Skip to main content

Abstract

A total of 182 trichothecenes, based on the trichothecane skeleton (1), have now been isolated from natural sources. They are made up of 113 non-macrocyclic and 69 macrocyclic compounds (2). Thirty-four more naturally-occurring trichothecenes have therefore been described since 1986 (7) and of these 30 are non-macrocyclic compounds.†

Reviewing the literature published between January 1987 and December 1995.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Part 1: Grove, J.F.: Non-Macrocyclic Trichothecenes. Nat. Prod. Rep., 5, 187 (1988).

    CAS  Google Scholar 

  2. Grove, J.F.: Macrocyclic Trichothecenes. Nat. Prod. Rep., 10, 429 (1993).

    CAS  Google Scholar 

  3. Wani, M.C., D.H. Rector, and C.E. COOK: Synthesis of HT-2 Toxin, Neosolaniol, T-2 Toxin, 3′-Hydroxy T-2 Toxin, and Sporotrichiol from Anguidine by Routes Involving Hydroxyl Inversion/Esterification. J. Org. Chem., 52, 3468 (1987).

    CAS  Google Scholar 

  4. Godtfredsen, W.O., J.F. Grove, and Ch. Tamm: Zur Nomenklatur einer neueren Klasse von Sesquiterpenen. Helv. Chim. Acta, 50, 1666 (1967).

    CAS  Google Scholar 

  5. Corley, D.G., G.E. Rottinghaus, J.K. Tracy, and M.S. Tempesta: New Trichothecene Mycotoxins of Fusarium sporotrichioides (MC-72083). Tetrahedron Lett., 27, 4133 (1986).

    CAS  Google Scholar 

  6. McCormick, S.P., S.L. Taylor, R.D. Plattner, and M.N. Beremand: Bioconversion of Possible T-2 Toxin Precursors by a Mutant Strain of Fusarium sporotrichioides NRRL 3299. Appl. Environ. Microbiol., 56, 702 (1990).

    CAS  Google Scholar 

  7. Mccormick, S.P., S.L. Taylor, R.D. Plattner, and M.N. Beremand: New Modified Trichothecenes Accumulated in Solid Culture by Mutant Strains of Fusarium sporotrichioides. Appl. Environ. Microbiol., 55, 2195 (1989).

    CAS  Google Scholar 

  8. Jarvis, B.B., J.O. Midiwo, and M.-D. Guo: 12,13-Deoxytrichoverrins from Myrothecium verrucaria. J. Nat. Prod., 52, 663 (1989).

    CAS  Google Scholar 

  9. Lauren, D.R., A. Ashley, B.A. Blackwell, R. Greenhalgh, J.D. Miller, and G.A. Neish: Trichothecenes Produced by Fusarium crookwellense DAOM 193611. J. Agric. Food Chem., 35, 884 (1987).

    CAS  Google Scholar 

  10. Lauren, D.R., S.T. Sayer, and M.E. di Menna: Trichothecene Production by Fusarium Species Isolated from Grain and Pasture Throughout New Zealand. Mycopathologia, 120, 167 (1992).

    CAS  Google Scholar 

  11. Kononenko, G.P., N.A. Soboleva, and A.N. Leonov: 3,7,8,15-Tetrahydroxy-12,13-epoxytrichothecene-9-en in a Culture of Fusarium graminearum. Khim. Prir. Soedin., 267 (1990); Chem. Nat. Compd. (Engl. Transl.), 26, 219 (1990).

    Google Scholar 

  12. Richardson, K.E., G.E. Toney, C.A. Haney, and P.B. Hamilton: Occurrence of Scirpentriol and Its Seven Acetylated Derivatives in Culture Extracts of Fusarium sambucinum NRRL 13495. J. Food Prot., 52, 871 (1989).

    CAS  Google Scholar 

  13. Luo, Y., F. Lin, J. Yang, J. Zhang, Y. Ye, Y. Li, Y. Jiang, N. Zhang, and Z. Wang: Analysis and Identification of Fusarium Mycotoxins in Corn Culture of Fusarium camptoceras. Chem. Abstr., 119, 153704 (19

    Google Scholar 

  14. Hesketh, A.R.: Metabolic Studies on the Transformation of Trichodiene to Trichothecene Mycotoxins. Mycotoxin Res., 8, 52 (1992).

    Google Scholar 

  15. Plattner, R.D., M.B. Al-Hetti, D. Weisleder, and J.B. Sinclair: A New Trichothecene from Trichothecium roseum. J. Chem. Res. (S), 311 (1988).

    Google Scholar 

  16. Langley, P. A. Shuttleworth, P.J. Sidebottom, S.K. Wrigley, and PJ. Fisher: A Trichothecene from Spicellum roseum. Mycol. Res., 94, 705 (1990).

    CAS  Google Scholar 

  17. Sanson, D.R., D.G. Corley, C.L. Barnes, S. Searles, E.O. Schlemper, M.S. Tempesta, and G.E. Rottinghaus: New Mycotoxins from Fusarium sambucinum. J. Org. Chem., 54, 4313 (1989).

    CAS  Google Scholar 

  18. Visconti, A., C.J. Mirocha, A. Logrieco, A. Bottalico, and M. Solfrizzo: Mycotoxins Produced by Fusarium acuminatum. Isolation and Characterization of Acuminatin: A New Trichothecene. J. Agric. Food Chem., 37, 1348 (1989).

    CAS  Google Scholar 

  19. Greenhalgh, R., J.D. Miller, and A. Visconti: Toxigenic Potential of Fusarium compactum R8287 and R8293. J. Agric. Food Chem., 39, 809 (1991).

    CAS  Google Scholar 

  20. Greenhalgh, R., B.A. Blackwell, M. Savard, J.D. Miller, and A. Taylor: Secondary Metabolites Produced by Fusarium sporotrichioides DAOM 165006 in Liquid Culture. J. Agric. Food Chem., 36, 216 (1988).

    CAS  Google Scholar 

  21. Desjardins, A.E., and R.D. Plattner: Trichothecene Toxin Production by Strains of Gibberella pulicaris (Fusarium sambucinum) in Liquid Culture and in Potato Tubers. J. Agric. Food Chem., 37, 388 (1989).

    CAS  Google Scholar 

  22. Greenhalgh, R., D.A. Fielder, B.A. Blackwell, J.D. Miller, J.-P. Charland, and J.W. ApSimon: Some Minor Secondary Metabolites of Fusarium sporotrichioides DAOM 165006. J. Agric. Food Chem., 38, 1978 (1990).

    CAS  Google Scholar 

  23. Corley. D.G, M. Miller-Wideman, and R.C. Durley: Isolation and Structure of Harzianum A: A New Trichothecene from Trichoderma harzianum. J. Nat. Prod., 57, 422 (1994).

    CAS  Google Scholar 

  24. Jarvis, B.B, T. Desilva, J.B. Mcalpine, S.J. Swanson, and D.N. Whittern: New Trichoverroids from Myrothecium verrucaria Isolated by High Speed Countercurrent Chromatography. J. Nat. Prod., 55, 1441 (1992).

    CAS  Google Scholar 

  25. Mirocha, C.J, H.K. Abbas, T. Kommedahl, and B.B. Jarvis: Mycotoxin Production by Fusarium oxysporum and Fusarium sporotrichioides Isolated from Baccharis spp. from Brazil. Appl. Environ. Microbiol., 55, 254 (1989).

    CAS  Google Scholar 

  26. Bekele, E., A.A. Rottinghaus, G.E. Rottinghaus, H.H. Casper, D.M. Fort, C.L. Barnes, and M.S. Tempesta: Two New Trichothecenes from Fusarium sporotrichioides. J. Nat. Prod, 54, 1303 (1991).

    CAS  Google Scholar 

  27. Vesonder, R.F, A. Ciegler, A.H. Jensen, W.K. Rohwedder, and D. Weisleder: Co-Identity of the Refusal and Emetic Principle from Fusarium-Infected Corn. Appl. Environ. Microbiol., 31, 280 (1976).

    CAS  Google Scholar 

  28. Corley, D.G, G.E. Rottinghaus, and M.S. Tempesta: Toxic Trichothecenes from Fusarium sporotrichioides (MC-72083). J. Org. Chem., 52, 4405 (1987).

    CAS  Google Scholar 

  29. Baldwin, N.C.P., B.W. Bycroft, P.M. Dewick, D.C. Marsh, and J. Gilbert: Trichothecene Mycotoxins from Fusarium culmorum Cultures. Z. Naturforsch., C42, 1043 (1987).

    Google Scholar 

  30. Ayer, W.A., and S. Miao: Secondary Metabolites of the Aspen Fungus Stachybotrys cylindrospora. Canad. J. Chem., 71, 487 (1993).

    CAS  Google Scholar 

  31. Plattner, R.D., L.W. Tjarks, and M.N. Beremand: Trichothecenes Accumulated in Liquid Culture of a Mutant of Fusarium sporotrichioides NRRL 3299. Appl. Environ. Microbiol., 55, 2190 (1989).

    CAS  Google Scholar 

  32. Kim, K.-H., Y.-W. Lee, C.J. Mirocha, and R.W. Pawlosky: Isoverrucarol Production by Fusarium oxysporum CJS-12 Isolated from Corn. Appl. Environ. Microbiol., 56, 260 (1990).

    CAS  Google Scholar 

  33. McLachlan, A., K.J. Shaw, A.D. Hocking, J.L. Pitt, and T.H.L. Nguyen: Production of Trichothecene Mycotoxins by Australian Fusarium Species. Food Addit. Contain., 9, 631 (1992).

    CAS  Google Scholar 

  34. Zamir, L.O., K.A. Devor, and F. Sauriol: Biosynthesis of the Trichothecene 3-Acetyldeoxynivalenol. Identification of the Oxygenation Steps After Isotrichodermin. J. Biol. Chem., 266, 14992 (1991).

    CAS  Google Scholar 

  35. Evidente, A., G. Randazzo, A. Visconti, and A. Bottalico: Isolation of 15-Acetoxyscirpendiol from a Culture of Fusarium poae on Corn. Mycotoxin Res., 5, 30 (1989).

    CAS  Google Scholar 

  36. Colvin, E.W., and S. Cameron: Selective Chemical Transformations of the Trichothecene 4β-Acetoxyscirpene-3α,15-diol. Heterocycles, 25, 133 (1987).

