992.Google Scholar
  45. 45.
    Davis, B.D.: Aromatic Biosynthesis, I: The Role of Shikimic Acid. J. Biol. Chem., 191, 315 (1951).Google Scholar
  46. 46.
    Davis, B.D.: Biochemical Explorations with Biochemical Mutants. Harvey Lectures, 50, 230 (1954/1955).Google Scholar
  47. 47.
    Feyter, R.: Shikimate Kinases from Escherichia coli K-12. Methods in Enzymology, 142, 355 (1987).Google Scholar
  48. 48.
    Feyter, R., and J. Pittard: Purification and Properties of Shikimate Kinase II from Escherichia coli K-12. J. Bacteriol., 165, 336 (1986).Google Scholar
  49. 49.
    Feyter, R., B. Davidson, and J. Pittard: Nucleotide Sequence of the Transcription Unit Containing the aroL and aroM Genes from Escherichia coli K-12. J. Bacteriol., 165, 233 (1986).Google Scholar
  50. 50.
    Eka, R.K., LA. Anton, B. Dunbar, and J.R. Coggins: The Characterisation of the Shikimate Pathway Enzyme Dehydroquinase from Pisum sativum. FEBS Lett., 349, 397 (1994).Google Scholar
  51. 57.
    De Leo, A.B., and D.B. Sprinson: Mechanism of 3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) Synthetase. Biochem. Biophys. Res. Comm., 32, 873 (1968).Google Scholar
  52. 52.
    Dell, K.A., and J.W. Frost: Identification and Removal of Impediments to Biocatalytic Synthesis of Aromatics from D-Glucose. Rate-Limiting Enzymes in the Common Pathway of Aromatic Amino Acid Biosynthesis. J. Amer. Chem. Soc., 115, 11581 (1993).Google Scholar
  53. 53.
    Draths, K.M., and J.W. Frost: Synthesis Using Plasmid-Based Catalysis: Plasmid Assembly and 3-Deoxy-D-arabino-heptulosonate Production. J. Amer. Chem. Soc., 112, 1657 (1990).Google Scholar
  54. 54.
    Draths, K.M., D.L. Pompliano, D.L. Conley, J.W. Frost, A. Berry, G.L. Disbrow, R.J. Staversky, and J.C. Lievene: Biocatalytic Synthesis of Aromatics from D-Glucose: The Role of Transketolase. J. Amer. Chem. Soc., 114, 3956 (1992).Google Scholar
  55. 55.
    Duncan, K., S. Chaudhuri, and J.R. Coggins: 3-Dehydroquinate Dehydratase from Escherichia coli. Methods in Enzymology, 142, 320 (1987).Google Scholar
  56. 56.
    Duncan, K., R.M. Edwards, and J.R. Coggins: The Pentafunctional arom Enzyme of Saccharomyces cerevisiae Is a Mosaic of Monofunctional Domains. Biochem. J., 246, 375 (1987).Google Scholar
  57. 57.
    Ely, R., and J. Pittard: Aromatic Amino Acid Biosynthesis: Regulation of Shikimate Kinase in Escherichia coli K-12. J. Bacteriol., 138, 933 (1979).Google Scholar
  58. 58.
    Fischer, H.O.L., and G.L. Dangschat: Abbau der Chinasaure zur Zitronensaure. Helv. Chim. Acta, 17, 1196 (1934).Google Scholar
  59. 59.
    Fischer, H.O.L., and G.L. Dangschat: Konstitution der Shikimisaure. Helv. Chim. Acta, 17, 1200 (1934).Google Scholar
  60. 60.
    Fischer, H.O.L., and G.L. Dangschat: Abbau der Shikimisaure zur Aconitsaure. Helv. Chim. Acta, 18, 1204 (1935).Google Scholar
  61. 61.
    Fischer, H.O.L., and G.L. Dangschat: Zur Konfiguration der Shikimisaure. Helv. Chim. Acta, 18, 1206 (1935).Google Scholar
  62. 62.