    CAS  Google Scholar 

  37. Habermehl, G.: Isolation and Structure of New Toxins from Plants. Pure Appl. Chem., 61, 377 (1989).

    CAS  Google Scholar 

  38. Richardson, K.E., and P.B. Hamilton: Preparation of 4,15-Diacetoxyscirpenol from Cultures of Fusarium sambucinum NRRL 13495. Appl. Environ. Microbiol., 53, 460 (1987).

    CAS  Google Scholar 

  39. Hussein, H.H., M. Baxter, I.G. Andrew, and R.A. Franich: Mycotoxin Productionby Fusarium Species Isolated from New Zealand Maize Fields. Mycopathologia, 113, 35 (1991).

    CAS  Google Scholar 

  40. Vesonder, R.F., P. Golinski, R. Plattner, and D.L. Zeitkiewicz: Mycotoxin Formation by Different Geographic Isolates of Fusarium crookwellense. Mycopathologia, 113, 11 (1991).

    CAS  Google Scholar 

  41. Cole, R.J., J.W. Dorner, J. Gilbert, D.N. Mortimer, C. Crews, J.C. Mitchell, R.M. Windingstad, P.E. Nelson, and H.G. Cutler: Isolation and Identification of Trichothecenes from Fusarium compactum Suspected in the Aetiology of a Major Intoxication of Sandhill Cranes. J. Agric. Food Chem., 36, 1163 (1988).

    CAS  Google Scholar 

  42. Bosch, U., and C.J. MIROCHA: Toxin Production by Fusarium Species from Sugar Beets and Natural Occurrence of Zearalenone in Beets and Beet Fibers. Appl. Environ. Microbiol., 58, 3233 (1992).

    CAS  Google Scholar 

  43. Abramson, D., R.M. Clear, and D.M. Smith: Trichothecene Production by Fusarium spp. Isolated from Manitoba Grain. Can. J. Plant Pathol., 15, 147 (1993).

    CAS  Google Scholar 

  44. Altomare, C., A. Ritieni, G. Perrone, V. Fogliano, L. Mannina, and A. Logrieco: Production of Neosolaniol by Fusarium tumidum. Mycopathologia, 130, 179 (1995).

    CAS  Google Scholar 

  45. El-Maghraby, O.M.O., I.A. El-Kady, and S. Soliman: Mycoflora and Fusarium Toxins of Three Types of Corn Grains in Egypt with Special Reference to Production of Trichothecene Toxins. Microbiol. Res., 150, 225 (1995).

    CAS  Google Scholar 

  46. Jarvis, B.B., J. Salemme, and A. Morais: Stachybotrys Toxins, 1. Nat. Toxins, 3, 10 (1995).

    CAS  Google Scholar 

  47. El-maghraby, O.M.O., G.A. Bean, B.B. Jarvis, and M.B. Aboul-nasr: Macrocyclic Trichothecenes Produced by Stachybotrys Isolated from Egypt and Eastern Europe. Mycopathologia, 113, 109 (1991).

    CAS  Google Scholar 

  48. Soaresda Silva, N., and C. Kemmelmeir: Identification of Mycotoxins Produced by Fusarium graminearum Isolate Grown on Maize (Zea mays L). Chem. Abstr., 122, 284356 (1995).

    Google Scholar 

  49. Bosch, U., C.J. Mirocha, H.K. Abbas, and M. di Menna: Toxicity and Toxin Production by Fusarium Isolates from New Zealand. Mycopathologia, 108, 73 (1989).

    CAS  Google Scholar 

  50. Abbas, H.K., and U. Bosch: Evaluation of Trichothecene and Nontrichothecene Mycotoxins Produced by Fusarium in Soybeans. Mycotoxin Res., 6, 13 (1990).

    CAS  Google Scholar 

  51. Ramakrishna, Y., R.V. Bhat, and V. Ravindranath: Production of Deoxynivalenol by Fusarium Isolates from Sorghum Cultivars Associated with Specific Plant Diseases and Samples of Wheat Associated with a Human Mycotoxicosis Outbreak. Appl. Environ. Microbiol., 55, 2619 (1989).

    CAS  Google Scholar 

  52. Styriak, I., E. Conkova, and J. Bohm: Occurrence of Fusarium sacchari var. subglutinans and Its Mycotoxin Production Ability in Broiler Feed. Folia Microbiol., 39, 579 (1994).

    CAS  Google Scholar 

  53. Golinski, P., R.F. Vesonder, D. Latus-Zietkiewicz, and J. Perkowski: Formation of Fusarenone X, Nivalenol, Zearalenone, α-trans-Zearalenol, β-trans-Zearalenol, and Fusarin C by Fusarium crookwellense. Appl. Environ. Microbiol., 54, 147 (1988).

    Google Scholar 

  54. Sugiura, Y., K. Fukasaku, T. Tanaka, Y. Matsui, and Y. Ueno: Fusarium poae and Fusarium crookwellense, Fungi Responsible for the Natural Occurrence of Nivalenol in Hokkaido. Appl. Environ. Microbiol., 59, 3334 (1993).

    CAS  Google Scholar 

  55. Combrinck, S., W.C.A. Gelderblom, H.S.C. Spies, B.V. Burger, P.G. Thiel, and W.F.O. Marasas: Isolation and Characterization of Trichothecin from Corn Cultures of Fusarium graminearum MRC 1125. Appl. Environ. Microbiol., 54, 1700 (1988).

    CAS  Google Scholar 

  56. Flesch, P., and I. Voigt-Scheuermann: Isolation and Identification of Iso-Trichothecin from Cultures of the Fungus Trichothecium roseum. Wein Wiss., 48, 15 (1993).

    CAS  Google Scholar 

  57. Burgess, L.W., P.E. Nelson, and T.A. Toussoun: Characterization, Geographic Distribution and Ecology of Fusarium crookwellense sp. nov. Trans. Brit. Mycol. Soc., 79, 497 (1982).

    Google Scholar 

  58. Burgess, L.W., G.A. Forbes, C. Windels, P.E. Nelson, and W.F.O. Marasas: Characterization and Distribution of Fusarium acuminatum subsp. armeniacum subsp. nov. Mycologia, 85, 119 (1993).

    Google Scholar 

  59. Wing, N., D.R. Lauren, W.L. Bryden, and L.W. Burgess: Toxicity and Trichothecene Production by Fusarium acuminatum subsp. acuminatum and Fusarium acuminatum subsp. armeniacum. Nat. Toxins, 1, 229 (1993).

    CAS  Google Scholar 

  60. Gams, W.: Taxonomy and Nomenclature of Microdochium nivale (Fusarium nivale). In: Fusarium Mycotoxins, Taxonomy and Pathogenicity (J. Chelkowski, ed.), p. 195. Amsterdam: Elsevier, 1989.

    Google Scholar 

  61. Booth, C.: The Genus Fusarium, p. 193. Kew, U.K.: Commonwealth Mycological Institute, 1971.

    Google Scholar 

  62. Miller, J.D., R. Greenhalgh, Y.-Z. Wang, and M. Lu: Trichothecene Chemotypes of Three Fusarium Species. Mycologia, 83, 121 (1991).

    CAS  Google Scholar 

  63. Blaney, B.J., and R.L. Dodman: Production of the Mycotoxins Zearalenone, 4-Deoxynivalenol, and Nivalenol by Isolates of Fusarium graminearum Groups 1 and 2 from Cereals in Queensland. Aust. J. Agr. Res., 39, 21 (1988).

    CAS  Google Scholar 

  64. Sydenham, E.W., W.F.O. Marasas, P.G. Thiel, G.S. Shephard, and JJ. Nieuwenhuis: Production of Mycotoxins by Selected Fusarium graminearum and F. crookwellense Isolates. Food Addit. Contain., 8, 31 (1991).

    CAS  Google Scholar 

  65. Szecsi, A., and T. Bartok: Trichothecene Chemotypes of Fusarium graminearum Isolated from Corn in Hungary. Mycotox. Res., 11, 85 (1995).

    CAS  Google Scholar 

  66. Nirenberg, H.: Morphological Differentiation of Fusarium sambucinum Fuckel s. St., F. torulosum (Berk et Curt.) Nirenberg comb. nov. and F. venenatum Nirenberg sp. nov. Mycopathologia, 129, 131 (1995).

    CAS  Google Scholar 

  67. Altomare, C., A. Logrieco, A. Bottalico, G. Mule, A. Moretti, and A. Evidente: Production of Type A Trichothecenes and Enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathologia, 129, 177 (1995).

    CAS  Google Scholar 

  68. Thrane, U., and U. Hansen: Chemical and Physiological Characterization of Taxa in the Fusarium sambucinum Complex. Mycopathologia, 129, 183 (1995).

    CAS  Google Scholar 

  69. Schmidt, R., P. Zajkowski, and J. Wink: Toxicity of Fusarium sambucinum Fuckel sensu lato to Brine Shrimp. Mycopathologia, 129, 173 (1995).

    CAS  Google Scholar 

  70. Jelen, H.H., C J. Mirocha, E. Wasowicz, and E. Kaminski: Production of Volatile Sesquiterpenes by Fusarium sambucinum Strains with Different Abilities to Synthesize Trichothecenes. Appl. Environ. Microbiol., 61, 3815 (1995).

    CAS  Google Scholar 

  71. Ghosal, S., K. Biswas, R.S. Srivastava, D.K. Chakrabarti, and K.C.B. Chaudhary: Toxic Substances Produced by Fusarium: Occurrence of Zearalenone, Diacetoxyscirpenol, and T-2 Toxin in Moldy Corn Infected with Fusarium moniliforme Sheld. J. Pharm. Sci., 67, 1768 (1978).

    CAS  Google Scholar 

  72. Chakrabarti, D.K., and S. Ghosal: Occurrence of Free and Conjugated 12,13-Epoxytrichothec-9-enes and Zearalenone in Banana Fruits Infected with Fusarium moniliforme. Appl. Environ. Microbiol., 51, 217 (1986).

    CAS  Google Scholar 

  73. Mirocha, C.J., H.K. Abbas, and R.F. Vesonder: Absence of Trichothecenes in Toxigenic Isolates of Fusarium moniliforme. Appl. Environ. Microbiol., 56, 520 (1990).

    CAS  Google Scholar 

  74. Pearson, A.J., and M.K. O’Brien: Trichothecene Synthesis Using Organoiron Complexes: Diastereoselective Total Syntheses of ( ± )-Trichodiene, ( ± )-12,13-Epoxytrichothec-9-ene, and (± )-Trichodermol. J. Org. Chem., 54, 4663 (1989).