    Fischer, H.O.L., and G.L. Dangschat: Uber die Konfiguration der Shikimisaure und ihren Abbau zur Glucodesonsaure. Helv. Chim. Acta, 20, 705 (1937).Google Scholar
  63. 63.
    Fischer, R, and R.A. Jensen: Arogenate Dehydratase. Methods in Enzymology, 142, 495 (1987).Google Scholar
  64. 64.
    Fischer, R, and R.A. Jensen: Prephenate Dehydrogenase (Monofunctional). Methods in Enzymology, 142, 503 (1987).Google Scholar
  65. 65.
    Fischer, R, and R.A. Jensen: Prephenate Dehydratase (Monofunctional). Methods in Enzymology, 142, 507 (1987).Google Scholar
  66. 66.
    Floss, H.G., D.K. Onderka, and M. Carroll: Stereochemistry of the 3-Deoxy-D-arabino-heptulosonate-7-phosphate Reaction and the Chorismate Synthase Reaction. J. Biol. Chem., 247, 736 (1972).Google Scholar
  67. 67.
    Freudenberg, K.: Biogenesis and Constitution of Lignin. J. Pure Appl. Chem., 5, 9 (1962).Google Scholar
  68. 68.
    Frost, J.W., and K.M. Draths: Conversion of D-Glucose into Catechol: The Not-So-Common Pathway of Aromatic Biosynthesis. J. Amer. Chem. Soc., 113, 9361 (1991).Google Scholar
  69. 69.
    Gaertner, F.H.: Unique Catalytic Functions of Enzyme Clusters. Trends Biochem. Sci., 3, 63 (1978).Google Scholar
  70. 70.
    Gaertner, F.H.: Chorismate Synthase: A Bifunctional Enzyme from Neurospora crassa. Methods in Enzymology, 142, 362 (1987).Google Scholar
  71. 71.
    Ganem, B.: From Glucose to Aromatics: Recent Developments in Natural Products of the Shikimate Pathway. Tetrahedron, 34, 3353 (1978).Google Scholar
  72. 72.
    Gilchrist, D.G., and J.A. Connelly: Chorismate Mutase from Mung Bean and Sorghum. Methods in Enzymology, 142, 450 (1987).Google Scholar
  73. 73.
    Gollub, E.G., H. Zalkin, and D.B. Sprinson: Correlation of Genes and Enzymes and Studies of the Regulation of the Aromatic Pathway in Salmonella. J. Biol. Chem., 242, 5323 (1967).Google Scholar
  74. 74.
    Gould, S.J., and R.L. Eisenberg: The Origin of the C-2 Hydroxyl in the Isochoris-mate Synthase Reaction. Tetrahedron, 47, 5979 (1991).Google Scholar
  75. 75.
    Gray, J.V., B. Golinelli-Pimpaneau, and J.R. Knowles: Monofunctional Chorismate Mutase from Bacillus subtilis. Purification of the Protein, Molecular Cloning of the Gene and Overexpression of the Gene Product in Escherichia coli. Biochemistry, 29, 376 (1990).Google Scholar
  76. 76.
    Grewe, R., and W. Lorenzen: Die Überführung der Shikimisaiire in Chinasaure. Chem. Ber., 86, 928 (1953).Google Scholar
  77. 77.
    Grewe, R., and A. Bokranz: Shikimisaure und Diazomethan. Chem. Ber., 88, 49 (1955).Google Scholar
  78. 78.
    Grewe, R., H. Jensen, and M. Schnoor: Darstellung und Eigenschaften des Shikimialkohols. Chem. Ber., 89, 898 (1956).Google Scholar
  79. 79.
    Grewe, R, and H. Buttner: Darstellung und Eigenschaften des Shikimialdehydes. Chem. Ber., 91, 2452 (1958).Google Scholar
  80. 80.
    Guilford, W.J., S.D. Copley, and J.R. Knowles: On the Mechanism of the Chorismate Mutase Reaction. J. Amer. Chem. Soc., 109, 5013 (1987).Google Scholar
  81. 81.
    Harris, J., C. Kleanthous, J.R. Coggins, A.R. Hawkins, and C. Abell: Different Mechanistic and Stereochemical Courses for the Reactions Catalysed by Type I and Type II Dehydroquinases. J. Chem. Soc. Chem. Commun, 1080 (1993).Google Scholar
  82. 82.
    Hasan, N, and E.W. Nester: Purification of Chorismate Synthase from Bacillus subtilis. J. Biol. Chem., 253, 4993 (1978).Google Scholar
  83. 83.
    Hasan, N, and E.W. Nester: Purification and Characterisation of NADPH-Dependent Flavin Reductase, an Enzyme Required for the Activation of Chorismate Synthase in Bacillus subtilis. J. Biol. Chem., 253, 4987 (1978).Google Scholar
  84. 84.
    Hasan, N, and E.W. Nester: Dehydroquinate Synthase in Bacillus subtilis, an Enzyme Associated with Chorismate Synthase and Flavin Reductase. J. Biol. Chem., 253, 4999 (1978).Google Scholar
  85. 85.
    Haslam, E.: The Shikimate Pathway. London: Butterworths. 1974.Google Scholar
  86. 86.
    Haslam, E.: Shikimic Acid — Metabolism and Metabolites. Chichester: Wiley. 1993.Google Scholar
  87. 87.
    Haslam, E, and R.J. Ife: The Shikimate Pathway, Part III: The Stereochemical Course of the L-Phenylalanine Ammonia Lyase Reaction. J. Chem. Soc. (C), 2818 (1971).Google Scholar
  88. 88.
    Hawkes, T.R, T. Lewis, J.R. Coggins, D.M. Mousdale, D.J. Lowe, and R.F. Thorneley: Chorismate Synthase. Pre-Steady State Kinetics of Phosphate Release from 5-Enolpyruvylshikimate-3-phosphate. Biochem. J., 265, 899 (1990).Google Scholar
  89. 89.
    Herrmann, K., and R. Schoner: 3-Deoxy-D-arabinoheptulosonate 7-phosphate Synthase. Purification and Molecular Characterisation of the Tyrosine Sensitive Isoenzyme from Escherichia coli. J. Biol. Chem., 251, 5440 (1976).Google Scholar
  90. 90.
    Herrmann, K., R.J. McCandliss, and M.D. Poling: 3-Deoxy-D-arabinoheptulosonate 7-phosphate Synthase. Purification and Molecular Characterisation of the Phenylalanine Sensitive Isoenzyme from Escherichia coli. J. Biol. Chem., 253, 4259 (1978).Google Scholar
  91. 91.
    Hilvert, D., S.H. Carpenter, K.D. Nadred, and M.-T.M. Auditor: Catalysis of Concerted Reactions by Antibodies: The Claisen Rearrangement. Proc. Natl. Acad. Sci. (U.S.A.), 85, 4953 (1988).Google Scholar
  92. 92.
    Holton, T.A., and Y. Tanake: Blue Roses — A Pigment of Our Imagination? Trends in Biotechn., 12, 40 (1994).Google Scholar
  93. 93.
    Holton, T.A., F. Brugliera, D.R. Lester, Y. Tanaka, C.D. Hyland, J.G.T. Menting, C.Y. Lu, E. Farcy, T.W. Stevenson, and E.C. Cornish: Cloning and Expression of Cytochrome P-450 Genes Controlling Flower Colour. Nature, 366, 276 (1993).Google Scholar
  94. 94.
    Hommell, U., A. Lustig, and K. Kirschner: Purification and Characterisation of Yeast Anthranilate Phosphoribosyl Transferase. Eur. J. Biochem., 180, 33 (1989).Google Scholar
  95. 95.
    Hu, C.Y., and D.B. Sprinson: Properties of Tyrosine-Inhibitable 3-Deoxy-D-arabinoheptulosonic Acid-7-phosphate Synthase from Salmonella. J. Bacteriol., 129, 177 (1977).Google Scholar
  96. 96.