    CAS  Google Scholar 

  75. O’Brien, M.K., A.J. Pearson, A.A. Pinkerton, W. Schmidt, and K. Willman: A Total Synthesis of (± )-Trichodermol. J. Amer. Chem. Soc., 111, 1499 (1989).

    Google Scholar 

  76. Colvin, E.W., M.J. Egan, and F.W. Kerr: Synthesis of the Trichothecene Mycotoxin, T-2 Tetraol. Chem. Commun, 1200 (1990).

    Google Scholar 

  77. Gilbert, J.C., and R.D. Selliah: Highly Convergent Enantioselective Route to Trichothecenes. Tetrahedron Lett., 33, 6259 (1992).

    CAS  Google Scholar 

  78. Gilbert, J.C., and R.D. Selliah: Enantioselective Synthesis of an ent-Trichothecene. Tetrahedron, 50, 1651 (1994).

    CAS  Google Scholar 

  79. Hua, D.H., S. Venkataraman, R. Chan-Yu-King, and J.V. Paukstelis: Enantioselective Total Synthesis of ( + )-12,13-Epoxytrichothec-9-ene and Its Antipode. J. Amer. Chem. Soc., 110, 4741 (1988).

    CAS  Google Scholar 

  80. Roush, W.R., and S. Russo-Rodriguez: Trichothecene Degradation Studies, 3: Synthesis of 12,13-Deoxy-12,13-methanoanguidine and 12-Epianguidine, Two Optically Active Analogues of the Epoxytrichothecene Mycotoxin Anguidine. J. Org. Chem., 52, 603 (1987).

    CAS  Google Scholar 

  81. Cameron, S., and E.W. Colvin: Trichothecene Mycotoxin Interconversions: Partial Syntheses of Calonectrin and Deoxynivalenol, and of a Trichothecene epi-Epoxide, 3α, 4β, 15-Triacetoxy-12,13-epi-epoxytrichothec-9-ene. J. Chem. Soc., Perkin Trans. 1, 887 (1989).

    Google Scholar 

  82. Nemoto, H., J. Miyata, H. Hakamata. M. Nagamochi, and K. Fukumoto: A Novel and Efficient Route to Chiral A-Ring Aromatic Trichothecanes—The First Enantiocontrolled Total Synthesis of (—)-Debromofiliformin and (—)-Filiformin. Tetrahedron, 51, 5511 (1995).

    CAS  Google Scholar 

  83. Nemoto, H., J. Miyata, and K. Fukumoto: Cyclobutane Strategy for the Synthesis of A-Ring Aromatic Trichothecanes. Heterocycles, 42, 165 (1996).

    CAS  Google Scholar 

  84. Ishihara, J., R. Nonaka, Y. Terasawa, K. Tadano, and S. Ogawa: Synthetic Studies on the Trichothecene Family from D-Glucose. Tetrahedron Assymm., 5, 2217 (1994).

    CAS  Google Scholar 

  85. Gilardi, R., C. George, and J.L. Flippen-Anderson: The Structure of T-2 Toxin. Acta Crystallogr., C46, 645 (1990).

    CAS  Google Scholar 

  86. Mesilaakso, M., and E. Rahkamaa: 1H and 13C NMR Study of the Trichothecenes T-2 Toxin and T-2 Triol. J. Prakt. Chem., 334, 53 (1992).

    CAS  Google Scholar 

  87. Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part V: Transformation Products of 4β,15-Diacetoxy-3α,7α-dihydroxy-12,13-epoxytrichothec-9-en-8-one and the Structures of Nivalenol and Fusarenone. J. Chem. Soc., C, 375 (1970).

    Google Scholar 

  88. Jarvis, B.B., D.B. Mazzocchi, H.L. Ammon, E.P. Mazzola, J.L. Flippen-Anderson, R.D. Gilardi, and C.F. George: Conformational Effects in Trichothecenes: Structures of 15-Hydroxy C4 and C8 Ketones. J. Org. Chem., 55, 3660 (1990).

    CAS  Google Scholar 

  89. Greenhalgh, R., A.W. Hanson, J.D. Miller, and A. Taylor: Production and X-ray Crystal Structure of 3α-Acetoxy-7α, 15-dihydroxy-12,13-epoxytrichothec-9-en-8-one. J. Agric. Food Chem., 32, 945 (1984).

    CAS  Google Scholar 

  90. Novak, T.J., and K. Quinn-Doggett: 2-(Diphenylacetyl)-l,3-indandione 1-hydrazone (DIPAIN) Derivatives for Detection of Trichothecene Mycotoxins. Anal. Lett., 24, 913 (1991).

    CAS  Google Scholar 

  91. Ziegler, F.E., and S.B. Sobolov: Synthesis of a Highly Functionalized Carbon Ring Skeleton for the Trichothecene Anguidine. J. Amer. Chem. Soc., 112, 2749 (1990).

    CAS  Google Scholar 

  92. Anderson, D.W., R.M. Black, C.G. Lee, C. Pottage, R.L. Rickard, M.S. Sandford, T.D. Webber, and N.E. Williams: Structure-Activity Studies of Trichothecenes: Cytotoxicity of Analogues and Reaction Products Derived from T-2 Toxin and Neosolaniol. J. Med. Chem., 32, 555 (1989).

    CAS  Google Scholar 

  93. Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part 10: The Preparation and Rearrangement of Diacetylneosolaniol 9β,10β-Epoxide. J. Chem. Soc. Perkin Trans. 1, 1199 (1990).

    Google Scholar 

  94. Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part 9: Reactions of Some 9β, 10β: 12,13-Diepoxytrichothecanes. J. Chem. Soc. Perkin Trans. 1,115 (1990).

    Google Scholar 

  95. Burrows, E.P., and L.L. Szafraniec: Hypochlorite-Promoted Transformations of Trichothecenes 3: Deoxynivalenol. J. Nat. Prod., 50, 1108 (1987).

    CAS  Google Scholar 

  96. Roush, W.R., and S. Russo-Rodriguez: Trichothecene Degradation Studies, 2: Synthesis of [13-14C]Anguidine. J. Org. Chem., 52, 598 (1987).

    CAS  Google Scholar 

  97. Trost, B.M., P.G. McDOUGAL, and K.J. Haller: A Tandem Cycloaddition-Ene Strategy for the Synthesis of (± )-Verrucarol and ( ± )-4, ll-Diepi-12,13-deoxyverrucarol. J. Amer. Chem. Soc., 106, 383 (1984).

    CAS  Google Scholar 

  98. Kraus, G.A., and P.J. Thomas: Synthesis of 7,7,8-Trideuteriated Trichothecenes. J. Org. Chem., 53, 1395 (1988).

    CAS  Google Scholar 

  99. Dillen, J.L.M., C.P. Gorst-Allman, and P.S. Steyn: Trichothecene Chemistry: Conversion of Diacetoxyscirpenol into Neosolaniol Monoacetate and Its Epimer. S. Afr. Tydskr. Chem., 39, 111 (1986).

    CAS  Google Scholar 

  100. Muller, B., R. Achini, and Ch. Tamm: Biosynthese der Verrucarine und Roridine, Teil 3: Der Einbau von (3R)-[5-14C]-, [2-14C]-und an C(2) stereospezifisch tritiiertem Mevalonat in Verrucarol. Helv. Chim. Acta, 58, 471 (1975).

    CAS  Google Scholar 

  101. Jarvis, B.B., J.O. Midiwo, and E.P. Mazzola: Antileukemic Compounds Derived by Chemical Modification of Macrocyclic Trichothecenes, 2: Derivatives of Roridins A and H and Verrucarins A and J. J. Med. Chem., 27, 239 (1984).

    CAS  Google Scholar 

  102. Colvin, E.W., and S. Cameron: Partial Syntheses of the Trichothecene Mycotoxins, Calonectrin and Deoxynivalenol. Tetrahedron Lett., 29, 493 (1988).

    CAS  Google Scholar 

  103. Jeker, N., and CH. Tamm: Synthesis of New Unnatural Macrocyclic Trichothecenes: 4-Epiverrucarin. A. Helv. Chim. Acta, 71, 1904 (1988).

    CAS  Google Scholar 

  104. Roush., W.R., and T.A. Blizzard: Synthesis of Verrucarin B. J. Org. Chem., 49, 4332 (1984).

    CAS  Google Scholar 

  105. Jeker, N., and Ch. TAMM: Synthesis of New Unnatural Macrocyclic Trichothecenes: 3-Isoverrucarin A [(1″ — 0) (3 → 4) abeo-Verrucarin A], Verrucinol, and Verrucene. Helv. Chim. Acta, 71, 1895 (1988).

    CAS  Google Scholar 

  106. Richardson, S.K., A. Jeganathan, R.S. Mani, B.E. Haley, D.S. Watt, and L.R. Trusal: Synthesis and Biological Activity of C-4 and C-15 Aryl Azide Derivatives of Anguidine. Tetrahedron, 43, 2925 (1987).

    CAS  Google Scholar 

  107. Chu, F.S., S. Grossman, R.-D. Wei, and C.J. Mirocha: Production of Antibody Against T-2 Toxin. Appl. Env. Microbiol., 37, 104 (1979).

    CAS  Google Scholar 

  108. Ohtani, K., O. Kawamura, and Y. Ueno: Improved Preparation of T-2 Toxin-Protein Conjugates. Toxicon, 26, 1107 (1988).

    CAS  Google Scholar 

  109. Duffy, M.J., and R.S. Reid: Measurement of the Stability of T-2 Toxin in Aqueous Solution. Chem. Res. Toxicol., 6, 524 (1993).

    CAS  Google Scholar 

  110. Savard, M.E., and R. Greenhalgh: Synthesis and NMR Analysis of New Trichothecenes. J. Nat. Prod., 50, 953 (1987).

    CAS  Google Scholar 

  111. Anderson, D.W., R.M. Black, D.A. Leigh, and J.F. Stoddart: Novel 4,15-Polyether Analogues of Macrocyclic Trichothecenes. Tetrahedron Lett., 28, 2653 (1987).

    CAS  Google Scholar 

  112. Anderson, D.W., R.M. Black, D.A. Leigh, and J.F. Stoddart: Novel 3,4-and 8,15-Polyether Analogues of Macrocyclic Trichothecenes. Tetrahedron Lett., 28, 2657 (1987).

    CAS  Google Scholar 

  113. Mesilaakso, M., M. Moilanen, and E. Rahkamaa: 1H and 13C NMR Analysis of Some Trichothecenes. Arch. Environ. Contam. Toxicol., 18, 365 (1989).