    Huang, L., A.L. Montoya, and E.W. Nester: Purification and Characterisation of Shikimate Kinase Enzyme Activity in Bacillus subtilis. J. Biol. Chem., 250, 7675 (1975).Google Scholar
  97. 97.
    Hudson, G.S., V. Wong, and B.E. Davidson: Chorismate Mutase/Prephenate Dehydrogenase from Escherichia coli: Purification, Characterisation and Identification of a Reactive Cysteine. Biochemistry, 23, 6240 (1984).Google Scholar
  98. 98.
    Hudson, G.S., and B.E. Davidson: Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli: Methods in Enzymology, 142, 440 (1987).Google Scholar
  99. 99.
    Hutter, R., P. Niederberger, and J.A. Demoss: Tryptophan Biosynthetic Genes in Eukaryotic Micro-Organisms. Ann. Rev. Microbiol., 40, 55 (1986).Google Scholar
  100. 100.
    Hyde, C.C., S.A. Ahmed, E.A. Padlam, E.W. Miles, and D.R. Davies: The Three-Dimensional Structure of the Tryptophan Synthase α2β2 Multienzyme Complex from Salmonella typhimurium. J. Biol. Chem., 263, 17857 (1988).Google Scholar
  101. 101.
    Jackman, L.M., and J.M. Edwards: Chorismic Acid. A Branch Point Intermediate in Aromatic Biosynthesis. Aust. J. Chem., 18, 1227 (1965).Google Scholar
  102. 102.
    Jackson, D.Y., J.W. Jacobs, R. Sugaswara, S.H. Reich, P.A. Bartlett, and P. G. Schulz: An Antibody Catalysed Claisen Rearrangement. J. Amer. Chem. Soc., 110, 4841 (1988).Google Scholar
  103. 103.
    Jensen, R.A.: Tyrosine and Phenylalanine Biosynthesis: Relationship Between Alternative Pathways, Regulation and Subcellular Location. In: The Shikimic Acid Pathway (Recent Advances in Phytochemistry, Vol. 20), (E.E. Conn, ed.), pp. 57–81. New York: Plenum. 1986.Google Scholar
  104. 104.
    Jensen, R.A., and R. Fischer: The Post-Prephenate Biochemical Pathways to Phenylalanine and Tyrosine — An Overview. Methods in Enzymology, 142, 472 (1987).Google Scholar
  105. 105.
    Kaplan, J.B., W.K. Merkel, and B.P. Nichols: Evolution of Glutamidotransferase Genes. Nucleotide Sequence of the pabA Genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. J. Mol. Biol., 183, 327 (1985).Google Scholar
  106. 106.
    Keller, B., E. Keller, H. Gorisch, and F. Lingens: Zur Biosynthese von Phenylalanin und Tyrosin in Streptomyceten. Hoppe-Seyler’s Z. Physiol. Chem., 364, 455 (1989).Google Scholar
  107. 107.
    Kirschner, K., H. Szadowski, T.S. Jardetzky, and V. Hager: Phosphoribosylanthranilate Isomerase-Indoleglycerol Phosphate Synthase from Escherichia coli. Methods in Enzymology, 142, 386 (1987).Google Scholar
  108. 108.
    Kleanthous, C., R. Deka, K. Davis, S.M. Kelly, A. Cooper, S.E. Harding, N.C. Price, A.R. Hawkins, and J.R. Coggins: A Comparison of the Enzymological and Biophysical Properties of Two Distinct Classes of Dehydroquinase Enzymes. Biochem. J., 282, 687 (1992).Google Scholar
  109. 109.
    Knowles, J.R.: Mechanistic Ingenuity in Enzyme Catalysis. Aldrichim. Acta, 22, 59 (1989).Google Scholar
  110. 110.