    CAS  Google Scholar 

  114. Grove, J.F., A.J. McAlees, and A. Taylor: Preparation of 10-g Quantities of 15-O-Acetyl-4-deoxynivalenol. J. Org. Chem., 53, 3860 (1988).

    CAS  Google Scholar 

  115. Savard, M.E., B.A. Blackwell, and R. Greenhalgh: A 1H NMR Study of Derivatives of 3-Hydroxy-12,13-epoxytrichothec-9-enes. Canad. J. Chem., 65, 2254 (1987).

    CAS  Google Scholar 

  116. Sinha, R.C., M.E. Savard, and R. Lau: Production of Monoclonal Antibodies for the Specific Detection of Deoxynivalenol and 15-Acetyldeoxynivalenol by ELISA. J. Agric. Food Chem., 43, 1740 (1995).

    CAS  Google Scholar 

  117. Savard, M.E.: Deoxynivalenol Fatty Acid and Glucoside Conjugates. J. Agric. Food Chem., 39, 570 (1991).

    CAS  Google Scholar 

  118. Lauren, D.R., W.A. Smith, and A.L. Wilkins: Preparation, Purification, and NMR Spectra of Some Mono-and Dihemisuccinates of the Trichothecene Mycotoxin Nivalenol. J. Agric. Food Chem., 42, 828 (1994).

    CAS  Google Scholar 

  119. Roush., W.R., and T.E. D’ambra: Total Synthesis of (±)-Verrucarol. J. Amer. Chem. Soc., 105, 1058 (1983).

    CAS  Google Scholar 

  120. Still, W.C., and M.-Y. Tsai: Total Synthesis of (±)-Trichodermol. J. Amer. Chem. Soc., 102, 3654 (1980).

    CAS  Google Scholar 

  121. Bamburg, J.R., N.V. Riggs, and F.M. Strong: The Structures of Toxins from Two Strains of Fusarium tricinctum. Tetrahedron, 24, 3329 (1968).

    CAS  Google Scholar 

  122. Ehrlich., K.C., and K.W. Daigle: Protein Synthesis Inhibition by 8-Oxo-12,13-epoxytrichothecenes. Biochim. Biophys. Acta, 923, 206 (1987).

    CAS  Google Scholar 

  123. Anderson, D.W., R.M. Black, D.A. Leigh, J.F. Stoddart, and N.E. Williams: The Facile Conversion of T-2 Toxin and Neosolaniol into Anguidine. Tetrahedron Lett., 28, 2661 (1987).

    CAS  Google Scholar 

  124. Yagan, B., and B.B. Jarvis: Synthesis of Tritium Labelled Verrucarol and Verrucarin A. J. Lab. Comp. Radiopharm., 27, 675 (1989).

    Google Scholar 

  125. Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part II: Regioselective Reactions with Derivatives of the Trichothecene Mycotoxins, Nivalenol and Vomitoxin. J. Nat. Prod., 57, 1491 (1994).

    CAS  Google Scholar 

  126. Dess, D.B., and J.C. Martin: Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones. J. Org. Chem., 48, 4155 (1983).

    CAS  Google Scholar 

  127. Sigg, H.P., R. Mauli, F. Flury, and D. Hauser: Die Konstitution von Diacetoxyscirpenol. Helv. Chim. Acta, 48, 962 (1965).

    CAS  Google Scholar 

  128. Zamir, L.O., A. Nikolakakis, and F. Sauriol: Target-Oriented Inhibitors of the Late Stages of Trichothecene Biosynthesis, 1: Design, Syntheses, and Proof of Structures of Putative Inhibitors. J. Agric. Food Chem., 40, 676 (1992).

    CAS  Google Scholar 

  129. Davis, F.A., L.C. Vishwakarma, J.M. Billmers, and J. Finn: Synthesis of α-Hydroxy Carbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfenyloxaziridines. J. Org. Chem., 49, 3241 (1984).

    CAS  Google Scholar 

  130. Ehrlich, K.C: Preparation of the Fusarium Toxin, Nivalenol, by Oxidation of the Putative Biosynthetic Precursor, 7-Deoxynivalenol. Mycopathologia, 107, 111 (1989).

    CAS  Google Scholar 

  131. King, R.R., and R. Greenhalgh: Structural Elucidation of a Novel Deoxynivalenol Analogue. J. Org. Chem., 52, 1605 (1987).

    CAS  Google Scholar 

  132. Jarvis, B.B., M.E. Alvarez, G. Wang, and H.L. Ammon: Solvolytic Cyclization of 4,15-Anhydroverrucarol. A Facile Trichothecene → 10,13-CycloTrichothecene Rearrangement. J. Org. Chem., 54, 4493 (1989).

    CAS  Google Scholar 

  133. Greenhalgh., R., D.A. Fielder, L.A. Morrison, J.-P. Charland, B.A. Blackwell, M.E. Savard, and J.W. Apsimon: Secondary Metabolites of Fusarium Species: ApoTrichothecene Derivatives. J. Agric. Food Chem., 37, 699 (1989).

    CAS  Google Scholar 

  134. Greenhalgh., R., D.A. Fielder, L.A. Morrison, J.-P. Charland, B.A. Blackwell, J.D. Miller, M.E. Savard, and J.W. Apsimon: ApoTrichothecenes-Minor Metabolites of the Fusarium Species. Bioactive Mols., 10, 223 (1989).

    CAS  Google Scholar 

  135. Kononenko, G.P., A.R. Bekker, A.N. Leonov, and N.A. Soboleva: Gramilaurone, a Novel Natural Sesquiterpenoid from Fusarium graminearum Schw. Tetrahedron Lett., 32, 1893 (1991).

    CAS  Google Scholar 

  136. Takitani, S., Y. Asabe, T. Kato, M. Suzuki, and Y. Ueno: Spectrodensitometric Determination of Trichothecene Mycotoxins with 4-(p-Nitrobenzyl)pyridine on Silica Gel Thin-Layer Chromatograms. J. Chromatogr., 172, 335 (1979).

    CAS  Google Scholar 

  137. Novak, T.J., and K.A. Quinn: Catalytic NBP Spot Test for the Detection of Trichothecene Mycotoxin T-2. Anal. Lett., 19, 2001 (1986).

    CAS  Google Scholar 

  138. Ramakrishna, Y., and R.V. Bhat: Comparison of Different Spray Reagents for Identification of Trichothecenes. Curr. Sci., 56, 524 (1987).

    CAS  Google Scholar 

  139. Cameron, S., and E.W. Colvin: Chemical Deoxygenation of the Trichothecenes Diacetoxyscirpenol and Deoxynivalenol. J. Chem. Soc., Perkin Trans. 1, 365 (1989).

    Google Scholar 

  140. Machida, Y., and S. Nozoe: Biosynthesis of Trichothecin. Tetrahedron Lett., 1969 (1972).

    Google Scholar 

  141. VanMiddlesworth, F., A.E. Desjardins, S.L. Taylor, and R.D. Plattner: Trichodiene Accumulation by Ancymidol Treatment of Gibberella pulicaris. Chem. Commun, 1156 (1986).

    Google Scholar 

  142. Desjardins, A.E., R.D. Plattner, and M.N. Beremand: Ancymidol Blocks Trichothecene Biosynthesis and Leads to Accumulation of Trichodiene in Fusarium sporotrichioides and Gibberella pulicaris. Appl. Environ. Microbol, 53, 1860 (1987).

    CAS  Google Scholar 

  143. Zamir, L.O., M.J. Gauthier, K.A. Devor, Y. Nadeau, and F. Sauriol: Trichodiene Is a Precursor to Trichothecenes. Chem. Commun., 598 (1989).

    Google Scholar 

  144. Zamir, L.O., Y. Nadeau, C.-D. Nguyen, K. Devor, and F. Sauriol: Mechanism of 3-Acetyldeoxynivalenol Biosynthesis. Chem. Commun., 127 (1987).

    Google Scholar 

  145. Vasavada, A.B., and D.P.H. Hsieh: Manganese Inhibition of 3-Acetyldeoxynivalenol Biosynthesis in Fusarium graminearum R 2118. Appl. Microbiol. Biotechnol., 33, 335 (1990).

    CAS  Google Scholar 

  146. Cane, D.E.: Stereochemical Studies of Natural Products Biosynthesis. Pure Appl. Chem., 61, 493 (1989).

    CAS  Google Scholar 

  147. Cane, D.E.: Enzymatic Formation of Sesquiterpenes. Chem. Rev., 90, 1089 (1990).

    CAS  Google Scholar 

  148. Cane, D.E., and H.-J. Ha: Trichodiene Biosynthesis and the Role of Nerolidyl Pyrophosphate in the Enzymatic Cyclization of Farnesyl Pyrophosphate. J. Amer. Chem. Soc., 110, 6865 (1988).

    CAS  Google Scholar 

  149. Cane, D.E., J.L. Pawlak, R.M. Horak, and T.M. Hohn: Studies of the Cryptic Allylic Pyrophosphate Isomerase Activity of Trichodiene Synthase Using the Anomalous Substrate 6,7-Dihydrofarnesyl Pyrophosphate. Biochemistry, 29, 5476 (1990).

    CAS  Google Scholar 

  150. Cane, D.E., and G. Yang: Trichodiene Synthase. Stereochemical Studies of the Cryptic Allylic Diphosphate Isomerase Activity Using an Anomalous Substrate. J. Org. Chem., 59, 5794 (1994).

    CAS  Google Scholar 

  151. Hohn, T.M., and M.N. Beremand: Regulation of Trichodiene Synthase in Fusarium sporotrichioides and Gibberella pulicaris (Fusarium sambucinum). Appl. Environ. Microbiol., 55, 1500 (1989).

    CAS  Google Scholar 

  152. Hohn, T.M., and F. VanMiddlesworth: Purification and Characterization of the Sesquiterpene Cyclase Trichodiene Synthetase from Fusarium sporotrichioides. Arch. Biochem. Biophys., 251, 756 (1986).

    CAS  Google Scholar 

  153. Cane, D.E., G. Yang, Q. Xue, and J.H. Shim: Trichodiene Synthase. Substrate Specificity and Inhibition. Biochemistry, 34, 2471 (1995).

    CAS  Google Scholar 

  154. Cane, D.E., J.H. Shim, Q. Xue, B.C. Fitzsimons, and T.M. Hohn: Trichodiene Synthase. Identification of Active Site Residues by Site-Directed Mutagenesis. Biochemistry, 34, 2480 (1995).