    Knowles, J.R., S. Mehdi, and J.W. Frost: Dehydroquinate Synthase from Escherichia coli and Its Substrate 3-Deoxy-D-arabinoheptulosonic Acid-7-phosphate. Methods in Enzymology, 142, 306 (1987).Google Scholar
  111. 111.
    Koch., G.L.E., D.C. Shaw, and F. Gibson: The Purification and Characterisation of Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli. Biochim. Biophys. Acta, 229, 795 (1971).Google Scholar
  112. 112.
    Koch., G.L.E., D.C. Shaw, and F. Gibson: Studies on the Relationship Between the Active Sites of Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli and Aerobacter aerogenes. Biochim. Biophys. Acta, 258, 719 (1971).Google Scholar
  113. 113.
    Koukol, J., and E.E. Conn: The Metabolism of Aromatic Compounds in Higher Plants, IV: Purification and Properties of the Phenylalanine Deaminase of Hordeum vulgare. J. Biol. Chem., 236, 2692 (1961).Google Scholar
  114. 114.
    Van Der Krol, A.R., P.E. Lenting, J. Veenstra, I.M. Van Der Meer, R.E. Koes, A.G.M. Gerats, J.N.M. Mol, and A.R. Stuitje: An Anti-Sense Chalcone Synthase Gene in Transgenic Plants Inhibits Flower Pigmentation. Nature, 333, 866 (1988).Google Scholar
  115. 115.
    Lawrence, J., G.B. Cox, and F. Gibson: Biosynthesis of Ubiquinone in Escherichia coli K-12. Biochemical and Genetic Characterisation of a Mutant Unable to Convert Chorismate into 4-Hydroxybenzoate. J. Bacteriol., 118, 41 (1974).Google Scholar
  116. 116.
    Levin, J.G., and D.B. Sprinson: The Enzymatic Formation and Isolation of 3-Enolpyruvylshikimate-5-phosphate. J. Biol. Chem., 239, 1142 (1964).Google Scholar
  117. 117.
    Lewendon, A., and J.R. Coggins: 3-Phosphoshikimate-l-carboxyvinyl Transferase. Methods in Enzymology, 142, 342 (1987).Google Scholar
  118. 118.
    Liu, J., K. Duncan, and C.T. Walsh: Nucleotide Sequence of a Cluster of Escherichia coli Enterobactin Biosynthesis Genes: Identification of entA and Purification of Its Product 2,3-Dihydro-2,3-dihydroxybenzoate Dehydrogenase. J. Bacteriol., 171, 791 (1989).Google Scholar
  119. 119.
    Liu, J., N. Quin, G.A. Berchtold, and C.T. Walsh: Overexpression, Purification and Characterisation of Isochorismate Synthase (entC), the First Enzyme Involved in the Biosynthesis of Enterobactin from Chorismate. Biochemistry, 29, 1417 (1990).Google Scholar
  120. 120.
    Loomis, L.D, and K.N. Raymond: Solution Equilibria of Enterobactin and Metal-Enterobactin Complexes. Inorg. Chem., 30, 906 (1991).Google Scholar
  121. 121.
    Maitra, U.S., and D.B. Sprinson: 5-Dehydro-3-deoxy-D-arabinoheptulosonic Acid-7-phosphate. An Intermediate in the 3-Dehydroquinate Synthase Reaction. J. Biol. Chem., 253, 5426 (1978).Google Scholar
  122. 122.
    Mcquade, J.F, and T.E. Creighton: Purification and Comparison of the N-(5’-Phosphoribosyl)anthranilic Acid Isomerase/Indole-3-glycerol Synthetase of Tryptophan Biosynthesis from Three Species of Enterobacteriaceae. Eur. J. Biochem, 16, 199 (1970).Google Scholar
  123. 123.
    Mehdi, S., S.L. Bender, and J.R. Knowles: Dehydroquinate Synthase: The Role of Divalent Metal Cations and of Nicotinamide Adenine Dinucleotide in Catalysis. Biochemistry, 28, 7555 (1989).Google Scholar
  124. 124.