    CAS  Google Scholar 

  155. Cane, D.E., and Q. Xue: Trichodiene Synthase. Enzymatic Formation of Multiple Sesquiterpenes by Alteration of the Cyclase Active Site. J. Am. Chem. Soc., 118, 1563 (1996).

    CAS  Google Scholar 

  156. Proctor, R.H., T.M. Hohn, and S.P. McCormick: Reduced Virulence of Gibberella zeae Caused by Disruption of a Trichothecene Toxin Biosynthetic Gene. Mol. Plant-Microbe Interact., 8, 593 (1995).

    CAS  Google Scholar 

  157. Hohn, T.M., and R.D. Plattner: Expression of the Trichodiene Synthase Gene of Fusarium sporotrichioides in Escherichia coli Results in Sesquiterpene Production. Arch. Biochem. Biophys., 275, 92 (1989).

    CAS  Google Scholar 

  158. Hohn, T.M., and P.D. Beremand: Isolation and Nucleotide Sequence of a Sesquiterpene Cyclase Gene from Trichothecene-Producing Fungus Fusarium sporotrichioides. Gene, 79, 131 (1989).

    CAS  Google Scholar 

  159. Cane, D.E., Z. Wu, J.S. Oliver, and T.M. Hohn: Overproduction of Soluble Trichodiene Synthase from Fusarium sporotrichioides in Escherichia coli. Arch. Biochem. Biophys., 300, 416 (1993).

    CAS  Google Scholar 

  160. Hohn, T.M., and J.B. Ohlrogge: Expression of a Fungal Sesquiterpene Cyclase Gene in Transgenic Tobacco. Plant Physiol., 97, 460 (1991).

    CAS  Google Scholar 

  161. Desjardins, A.E., T.M. Hohn, and S.P. McCormick: Effect of Gene Disruption of Trichodiene Synthase on the Virulence of Gibberella pulicaris. Mol. Plant-Microbe Interact, 5, 214 (1992).

    CAS  Google Scholar 

  162. Hohn, T.M., and A.E. Desjardins: Isolation and Gene Disruption of the Tox5 Gene Encoding Trichodiene Synthase in Gibberella pulicaris. Mol. Plant-Microbe Interact., 5, 249 (1992).

    CAS  Google Scholar 

  163. Desjardins, A.E., R.D. Plattner, and F. VanMiddlesworth: Trichothecene Biosynthesis in Fusarium sporotrichioides: Origin of the Oxygen Atoms of T-2 Toxin. Appl. Environ. Microbiol., 51, 493 (1986).

    CAS  Google Scholar 

  164. Desjardins, A.E., R.D. Plattner, and G.F. Spencer: Inhibition of Trichothecene Toxin Biosynthesis by Naturally Occurring Shikimate Aromatics. Phytochem., 27, 767 (1988).

    CAS  Google Scholar 

  165. Beremand, M.N.: Isolation and Characterization of Mutants Blocked in T-2 Toxin Biosynthesis. Appl. Environ. Microbiol., 53, 1855 (1987).

    CAS  Google Scholar 

  166. Zamir, L.O., K.A. Devor, N. Morin, and F. Sauriol: Biosynthesis of Trichothecenes: Oxygenation Steps Post-Trichodiene. Chem. Commun., 1033 (1991).

    Google Scholar 

  167. Hesketh., A.R., L. Gledhill, D.C. Marsh, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Isotrichodiol: A Post-Trichodiene Intermediate in the Biosynthesis of Trichothecene Mycotoxins. Chem. Commun., 1184 (1990).

    Google Scholar 

  168. Zamir, L.O., and K.A. Devor: Kinetic Pulse-Labeling Study of Fusarium culmorum. Biosynthetic Intermediates and Dead-End Metabolites. J. Biol. Chem., 262, 15348 (1987).

    CAS  Google Scholar 

  169. Zamir, L.O., K.A. Devor, A. Nikolakakis, Y. Nadeau, and F. Sauriol: Structures of New Metabolites from Fusarium species: An Apotrichothecene and Oxygenated Trichodienes. Tetrahedron Lett., 33, 5181 (1992).

    CAS  Google Scholar 

  170. Greenhalgh., R., B.A. Blackwell, J.R.J. Pare, J.D. Miller, D. Levandier, R.-M. Meier, A. Taylor, and J.W. ApSimon: Isolation and Characterization by Mass Spectrometry and NMR Spectroscopy of Secondary Metabolites of Some Fusarium Species. In: Mycotoxins and Phycotoxins (P.S. Steyn and R. Vleggaar, eds.), p. 137. Amsterdam: Elsevier, 1986.

    Google Scholar 

  171. Roesslein, L., Ch. Tamm, W. Zurcher, A. Reisen, and M. Zehnder: Sambucinic Acid, a New Metabolite of Fusarium sambucinum. Helv. Chim. Acta, 71, 588 (1988).

    CAS  Google Scholar 

  172. Mohr, P., Ch. Tamm, W. Zurcher, and M. Zehnder: Sambucinol and Sambucoin, Two New Metabolites of Fusarium sambucinum Possessing Modified Trichothecene Structures. Helv. Chim. Acta, 67, 406 (1984).

    CAS  Google Scholar 

  173. Greenhalgh., R., D. Levandier, W. Adams, J.D. Miller, B.A. Blackwell, A.J. Mcalees, and A. Taylor: Production and Characterization of Deoxynivalenol and Other Secondary Metabolites of Fusarium culmorum (CMI 14764, HLX 1503). J. Agric. Food Chem., 34, 98 (1986).

    CAS  Google Scholar 

  174. Greenhalgh., R., R.-M. Meier, B.A. Blackwell, J.D. Miller, A. Taylor, and J.W. ApSimon: Minor Metabolites of Fusarium roseum (ATCC 28114). J. Agric. Food Chem., 34, 115 (1986).

    CAS  Google Scholar 

  175. Corley, D.G., G.E. Rottinghaus, and M.S. Tempesta: Secondary Metabolites from Fusarium. Two New Modified Trichothecenes from Fusarium sporotrichioides MC-72083. J. Nat. Prod., 50, 897 (1987).

    CAS  Google Scholar 

  176. Ziegler, F.E., A. Nangia, and M.S. Tempesta: Sporol: A Structure Revision. Tetrahedron Lett., 29, 1665 (1988).

    CAS  Google Scholar 

  177. Corley, D.G., G.E. Rottinghaus, and M.S. Tempesta: Novel Trichothecenes from Fusarium sporotrichioides. Tetrahedron Lett., 27, 427 (1986).

    CAS  Google Scholar 

  178. Nozoe, S., and Y. Machida: Structure of Trichodiene. Tetrahedron Lett., 2671 (1970).

    Google Scholar 

  179. Zamir, L.O.: Biosynthesis of 3-Acetyldeoxynivalenol and Sambucinol. Tetrahedron, 45, 2277 (1989).

    CAS  Google Scholar 

  180. Fort, D.M., C.L. Barnes, M.S. Tempesta, H.H. Casper, E. Bekele, A.A. Rottinghaus, and G.E. Rottinghaus: Two New Modified Trichothecenes from Fusarium sporotrichioides. J. Nat. Prod., 56, 1890 (1993).

    CAS  Google Scholar 

  181. Nozoe, S., and Y. Machida: The Structures of Trichodiol and Trichodiene. Tetrahedron, 28, 5105 (1972).

    CAS  Google Scholar 

  182. Hesketh., A.R., B.W. Bycroft, P.M. Dewick, and J. Gilbert: Revision of the Stereochemistry in Trichodiol, Trichotriol and Related Compounds, and Concerning Their Role in the Biosynthesis of Trichothecene Mycotoxins. Phytochem., 32, 105 (1993).

    Google Scholar 

  183. Ziegler, F.E., A. Nangia, and G. Schulte: The Synthesis of Neosporol: A Trichothecene in Search of a Natural Product. Tetrahedron Lett., 29, 1669 (1988).

    CAS  Google Scholar 

  184. Ziegler, F.E., C.A. Metcalf, and G. Schulte: Confirmation by Total Synthesis of the Revised Structure of Sporol: An Application of Cyclic Thionocarboate-Initiated Radical Cyclization. Tetrahedron Lett., 33, 3117 (1992).

    CAS  Google Scholar 

  185. Apsimon, J.W., B.A. Blackwell, R. Greenhalgh, R.-M. Meier, D. Miller, J.R.J. Pare, and A. Taylor: Secondary Metabolites Produced by Some Fusarium Species. In: Mycotoxins and Phycotoxins (P.S. Steyn and R. Vleggaar, eds.), p. 125. Amsterdam: Elsevier, 1986.

    Google Scholar 

  186. Zamir, L.O., K.A. Devor, Y. Nadeau, and F. Sauriol: Structure Determination and Biosynthesis of a Novel Metabolite of Fusarium culmorum, Apotrichodiol. J. Biol. Chem., 262, 15354 (1987).

    CAS  Google Scholar 

  187. Gledhill, L., A.R. Hesketh, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Biosynthesis of Trichothecene Mycotoxins: Cell-Free Epoxidation of a Trichodiene Derivative. FEMS Microbiol. Lett., 81, 241 (1991).

    CAS  Google Scholar 

  188. Hesketh., A.R., L. Gledhill, D.C. Marsh, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Biosynthesis of Trichothecene Mycotoxins: Identification of Isotrichodiol as a Post-Trichodiene Intermediate. Phytochem., 30, 2237 (1991).

    CAS  Google Scholar 

  189. Zamir, L.O., K.A. Devor, A. Nikolakakis, and F. Sauriol: Biosynthesis of Fusarium culmorum Trichothecenes. J. Biol. Chem., 265, 6713 (1990).

    CAS  Google Scholar 

  190. Savard, M.E., B.A. Blackwell, and R. Greenhalgh: The Role of 13C-Labeled Trichodiene and Bazzanene in the Secondary Metabolism of Fusarium culmorum. J. Nat. Prod., 52, 1267 (1989).

    CAS  Google Scholar 

  191. Greenhalgh., R., R.-M. Meier, B.A. Blackwell, J.D. Miller, A. Taylor, and J.W. ApSimon: Minor Metabolites of Fusarium roseum (ATCC 28114). J. Agric. Food Chem., 32, 1261 (1984).

    CAS  Google Scholar 

  192. Hesketh., A.R., L. Gledhill, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Potential Inhibitors of Trichothecene Biosynthesis in Fusarium culmorum: Epoxidation of a Trichodiene Derivative. Phytochem., 32, 93 (1993).

    Google Scholar 

  193. Beremand, M.N., F. VanMiddlesworth, S. Taylor, R.D. Plattner, and D. Weisleder: Leucine Auxotrophy Specifically Alters the Pattern of Trichothecene Production in a T-2 Toxin-Producing Strain of Fusarium sporotrichioides. Appl. Environ. Microbiol., 54, 2759 (1988).

    CAS  Google Scholar 

  194. VanMiddlesworth, F., M.N. Beremand, T.A. Isbell, and D. Weisleder: T-2 Toxin Biosynthesis: Origin of the Isovalerate Side Chain. J. Org. Chem., 55, 1237 (1990).

    CAS  Google Scholar 

  195. Desjardins, A.E., and M. Beremand: A Genetic System for Trichothecene Toxin Production in Gibberella pulicaris (Fusarium sambucinum). Phytopathol., 77, 678 (1987).

    CAS  Google Scholar 

  196. Beremand, M.N.: Genetic and Mutational Tools for Investigating the Genetics and Molecular Biology of Trichothecene Production in Gibberella pulicaris (Fusarium sambucinum). Mycopathologia, 107, 67 (1989).

    CAS  Google Scholar 

  197. Hohn, T.M., A.E. Desjardins, and S.P. McCormick: Analysis of Tox5 Gene Expression in Gibberella pulicaris Strains with Different Trichothecene Production Phenotypes. Appl. Environ. Microbiol., 59, 2359 (1993).

    CAS  Google Scholar 

  198. Beremand, M.N., and A.E. Desjardins: Trichothecene Biosynthesis in Gibberella pulicaris: Inheritance of C-8 Hydroxylation. J. Ind. Microbiol., 3, 167 (1988).

    CAS  Google Scholar 

  199. Beremand, M.N., A.E. Desjardins, T.M. Hohn, and F.L. VanMiddlesworth: Survey of Fusarium sambucinum (Gibberella pulicaris) for Mating Type, Trichothecene Production, and Other Selected Traits. Phytopathol., 81, 1452 (1991).

    CAS  Google Scholar 

  200. Hohn, T.M., S.P. McCormick, and A.E. Desjardins: Evidence for a Gene Cluster Involving Trichothecene-Pathway Biosynthetic Genes in Fusarium sporotrichioides. Curr. Genet., 24, 291 (1993).

    CAS  Google Scholar 

  201. Desjardins, A.E., T.M. Hohn, and S.P. McCormick: Trichothecene Biosynthesis in Fusarium Species: Chemistry, Genetics, and Significance. Microbiol. Rev., 57, 595 (1993).

    CAS  Google Scholar 

  202. McCormick, S.P., T.M. Hohn, and A.E. Desjardins: Isolation and Characterization of Tri3, a Gene Encoding 15-0-Acetyltransferase from Fusarium sporotrichioides. Appl. Environ. Microbiol., 62, 353 (1996).

    CAS  Google Scholar 

  203. Hohn, T.M., A.E. DESJARDINS, and S.P. McCormick: The Tri4 Gene of Fusarium sporotrichioides Encodes a Cytochrome P450 Monooxygenase Involved in Trichothecene Biosynthesis. Mol. Gen. Genet., 248, 95 (1995).

    CAS  Google Scholar 

  204. Proctor, R.H., T.M. Hohn, S.P. McCormick, and A.E. Desjardins: Tri6 Encodes an Unusual Zinc Finger Protein Involved in Regulation of Trichothecene Biosynthesis in Fusarium sporotrichioides. Appl. Environ. Microbiol., 61, 1923 (1995).

    CAS  Google Scholar 

  205. Cane, D.E., G. Yang, R.M. Coates, H.-J. Pyun, and T.M. Hohn: Trichodiene Synthase. Synergistic Inhibition by Inorganic Pyrophosphate and Aza Analogs of the Bisabolyl Cation. J. Org. Chem., 57, 3454 (1992).

    CAS  Google Scholar 

  206. Roinestad, K.S., T.J. Montville, and J.D. Rosen: Inhibition of Trichothecene Biosynthesis in Fusarium tricinctum by Sodium Bicarbonate. J. Agric. Food Chem., 41, 2344 (1993).

    CAS  Google Scholar 

  207. Roinestad, K.S., T.J. Montville, and J.D. Rosen: Mechanism for Sodium Bicarbonate Inhibition of Trichothecene Biosynthesis in Fursarium tricinctum. J. Agric. Food Chem., 42, 2025 (1994).

    CAS  Google Scholar 

  208. Zamir, L.O., B. Rotter, K.A. Devor, and F. Vairinhos: Target-Oriented Inhibitors of the Late Stages of Trichothecene Biosynthesis, 2: In vivo Inhibitors and Chick Embryotoxicity Bioassay. J. Agric. Food Chem., 40, 681 (1992).

    CAS  Google Scholar 

  209. Mirocha, C.J.: Metabolism and Residue of Trichothecene Toxins in Animal and Plant Systems. In: Mycotoxins and Phycotoxins (P.S. Steyn and R. Vleggar, eds.), p. 409. Amsterdam: Elsevier, 1986.

    Google Scholar 

  210. Yagen, B., and M. Bialer: Metabolism and Pharmacokinetics of T-2 Toxin and Related Trichothecenes. Drug Metab. Rev., 25, 281 (1993).

    CAS  Google Scholar 

  211. Visconti, A., L.M. Treeful, and C.J. Mirocha: Identification of Iso-TC-1 as a New T-2 Toxin Metabolite in Cow Urine. Biomed. Mass Spectrom., 12, 689 (1985).

    CAS  Google Scholar 

  212. Naseem, S.M., J.G. Pace, and R.W. Wannemacher: A High-Performance Liquid Chromatographic Method for Determining [3H]T-2 and Its Metabolites in Biological Fluids of the Cynomolgus Monkey. J. Anal. Toxicol., 19, 151 (1995).

    CAS  Google Scholar 

  213. Pace, J.G., M.R. Watts, E.P. Burrows, R.E. Dinterman, C. Matson, E.C. Hauser, and R.W. Wannemacher: Fate and Distribution of 3H-Labeled T-2 Mycotoxin in Guinea Pigs. Toxicol. Appl. Pharmacol., 80, 377 (1985).

    CAS  Google Scholar 

  214. Sintov, A., M. Bialer, and B. Yagen: Pharmacokinetics of T-2 Toxin and Its Metabolite HT-2 Toxin After Intravenous Administration in Dogs. Drug Metab. Dispos., 14, 250 (1986).

    CAS  Google Scholar 

  215. Sintov, A., M. Bialer, and B. Yagen: Pharmacokinetics of T-2 Tetraol, a Urinary Metabolite of the Trichothecene Mycotoxin, T-2 Toxin, in Dog. Xenobiotica, 17, 941 (1987).

    CAS  Google Scholar 

  216. Pfeiffer, R.L., S.P. Swanson, and W.B. Buck: Metabolism of T-2 Toxin in Rats: Effects of Dose, Route, and Time. J. Agric. Food Chem., 36, 1227 (1988).

    CAS  Google Scholar 

  217. Pace, J.G.: Metabolism and Clearance of T-2 Mycotoxin in Perfused Rat Livers. Fund. Appl. Toxicol., 7, 424 (1986).

    CAS  Google Scholar 

  218. Conrady-lorck, S., M. Gareis, X.C. Feng, W. Amselgruber, W. Forth, and B. Fichtl: Metabolism of T-2 Toxin in Vascularly Autoperfused Jejunal Loops of Rats. Toxicol. Appl. Pharmacol., 94, 23 (1988).

    CAS  Google Scholar 

  219. Kemppainen, B.W., R.T. Riley, J.G. Pace, F.J. Hoerr, and J. Joyave: Evaluation of Monkey Skin as a Model for in vitro Percutaneous Penetration and Metabolism of [3H] T-2 Toxin in Human Skin. Fund. Appl. Toxicol., 7, 367 (1986).

    CAS  Google Scholar 

  220. Kemppainen, B.W., R.T. Riley, S. Biles-Thurlow, and R.B. Russell: Comparison of Penetration and Metabolism of [3H] Diacetoxyscirpenol, [3H] Verrucarin A and [3H] T-2 Toxin in Skin. Food Chem. Toxicol., 25, 379 (1987).

    CAS  Google Scholar 

  221. Kemppainen, B.W., J.G. Pace, and R.T. Riley: Comparison of in vivo and in vitro Percutaneous Absorption of T-2 Toxin in Guinea Pigs. Toxicon, 25, 1153 (1987).

    CAS  Google Scholar 

  222. Yoshizawa, T., T. Sakamoto, and K. Okamoto: In vitro Formation of 3′-HydroxyT-2 and 3′-HydroxyHT-2 Toxins from T-2 Toxin by Liver Homogenates from Mice and Monkeys. Appl. Environ. Microbiol., 47, 130 (1984).

    CAS  Google Scholar 

  223. Yagen, B., F. Bergmann, S. Barel, and A. Sintov: Metabolism of T-2 Toxin by Rat Brain Homogenate. Biochem. Pharmacol., 42, 949 (1991).

    CAS  Google Scholar 

  224. Knupp, C.A., S.P. Swanson, and W.B. Buck: In vitro Metabolism of T-2 Toxin by Rat Liver Microsomes. J. Agric. Food Chem., 34, 865 (1986).

    CAS  Google Scholar 

  225. Johnsen, H., E. Odden, O. Lie, B.A. Johnsen, and F. Fonnum: Metabolism of T-2 Toxin by Rat Liver Carboxylesterase. Biochem. Pharmacol., 35, 1469 (1986).

    CAS  Google Scholar 

  226. Kobayashi, J., T. Horikoshi, J.-C. Ryu, F. Tashiro, K. Ishii, and Y. Ueno: The Cytochrome P-450-Dependent Hydroxylation of T-2 Toxin in Various Animal Species. Food Chem. Toxicol., 25, 539 (1987).

    CAS  Google Scholar 

  227. Johnsen, H., E. Odden, B.A. Johnsen, and F. Fonnum: Metabolism of T-2 Toxin by Blood Cell Carboxylesterases. Biochem. Pharmacol., 37, 3193 (1988).

    CAS  Google Scholar 

  228. Swanson, S.P., J. Nicoletti, H.D. Rood, W.B. Buck, L.-M. Cote, and T. Yoshizawa: Metabolism of Three Trichothecene Mycotoxins, T-2 Toxin, Diacetoxyscirpenol and Deoxynivalenol, by Bovine Rumen Microorganisms. J. Chromatogr., 414, 335 (1987).