    Meyer, P., I. Heidmann, G. Forkman, and H. Saeder: A New Petunia Flower Colour Generated by Transformation of a Mutant with a Maize Gene. Nature, 330, 677 (1987).Google Scholar
  125. 125.
    Mills, E.W., R. Bauerle, and S.A. Ahmed: Tryptophan Synthase from Escherichia coli and Salmonella typhimurium. Methods in Enzymology, 142, 398 (1987).Google Scholar
  126. 126.
    Millar, G., and J.R. Coggins: The Complete Amino Acid Sequence of 3-Dehydroquinate Synthase from Escherichia coli K-12. FEBS Lett, 200, 11 (1986).Google Scholar
  127. 127.
    Mol, J.N.M., A.R. Stuitje, and A. Van der Krol: Genetic Manipulation of Floral Pigmentation Genes. Plant Mol. Biol. 12, 287 (1989).Google Scholar
  128. 128.
    Morell, H., M.J. Clark, P.F. Knowles, and D.B. Sprinson: The Enzymic Synthesis of Chorismic and Prephenic Acid from 3-Enolpyruvylshikimic Acid 5-Phosphate. J. Biol. Chem., 242, 82 (1967).Google Scholar
  129. 129.
    Mousdale, D.M., and J.R. Coggins: Detection and Sub-cellular Localisation in a Higher Plant of Chorismate Synthase. FEBS Lett, 205, 328 (1986).Google Scholar
  130. 130.
    Mousdale, D.M., and J.R. Coggins: 3-Phosphoshikimate-l-carboxyvinyl Transferase from Pisum sativum. Methods in Enzymology, 142, 348 (1987).Google Scholar
  131. 131.
    Mousdale, D.M., M.S. Campbell, and J.R. Coggins: Purification and Characterisation of Bifunctional Dehydroquinase — Shikimate: NADP Oxidoreductase from Pea Seedlings. Phytochemistry, 26, 2665 (1987).Google Scholar
  132. 132.
    Nichols, B.P, A.M. Seibold, and S.K. Doktor: para-Aminobenzoate Synthesis from Chorismate Occurs in Two Steps. J. Biol. Chem., 264, 8597 (1989).Google Scholar
  133. 133.
    Ogino, T., C. Garner, J.L. Markley, and K. Herrmann: Biosynthesis of Aromatic Compounds: 13CNMR Spectroscopy of Whole Escherichia coli Cells. Proc. Natl. Acad. Sci. (U.S.A), 79, 5828 (1982).Google Scholar
  134. 134.
    Ozenberger, B.A., T.J. Brickman, and M.A. MCiNtosh: Nucleotide Sequence of Escherichia coli Isochorismate Synthase Gene entC and Evolutionary Relationships of Isochorismate Synthase and Other Chorismate Utilising Enzymes. J. Bacteriol., 171, 775 (1989).Google Scholar
  135. 735.
    Patel, N, S.L. Stenmark-Cox, and R.A. Jensen: Enzymological Basis of Reluctant Auxotrophy for Phenylalanine and Tyrosine in Pseudomonas aeruginosa. J. Biol. Chem., 253, 2972 (1978).Google Scholar
  136. 136.
    Pittard, A.J.: Biosynthesis of the Aromatic Amino Acids in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. I (F.C. Niedhart, ed.), p. 368–394. Washington: American Soc. Microbiol, 1987.Google Scholar
  137. 137.
    Poulsen, C., and R. Verpoorte: Roles of Chorismate Mutase, Isochorismate Synthase and Anthranilate Synthase in Plants. Phytochemistry, 30, 377 (1991).Google Scholar
  138. 138.
    Priestle, J.P, M.G. Grutter, J.L. White, M.G. Vincent, M. Kama, E.W. Isou, T.S. Jardetzky, K. Kirschner, and J.N. Jansonius: Three-Dimensional Structure of the Bifunctional Enzyme N-(5′-Phosphoribosyl)-anthranilate Isomerase-Indole-glycerol-3-phosphate Synthase from Escherichia coli. Proc. Natl. Acad. Sci.(U.S.A), 84, 5690 (1987).Google Scholar
  139. 139.