    CAS  Google Scholar 

  229. Munger, C.E., G.W. Ivie, R.J. Christopher, B.D. Hammock, and T.D. Phillips: Acetylation/Deacetylation Reactions of T-2, AcetylT-2, HT-2, and Acety1HT-2 Toxins in Bovine Rumen Fluid in vitro. J. Agric. Food Chem., 35, 354 (1987).

    CAS  Google Scholar 

  230. Westlake, W., R.I. Mackie, and M.F. Dutton: T-2 Toxin Metabolism by Ruminal Bacteria and Its Effect on Their Growth. Appl. Environ. Microbiol., 53, 587 (1987).

    CAS  Google Scholar 

  231. Beeton, S., and A.T. Bull: Biotransformation and Detoxification of T-2 Toxin by Soil and Freshwater Bacteria. Appl. Environ. Microbiol., 55, 190 (1989).

    CAS  Google Scholar 

  232. Mirocha, C.J., H.K. Abbas, L. Treeful, and G. Bean: T-2 Toxin and Diacetoxyscirpenol Metabolism by Baccharis spp. Appl. Environ. Microbiol., 54, 2277 (1988).

    CAS  Google Scholar 

  233. Trusal, L.R.: Metabolism of T-2 Mycotoxin by Cultured Cells. Toxicon, 24, 597 (1986).

    CAS  Google Scholar 

  234. Porcher, J.-M., C. Dahel, C. Lafarge-Frayssinet, F.S. Chu, and C. Frayssinet: Uptake and Metabolism of T-2 Toxin in Relation to Its Cytotoxicity in Lymphoid Cells. Food Chem. Toxicol., 26, 587 (1988).

    CAS  Google Scholar 

  235. Coppock, R.W., S.P. Swanson, H.B. Gelberg, G.D. Koritz, W.B. Buck, and W.E. Hoffmann: Pharmacokinetics of Diacetoxyscirpenol in Cattle and Swine: Effects of Halothane. Am. J. Vet. Res., 48, 691 (1987).

    CAS  Google Scholar 

  236. Bauer, J., W. Bollwahn, M. Gareis, B. Gedek, and K. Heinritzi: Kinetic Profiles of Diacetoxyscirpenol and Two of Its Metabolites in Blood Serum of Pigs. Appl. Environ. Microbiol, 49, 842 (1985).

    CAS  Google Scholar 

  237. Sakamoto, T., S.P. Swanson, T. Yoshizawa, and W.B. Buck: Structure of New Metabolites of Diacetoxyscirpenol in the Excreta of Orally Administered Rats. J. Agric. Food Chem., 34, 698 (1986).

    CAS  Google Scholar 

  238. Wu, S.-E, and M.A. Marletta: Carboxylesterase Isoenzyme Specific Deacylation of Diacetoxyscirpenol (Anguidine). Chem. Res. Toxicol, 1, 69 (1988).

    CAS  Google Scholar 

  239. Dowd, P.F, and F. VanMiddlesworth: In vitro Metabolism of the Trichothecene 4-Monoacetoxyscirpenol by Fungus and Non-Fungus-Feeding Insects. Experientia, 45, 393 (1989).

    CAS  Google Scholar 

  240. Udell, M.N, and P.M. Dewick: Metabolic Conversions of Trichothecene Mycotoxins: De-esterification Reactions Using Cell-Free Extracts of Fusarium. Z. Naturforsch, C44, 660 (1989).

    Google Scholar 

  241. Yoshizawa, T., T. Sakamoto, Y. Ayano, and C.J. Mirocha: 3′-HydroxyT-2 and 3′-HydroxyHT-2 Toxins: New Metabolites of T-2 Toxin, a Trichothecene Mycotoxin, in Animals. Agric. Biol. Chem., 46, 2613 (1982).

    CAS  Google Scholar 

  242. Visconti, A., and C.J. Mirocha: Identification of Various T-2 Toxin Metabolites in Chicken Excreta and Tissues. Appl. Environ. Microbiol, 49, 1246 (1985).

    CAS  Google Scholar 

  243. Corley, R.A., S.P. Swanson, and W.B. Buck: Glucuronide Conjugates of T-2 Toxin and Metabolites in Swine Bile and Urine. J. Agric. Food Chem., 33, 1085 (1985).

    CAS  Google Scholar 

  244. Knupp, C.A., S.P. Swanson, and W.B. Buck: Comparative in vitro Metabolism of T-2 Toxin by Hepatic Microsomes Prepared from Phenobarbital-Induced or Control Rats, Mice, Rabbits and Chickens. Food Chem. Toxicol, 25, 859 (1987).

    CAS  Google Scholar 

  245. Wei, R.-D, and F.S. Chu: Modification of in vitro Metabolism of T-2 Toxin by Esterase Inhibitors. Appl. Environ. Microbiol, 50, 115 (1985).

    CAS  Google Scholar 

  246. Knupp, C.A., D.G. Corley, M.S. Tempesta, and S.P. Swanson: Isolation and Characterization of 4’-Hydroxy T-2 Toxin, a New Metabolite of the Trichothecene Mycotoxin T-2. Drug Metab. Dispos, 15, 816 (1987).

    CAS  Google Scholar 

  247. Pawlosky, R.J., and C.J. Mirocha: Structure of a Metabolic Derivative of T-2 Toxin (TC-6) Based on Mass Spectrometry. J. Agric. Food Chem., 32, 1420 (1984).

    CAS  Google Scholar 

  248. Gareis, M., A. Hashem, J. Bauer, and B. Gedek: Identification of Glucuronide Metabolites of T-2 Toxin and Diacetoxyscirpenol in the Bile of Isolated Perfused Rat Liver. Toxicol. Appl. Pharmacol, 84, 168 (1986).

    CAS  Google Scholar 

  249. Cote, L.-M., W. Buck, and E. Jeffery: Lack of Hepatic Microsomal Metabolism of Deoxynivalenol and Its Metabolite, DOM-1. Food Chem. Toxicol, 25, 291 (1987).

    CAS  Google Scholar 

  250. Yoshizawa, T., H. Takeda, and T. Ohi: Structure of a Novel Metabolite from Deoxynivalenol, a Trichothecene Mycotoxin, in Animals. Agric. Biol. Chem., 47, 2133 (1983).

    CAS  Google Scholar 

  251. Yoshizawa, T., L.-M. Cote, S.P. Swanson, and W.B. Buck: Confirmation of DOM-1, a Deepoxidation Metabolite of Deoxynivalenol, in Biological Fluids of Lactating Cows. Agric. Biol. Chem., 50, 227 (1986).

    CAS  Google Scholar 

  252. Worrell, N.R., A.K. Mallett, W.M. Cook, N.C.P. Baldwin, and M.J. Shepherd: The Role of Gut Micro-Organisms in the Metabolism of Deoxynivalenol Administered to Rats. Xenobiotica, 19, 25 (1989).

    CAS  Google Scholar 

  253. Lake, B.G., J.C. Phillips, D.G. Walters, D.L. Bayley, M.W. Cook, L.V. Thomas, J. Gilbert, J.R. Startin, N.C.P. Baldwin, B.W. Bycroft, and P.M. Dewick: Studies on the Metabolism of Deoxynivalenol in the Rat. Food Chem. Toxicol., 25, 589 (1987).

    CAS  Google Scholar 

  254. Yoshizawa, T., K. Okamoto, T. Sakamoto, and K. Kuwamura: In vivo Metabolism of T-2 Toxin, a Trichothecene Mycotoxin. On the Formation of Deepoxydation Products. Proc. Jap. Assoc. Mycotox., 21, 9 (1985); Chem. Abstr., 103, 210640 (1985).

    CAS  Google Scholar 

  255. Yoshizawa, T., T. Sakamoto, and K. Kuwamura: Structures of Deepoxytrichothecene Metabolites from 3′-HydroxyHT-2 Toxin and T-2 Tetraol in Rats. Appl. Environ. Microbiol., 50, 676 (1985).

    CAS  Google Scholar 

  256. Chatterjee, K., A. Visconti, and C.J. Mirocha: Deepoxy T-2 Tetraol: A Metabolite of T-2 Toxin Found in Cow Urine. J. Agric. Food Chem., 34, 695 (1986).

    CAS  Google Scholar 

  257. Onji, Y., Y. Dohi, Y. Aoki, T. Moriyama, H. Nagami, M. Uno, T. Tanaka, and Y. Yamazoe: Deepoxynivalenol: A New Metabolite of Nivalenol Found in the Excreta of Orally Administered Rats. J. Agric. Food Chem., 37, 478 (1989).

    CAS  Google Scholar 

  258. King, R.R., R.E. Mcqueen, D. Levesque, and R. Greenhalgh: Transformation of Deoxynivalenol (Vomitoxin) by Rumen Microorganisms. J. Agric. Food Chem., 32, 1181 (1984).

    CAS  Google Scholar 

  259. Cote, L.-M., A.M. Dahlem, T. Yoshizawa, S.P. Swanson, and W.B. Buck: Excretion of Deoxynivalenol and Its Metabolite, DOM-1, in Milk, Urine and Feces of Lactating Dairy Cattle. J. Dairy Sci., 69, 2416 (1986).

    CAS  Google Scholar 

  260. Cote, L.-M., J. Nicoletti, S.P. Swanson, and W.B. Buck: Production of Deepoxydeoxynivalenol (DOM-1), a Metabolite of Deoxynivalenol, by in vitro Rumen Incubation. J. Agric. Food Chem., 34, 458 (1986).

    CAS  Google Scholar 

  261. He, P., L.G. Young, and C. Forsberg: Microbial Transformation of Deoxynivalenol (Vomitoxin). Appl. Environ. Microbiol., 58, 3857 (1992).

    CAS  Google Scholar 

  262. Swanson, S.P., H.D. Rood, J.C. Behrens, and P.E. Sanders: Preparation and Characterization of the Deepoxy Trichothecenes: Deepoxy HT-2, Deepoxy T-2 Triol, Deepoxy T-2 Tetraol, Deepoxy 15-Monoacetoxyscirpenol, and Deepoxy Scirpentriol. Appl. Environ. Microbiol., 53, 2821 (1987).