    Ramjee, N, J.R. Coggins, T.R. Hawkes, D.J. Lowe, and R.N.F. Thorneley: Spectrophotometric Detection of a Modified Flavin Mononucleotide (FMN) Intermediate Formed During the Catalytic Cycle of Chorismate Synthase. J. Amer. Chem. Soc., 113, 8566 (1991).Google Scholar
  140. 140.
    Ramjee, N, S. Balasubramanian, C. Abell, J.R. Coggins, G.M. Davies, T.R. Hawkes, D.J. Lowe, and R.N.F. Thorneley: Reaction of (6R)-6-F-EPSP with Recombinant Escherichia coli Chorismate Synthase Generates a Stable Flavin Mononucleotide Semiquinone Radical. J. Amer. Chem. Soc., 114, 3151 (1992).Google Scholar
  141. 141.
    Rusnak, F., J. Liu, N. Quin, G.A. Berchtold, and C.T. Walsh: Subcloning of the Enterobactin Biosynthetic Gene ent B: Expression, Purification, Characterisation and Substrate Specificity of Isochorismatase. Biochemistry, 29, 1425 (1990).Google Scholar
  142. 142.
    Samfrathkumar, P., and J.F. Morrison: Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli. Purification and Properties of the Bifunctional Enzyme. Biochim. Biophys. Acta, 702, 204 (1982).Google Scholar
  143. 143.
    Schmidheim, T., H.-U. Mosch, J.N.S. Evans, and G. Braus: Yeast Allosteric Chorismate Mutase is Locked in the Activated State by a Single Amino Acid Substitution. Biochemistry, 29, 3660 (1990).Google Scholar
  144. 144.
    Sogo, S.G., T.S. Widlanski, J.H. Hoare, C.E. Grimshaw, G.E. Berchtold, and J.R. Knowles: Stereochemistry of the Rearrangement of Chorismate to Prephenate Chorismate Mutase Involves a Chair Transition State. J. Amer. Chem. Soc., 106, 2701 (1984).Google Scholar
  145. 145.
    Smith., D.S.S., and J.R. Coggins: Isolation of a Bifunctional Domain from the Pentafunctional arom Complex of Neurospora crassa. Biochem. J., 213, 405 (1983).Google Scholar
  146. 146.
    Srinivasan, P.R., J. Rothschild, and D.B. Sprinson: The Enzyme Conversion of 3-Deoxy-D-arabinoheptulosonic Acid-7-phosphate to 5-Dehydroquinate. J. Biol. Chem., 238, 3176 (1976).Google Scholar
  147. 147.
    Steinrucken, H.C., A. Schulz, N. Amrhein, C.A. Porter, and R.T. Fraley: Overproduction of 5-Enolpyruvylshikimate-3-phosphate Synthase in Glyphosate Tolerant Petunia hybrida Cell Line. Arch. Biochem. Biophys, 244, 169 (1986).Google Scholar
  148. 148.
    Stenmark, S.L., D.L. Pierson, G.I. Glover, and R.A. Jensen: Blue-Green Bacteria Synthesise L-Tyrosine by the Pretyrosine Pathway. Nature, 247, 290 (1974).Google Scholar
  149. 149.
    Stewart, J., D.B. Wilson, and B. Ganem: A Genetically Engineered Monofunctional Chorismate Mutase. J. Amer. Chem. Soc., 112, 4582 (1991).Google Scholar
  150. 150.
    Stewart, J., D.B. Wilson, and B. Ganem: Chorismate Mutase/Prephenate Dehydratase from Escherichia coli: Subcloning, Overproduction and Purification. Tetrahedron, 47, 2573 (1991).Google Scholar
  151. 151.
    Teng, C.-T., and B. Ganem: Shikimate Derived Metabolites, 13: A Key Intermediate in the Biosynthesis of Anthranilate from Chorismate. J. Amer. Chem. Soc., 106, 2463 (1984).Google Scholar
  152. 152.
    Walsh., C.T., M.D. Erion, A.E. Watts, J.J. Delany, and G.A. Berchtold: Chorismate Aminations: Partial Purification of Escherichia coli PABA Synthase and Mechanistic Comparison with Anthranilate Synthase. Biochemistry, 26, 4734 (1987).Google Scholar
  153. 153.
    Walsh., C.T., J. Liu, F. Rusnak, and M. Sakaitani: Molecular Studies on Enzymes in Chorismate Metabolism and the Enterobactin Biosynthetic Pathway. Chem. Rev., 90, 1105 (1990).Google Scholar
  154. 154.
    Weaver, L.M., and K. Herrmann: Cloning of an aroF Allele Encoding a Tyrosine-Insensitive 3-Deoxy-D-arabinoheptulosonate-7-phosphate Synthase. J. Bacteriol., 172, 6581 (1990).Google Scholar
  155. 755.
    Weiss, U., and J.M. Edwards: Biosynthesis of Aromatic Compounds. New-York: Wiley-Interscience. 1980.Google Scholar
  156. 156.
    White, P.J., G. Millar, and J.R. Coggins: The Overexpression, Purification and Complete Amino Acid Sequence of Chorismate Synthase from Escherichia coli K-12 and Its Comparison with the Enzyme from Neurospora crassa. Biochem. J., 251, 313 (1988).Google Scholar
  157. 157.
    Wightman, R.H, J. Staunton, A.R. Battersby, and K.R. Hanson: Studies of Enzyme Mediated Reactions, Part 1: Synthesis of Deuterium-or Tritium-Labelled (3S)-and (3R)-Phenylalanines: Stereochemical Course of the Elimination Catalysed by L-Phenylalanine Ammonia Lyase. J. Chem. Soc. (Perkin Trans. I), 2355 (1972); Ellis, B.E, M.H. Zenk, G.W. Kirby, J. Michael, and H.G. Floss: Steric Course of the Tyrosine Ammonia-Lyase Reaction. Phytochem. 12, 1057 (1973).Google Scholar
  158. 158.
    Yaniv, H., and C. Gilvarg: Aromatic Biosynthesis, XIV: 5-Dehydroshikimic Reductase. J. Biol. Chem., 213, 787 (1955).Google Scholar
  159. 159.
    Young, I.G., and F. Gibson: Regulation of the Enzymes Involved in the Biosynthesis of 2,3-Dihydroxybenzoic Acid in Aerobacter aerogenes and Escherichia coli. Biochim. Biophys. Acta, 177, 401 (1969).Google Scholar
  160. 160.
    Young, I.G., T.J. Batterham, and F. Gibson: The Isolation, Identification and Properties of Isochorismic Acid, an Intermediate in the Biosynthesis of 2,3-Dihydroxybenzoic Acid. Biochim. Biophys. Acta, 177, 389 (1969).Google Scholar
  161. 161.
    Young, I.G., L.M. Jackman, and F. Gibson: The Isolation, Identification and Properties of 2,3-Dihydro-2,3-dihydroxybenzoic Acid, an Intermediate in the Biosynthesis of 2,3-Dihydroxybenzoic Acid. Biochim. Biophys. Acta, 177, 401 (1969).Google Scholar
  162. 162.
    Zalkin, H.: Anthranilate Synthase. Methods in Enzymology, 113, 287 (1985).Google Scholar
  163. 163.
    Zimmerman, A., and K. Hahlbrock: Light Induced Changes of Enzyme Activities in Parsley Cell Cultures. Purification and Properties of Phenylalanine Ammonia Lyase (EC 4.3.1.5). Arch. Biochem. Biophys., 166, 54 (1975).Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • E. Haslam
    • 1
  1. 1.Department of ChemistryUniversity of SheffieldSheffieldUK

Personalised recommendations