    CAS  Google Scholar 

  263. Swanson, S.P., C. Helaszek, W.B. Buck, H.D. Rood, and W.M. Haschek: The Role of Intestinal Microflora in the Metabolism of Trichothecene Mycotoxins. Food Chem. Toxicol., 26, 823 (1988).

    CAS  Google Scholar 

  264. Corley, R.A., S.P. Swanson, G.J. Gullo, L. Johnson, V.R. Beasley, and W.B. Buck: Disposition of T-2 Toxin, a Trichothecene Mycotoxin, in Intravascularly Dosed Swine. J. Agric. Food Chem., 34, 868 (1986).

    CAS  Google Scholar 

  265. Roush., W.R., M.A., Marletta, S. Russo-rodriguez, and J. Recchia: Trichothecene Metabolism Studies: Isolation and Structure Determination of 15-Acetyl-3α-(1′β-D-gluco-pyranosiduronyl)-scirpen-3,4β,15-triol. J. Am. Chem. Soc., 107, 3354 (1985).

    CAS  Google Scholar 

  266. Roush., W.R., M.A., Marletta, S. Russo-rodriguez, and J. Recchia: Trichothecene Metabolism Studies, 2: Structure of 3α-(lαβ-D-Glueopyranosiduro-nyl)-8α-isovaleryloxy-scirpen-3,4β,15-triol 15-Acetate Produced from T-2 Toxin in vitro. Tetrahedron Lett., 26, 5231 (1985).

    CAS  Google Scholar 

  267. Pace, J.G., and M.R. Watts: Hepatic Subcellular Distribution of [3H] T-2 Toxin. Toxicon, 27, 1307 (1989).

    CAS  Google Scholar 

  268. Sewald, N., J.L. Von Gleissenthall, M. Schuster, G. Muller, and R.T. Aplin: Structure Elucidation of a Plant Metabolite of 4-Desoxynivalenol. Tetrahedron Asymm., 3, 953 (1992).

    CAS  Google Scholar 

  269. Prelusky, D.B., D.M. Veira, H.L. Trenholm, and K.E. Hartin: Excretion Profiles of the Mycotoxin Deoxynivalenol, Following Oral and Intravenous Administration to Sheep. Fund. Appl. Toxicol., 6, 356 (1986).

    CAS  Google Scholar 

  270. Avent, A.G., J.F. Grove, and J.R. Hanson: 13C NMR Spectra of Some Trichothecene Mycotoxins and Derivatives. Magn. Reson. Chem., 26, 475 (1988).

    CAS  Google Scholar 

  271. Greenhalgh., R., B.A. Blackwell, and M.E. Savard: The NMR Spectra of Trichothecenes and Related Fungal Metabolites. Tetrahedron, 45, 2373 (1989).

    CAS  Google Scholar 

  272. Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part 8: Acid Catalyzed Rearrangement of 12,13-Epoxytrichothec-9-enes. J. Chem. Soc., Perkin Trans. 1, 647 (1986).

    Google Scholar 

  273. Jeker, N., and CH. Tamm: Apotrichothecene Rearrangement in Macrocyclic Trichothecene Derivatives. Tetrahedron Lett, 30, 6001 (1989).

    CAS  Google Scholar 

  274. Blackwell, B.A., R. Greenhalgh, and A.D. Bain: Carbon-13 and Proton Nuclear Magnetic Resonance Spectral Assignments of Deoxynivalenol and Other Mycotoxins from Fusarium graminearum. J. Agric. Food Chem., 32, 1078 (1984).

    CAS  Google Scholar 

  275. Tripathi, D.N., L.R. Chauhan, and A. Bhattacharya: Separation and Identification of Mycotoxins by Thin-Layer Chromatography/Fast Atom Bombardment Mass Spectrometry. Anal. Sci, 7, 423 (1991).

    CAS  Google Scholar 

  276. Young, J.C., and D.E. Games: Analysis of Fusarium Mycotoxins by Gas Chromatography-Fourier Transform Infrared Spectroscopy. J. Chromatogr, A663, 211 (1994).

    Google Scholar 

  277. Black, R.M., R.J. Clarke, and R.W. Read: Detection of Trace Levels of Trichothecene Mycotoxins in Human Urine by Gas Chromatography-Mass Spectrometry. J. Chromatogr, 367, 103 (1986).

    CAS  Google Scholar 

  278. Black, R.M., R.J. Clarke, and R.W. Read: Detection of Trace Levels of Trichothecene Mycotoxins in Environmental Residues and Foodstuffs Using Gas Chromatography with Mass Spectrometric or Electron-Capture Detection. J. Chromatogr, 388, 365 (1987).

    CAS  Google Scholar 

  279. Kostiainen, R., and A. Rizzo: The Characterization of Trichothecenes as Their Heptafluorobutyrate Esters by Negative-Ion Chemical Ionization Tandem Mass Spectrometry. Anal. Chim. Acta, 204, 233 (1988).

    CAS  Google Scholar 

  280. Raza, S.K., S.A. Howell, and A.I. Mallet: Identification of Mycotoxins in Keratomycosis-Derived Fusarium Isolates by Gas Chromatography-Mass Spectrometry. J. Chromatogr, 620, 243 (1993).

    CAS  Google Scholar 

  281. Kanhere, S.R, and P.M. Scott: Heptafluorobutyrylation of Trichothecenes Using a Solid-Phase Catalyst. J. Chromatogr, 511, 384 (1990).

    CAS  Google Scholar 

  282. Wreford, B.J., and K.J. Shaw: Analysis of Deoxynivalenol as Its Trifluoroacetyl Ester by Gas Chromatography-Electron Ionization Mass Spectrometry. Food Addit. Contain, 5, 141 (1987).

    Google Scholar 

  283. Schwadorf, K., and H.-M. Muller: Determination of Trichothecenes in Cereals by Gas Chromatography with Ion Trap Detection. Chromatogr. 32, 137 (1991).

    CAS  Google Scholar 

  284. Kostiainen, R., and A. Hesso: Characterization of Trichothecenes by Ammonia Chemical Ionization and Tandem Mass Spectrometry. Biomed. Environ. Mass Spectrom., 15, 79 (1988).

    CAS  Google Scholar 

  285. Kostiainen, R.: Characterization of Trichothecenes by Tandem Mass Spectrometry Using Reactive Collisions with Ammonia. Biomed. Environ. Mass Spectrom., 16, 197 (1988).

    CAS  Google Scholar 

  286. Kostiainen, R.: Effect of Collision Gas Pressure and Collision Energy on Reactions Between Ammonia and Protonated Trichothecenes in the Collision Cell of a Triple-Quadrupole Mass Spectrometer. Biomed. Environ. Mass Spectrom., 18, 116 (1989).

    CAS  Google Scholar 

  287. Hewetson, D.W., and C.J. Mirocha: Development of Mass Spectral Library of Trichothecenes Based on Positive Chemical Ionization Mass Spectra. J. Assoc. Off. Anal. Chem., 70, 647 (1987).

    CAS  Google Scholar 

  288. Kostiainen, R., and S. Nokelainen: Use of M-Series Retention Index Standards in the Identification of Trichothecenes by Electron Impact Mass Spectrometry. J. Chromatogr., 513, 31 (1990).

    CAS  Google Scholar 

  289. Plattner, R.D., M.N. Beremand, and R.G. Powell: Analysis of Trichothecene Mycotoxins by Mass Spectrometry and Tandem Mass Spectrometry. Tetrahedron, 45, 2251 (1989).

    CAS  Google Scholar 

  290. Mirocha, C.J., R.J. Pawlosky, and H.K. Abbas: Analysis of T-2 Toxin in a Biological Matrix Using Multiple Reaction Monitoring. Arch. Environ. Contam. Toxicol., 18, 349 (1989).

    CAS  Google Scholar 

  291. Kostiainen, R., A. Rizzo, and A. Hesso: The Analysis of Trichothecenes in Wheat and Human Plasma Samples by Chemical Ionization Tandem Mass Spectrometry. Arch. Environ. Contam. Toxicol., 18, 356 (1989).

    CAS  Google Scholar 

  292. Burrows, E.P.: Dimethyl Ether Chemical Ionization Mass Spectrometry of Trichothecene Biotoxins. Biol. Mass Spectrom., 23, 492 (1994).

    CAS  Google Scholar 

  293. Kostiainen, R., K. Matsuura, and K. Nojima: Identification of Trichothecenes by Frit-Fast Atom Bombardment Liquid Chromatography-High-Resolution Mass Spectrometry. J. Chromatogr., 538, 323 (1991).

    CAS  Google Scholar 

  294. Rajakyla, E., K. Laasasenaho, and P.J.D. Sakkers: Determination of Mycotoxins in Grain by High-Performance Liquid Chromatography and Thermospray Liquid Chromatography-Mass Spectrometry. J. Chromatogr., 384, 391 (1987).

    CAS  Google Scholar 

  295. Voyksner, R.D., W.M. Hagler, and S.P. Swanson: Analysis of Some Metabolites of T-2 Toxin, Diacetoxyscirpenol and Deoxynivalenol by Thermospray High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr., 394, 183 (1987).

    CAS  Google Scholar 

  296. Kostiainen, R.: Identification of Trichothecenes by Thermospray, Plasmaspray and Dynamic Fast-Atom Bombardment Liquid Chromatography-Mass Spectrometry. J. Chromatogr., 562, 555 (1991).

    CAS  Google Scholar 

  297. Kostiainen, R., and P. Kuronen: Use of l-[p-(2,3-Dihydroxypropoxy)phenyl]-l-alkanones as Retention Index Standards in the Identification of Trichothecenes by Liquid Chromatography-Thermospray and Dynamic Fast Atom Bombardment Mass Spectometry. J. Chromatogr., 543, 39 (1991).

    CAS  Google Scholar 

  298. Roach., J.A.G., J.A. Sphon, J.A. Easterling, and E.M. Calvey: Capillary Supercritical Fluid Chromatography/Negative Ion Chemical Ionization Mass Spectrometry of Trichothecenes. Biomed. Environ. Mass Spectrom., 18, 64 (1989).

    CAS  Google Scholar 

  299. Young, J.C., and D.E. Games: Supercritical Fluid Chromatography of Fusarium Mycotoxins. J. Chromatogr., 627, 247 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this chapter

Cite this chapter

Grove, J.F. (1996). Non-Macrocyclic Trichothecenes, Part 2 (1). In: Herz, W., Kirby, G.W., Moore, R.E., Steglich, W., Tamm, C. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 69. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6578-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6578-2_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7354-1

  • Online ISBN: 978-3-7091-6578-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics