Advertisement

Abstract

A total of 182 trichothecenes, based on the trichothecane skeleton (1), have now been isolated from natural sources. They are made up of 113 non-macrocyclic and 69 macrocyclic compounds (2). Thirty-four more naturally-occurring trichothecenes have therefore been described since 1986 (7) and of these 30 are non-macrocyclic compounds.†

Keywords

Fusarium Species Fusarium Graminearum Supercritical Fluid Chromatography Trichothecene Mycotoxin Chemical Deoxygenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Part 1: Grove, J.F.: Non-Macrocyclic Trichothecenes. Nat. Prod. Rep., 5, 187 (1988).Google Scholar
  2. 2.
    Grove, J.F.: Macrocyclic Trichothecenes. Nat. Prod. Rep., 10, 429 (1993).Google Scholar
  3. 3.
    Wani, M.C., D.H. Rector, and C.E. COOK: Synthesis of HT-2 Toxin, Neosolaniol, T-2 Toxin, 3′-Hydroxy T-2 Toxin, and Sporotrichiol from Anguidine by Routes Involving Hydroxyl Inversion/Esterification. J. Org. Chem., 52, 3468 (1987).Google Scholar
  4. 4.
    Godtfredsen, W.O., J.F. Grove, and Ch. Tamm: Zur Nomenklatur einer neueren Klasse von Sesquiterpenen. Helv. Chim. Acta, 50, 1666 (1967).Google Scholar
  5. 5.
    Corley, D.G., G.E. Rottinghaus, J.K. Tracy, and M.S. Tempesta: New Trichothecene Mycotoxins of Fusarium sporotrichioides (MC-72083). Tetrahedron Lett., 27, 4133 (1986).Google Scholar
  6. 6.
    McCormick, S.P., S.L. Taylor, R.D. Plattner, and M.N. Beremand: Bioconversion of Possible T-2 Toxin Precursors by a Mutant Strain of Fusarium sporotrichioides NRRL 3299. Appl. Environ. Microbiol., 56, 702 (1990).Google Scholar
  7. 7.
    Mccormick, S.P., S.L. Taylor, R.D. Plattner, and M.N. Beremand: New Modified Trichothecenes Accumulated in Solid Culture by Mutant Strains of Fusarium sporotrichioides. Appl. Environ. Microbiol., 55, 2195 (1989).Google Scholar
  8. 8.
    Jarvis, B.B., J.O. Midiwo, and M.-D. Guo: 12,13-Deoxytrichoverrins from Myrothecium verrucaria. J. Nat. Prod., 52, 663 (1989).Google Scholar
  9. 9.
    Lauren, D.R., A. Ashley, B.A. Blackwell, R. Greenhalgh, J.D. Miller, and G.A. Neish: Trichothecenes Produced by Fusarium crookwellense DAOM 193611. J. Agric. Food Chem., 35, 884 (1987).Google Scholar
  10. 10.
    Lauren, D.R., S.T. Sayer, and M.E. di Menna: Trichothecene Production by Fusarium Species Isolated from Grain and Pasture Throughout New Zealand. Mycopathologia, 120, 167 (1992).Google Scholar
  11. 11.
    Kononenko, G.P., N.A. Soboleva, and A.N. Leonov: 3,7,8,15-Tetrahydroxy-12,13-epoxytrichothecene-9-en in a Culture of Fusarium graminearum. Khim. Prir. Soedin., 267 (1990); Chem. Nat. Compd. (Engl. Transl.), 26, 219 (1990).Google Scholar
  12. 12.
    Richardson, K.E., G.E. Toney, C.A. Haney, and P.B. Hamilton: Occurrence of Scirpentriol and Its Seven Acetylated Derivatives in Culture Extracts of Fusarium sambucinum NRRL 13495. J. Food Prot., 52, 871 (1989).Google Scholar
  13. 13.
    Luo, Y., F. Lin, J. Yang, J. Zhang, Y. Ye, Y. Li, Y. Jiang, N. Zhang, and Z. Wang: Analysis and Identification of Fusarium Mycotoxins in Corn Culture of Fusarium camptoceras. Chem. Abstr., 119, 153704 (19Google Scholar
  14. 14.
    Hesketh, A.R.: Metabolic Studies on the Transformation of Trichodiene to Trichothecene Mycotoxins. Mycotoxin Res., 8, 52 (1992).Google Scholar
  15. 15.
    Plattner, R.D., M.B. Al-Hetti, D. Weisleder, and J.B. Sinclair: A New Trichothecene from Trichothecium roseum. J. Chem. Res. (S), 311 (1988).Google Scholar
  16. 16.
    Langley, P. A. Shuttleworth, P.J. Sidebottom, S.K. Wrigley, and PJ. Fisher: A Trichothecene from Spicellum roseum. Mycol. Res., 94, 705 (1990).Google Scholar
  17. 17.
    Sanson, D.R., D.G. Corley, C.L. Barnes, S. Searles, E.O. Schlemper, M.S. Tempesta, and G.E. Rottinghaus: New Mycotoxins from Fusarium sambucinum. J. Org. Chem., 54, 4313 (1989).Google Scholar
  18. 18.
    Visconti, A., C.J. Mirocha, A. Logrieco, A. Bottalico, and M. Solfrizzo: Mycotoxins Produced by Fusarium acuminatum. Isolation and Characterization of Acuminatin: A New Trichothecene. J. Agric. Food Chem., 37, 1348 (1989).Google Scholar
  19. 19.
    Greenhalgh, R., J.D. Miller, and A. Visconti: Toxigenic Potential of Fusarium compactum R8287 and R8293. J. Agric. Food Chem., 39, 809 (1991).Google Scholar
  20. 20.
    Greenhalgh, R., B.A. Blackwell, M. Savard, J.D. Miller, and A. Taylor: Secondary Metabolites Produced by Fusarium sporotrichioides DAOM 165006 in Liquid Culture. J. Agric. Food Chem., 36, 216 (1988).Google Scholar
  21. 21.
    Desjardins, A.E., and R.D. Plattner: Trichothecene Toxin Production by Strains of Gibberella pulicaris (Fusarium sambucinum) in Liquid Culture and in Potato Tubers. J. Agric. Food Chem., 37, 388 (1989).Google Scholar
  22. 22.
    Greenhalgh, R., D.A. Fielder, B.A. Blackwell, J.D. Miller, J.-P. Charland, and J.W. ApSimon: Some Minor Secondary Metabolites of Fusarium sporotrichioides DAOM 165006. J. Agric. Food Chem., 38, 1978 (1990).Google Scholar
  23. 22a.
    Corley. D.G, M. Miller-Wideman, and R.C. Durley: Isolation and Structure of Harzianum A: A New Trichothecene from Trichoderma harzianum. J. Nat. Prod., 57, 422 (1994).Google Scholar
  24. 23.
    Jarvis, B.B, T. Desilva, J.B. Mcalpine, S.J. Swanson, and D.N. Whittern: New Trichoverroids from Myrothecium verrucaria Isolated by High Speed Countercurrent Chromatography. J. Nat. Prod., 55, 1441 (1992).Google Scholar
  25. 24.
    Mirocha, C.J, H.K. Abbas, T. Kommedahl, and B.B. Jarvis: Mycotoxin Production by Fusarium oxysporum and Fusarium sporotrichioides Isolated from Baccharis spp. from Brazil. Appl. Environ. Microbiol., 55, 254 (1989).Google Scholar
  26. 25.
    Bekele, E., A.A. Rottinghaus, G.E. Rottinghaus, H.H. Casper, D.M. Fort, C.L. Barnes, and M.S. Tempesta: Two New Trichothecenes from Fusarium sporotrichioides. J. Nat. Prod, 54, 1303 (1991).Google Scholar
  27. 26.
    Vesonder, R.F, A. Ciegler, A.H. Jensen, W.K. Rohwedder, and D. Weisleder: Co-Identity of the Refusal and Emetic Principle from Fusarium-Infected Corn. Appl. Environ. Microbiol., 31, 280 (1976).Google Scholar
  28. 27.
    Corley, D.G, G.E. Rottinghaus, and M.S. Tempesta: Toxic Trichothecenes from Fusarium sporotrichioides (MC-72083). J. Org. Chem., 52, 4405 (1987).Google Scholar
  29. 28.
    Baldwin, N.C.P., B.W. Bycroft, P.M. Dewick, D.C. Marsh, and J. Gilbert: Trichothecene Mycotoxins from Fusarium culmorum Cultures. Z. Naturforsch., C42, 1043 (1987).Google Scholar
  30. 29.
    Ayer, W.A., and S. Miao: Secondary Metabolites of the Aspen Fungus Stachybotrys cylindrospora. Canad. J. Chem., 71, 487 (1993).Google Scholar
  31. 30.
    Plattner, R.D., L.W. Tjarks, and M.N. Beremand: Trichothecenes Accumulated in Liquid Culture of a Mutant of Fusarium sporotrichioides NRRL 3299. Appl. Environ. Microbiol., 55, 2190 (1989).Google Scholar
  32. 31.
    Kim, K.-H., Y.-W. Lee, C.J. Mirocha, and R.W. Pawlosky: Isoverrucarol Production by Fusarium oxysporum CJS-12 Isolated from Corn. Appl. Environ. Microbiol., 56, 260 (1990).Google Scholar
  33. 32.
    McLachlan, A., K.J. Shaw, A.D. Hocking, J.L. Pitt, and T.H.L. Nguyen: Production of Trichothecene Mycotoxins by Australian Fusarium Species. Food Addit. Contain., 9, 631 (1992).Google Scholar
  34. 33.
    Zamir, L.O., K.A. Devor, and F. Sauriol: Biosynthesis of the Trichothecene 3-Acetyldeoxynivalenol. Identification of the Oxygenation Steps After Isotrichodermin. J. Biol. Chem., 266, 14992 (1991).Google Scholar
  35. 34.
    Evidente, A., G. Randazzo, A. Visconti, and A. Bottalico: Isolation of 15-Acetoxyscirpendiol from a Culture of Fusarium poae on Corn. Mycotoxin Res., 5, 30 (1989).Google Scholar
  36. 35.
    Colvin, E.W., and S. Cameron: Selective Chemical Transformations of the Trichothecene 4β-Acetoxyscirpene-3α,15-diol. Heterocycles, 25, 133 (1987).Google Scholar
  37. 36.
    Habermehl, G.: Isolation and Structure of New Toxins from Plants. Pure Appl. Chem., 61, 377 (1989).Google Scholar
  38. 37.
    Richardson, K.E., and P.B. Hamilton: Preparation of 4,15-Diacetoxyscirpenol from Cultures of Fusarium sambucinum NRRL 13495. Appl. Environ. Microbiol., 53, 460 (1987).Google Scholar
  39. 38.
    Hussein, H.H., M. Baxter, I.G. Andrew, and R.A. Franich: Mycotoxin Productionby Fusarium Species Isolated from New Zealand Maize Fields. Mycopathologia, 113, 35 (1991).Google Scholar
  40. 39.
    Vesonder, R.F., P. Golinski, R. Plattner, and D.L. Zeitkiewicz: Mycotoxin Formation by Different Geographic Isolates of Fusarium crookwellense. Mycopathologia, 113, 11 (1991).Google Scholar
  41. 40.
    Cole, R.J., J.W. Dorner, J. Gilbert, D.N. Mortimer, C. Crews, J.C. Mitchell, R.M. Windingstad, P.E. Nelson, and H.G. Cutler: Isolation and Identification of Trichothecenes from Fusarium compactum Suspected in the Aetiology of a Major Intoxication of Sandhill Cranes. J. Agric. Food Chem., 36, 1163 (1988).Google Scholar
  42. 41.
    Bosch, U., and C.J. MIROCHA: Toxin Production by Fusarium Species from Sugar Beets and Natural Occurrence of Zearalenone in Beets and Beet Fibers. Appl. Environ. Microbiol., 58, 3233 (1992).Google Scholar
  43. 41a.
    Abramson, D., R.M. Clear, and D.M. Smith: Trichothecene Production by Fusarium spp. Isolated from Manitoba Grain. Can. J. Plant Pathol., 15, 147 (1993).Google Scholar
  44. 41b.
    Altomare, C., A. Ritieni, G. Perrone, V. Fogliano, L. Mannina, and A. Logrieco: Production of Neosolaniol by Fusarium tumidum. Mycopathologia, 130, 179 (1995).Google Scholar
  45. 41c.
    El-Maghraby, O.M.O., I.A. El-Kady, and S. Soliman: Mycoflora and Fusarium Toxins of Three Types of Corn Grains in Egypt with Special Reference to Production of Trichothecene Toxins. Microbiol. Res., 150, 225 (1995).Google Scholar
  46. 41d.
    Jarvis, B.B., J. Salemme, and A. Morais: Stachybotrys Toxins, 1. Nat. Toxins, 3, 10 (1995).Google Scholar
  47. 42.
    El-maghraby, O.M.O., G.A. Bean, B.B. Jarvis, and M.B. Aboul-nasr: Macrocyclic Trichothecenes Produced by Stachybotrys Isolated from Egypt and Eastern Europe. Mycopathologia, 113, 109 (1991).Google Scholar
  48. 42a.
    Soaresda Silva, N., and C. Kemmelmeir: Identification of Mycotoxins Produced by Fusarium graminearum Isolate Grown on Maize (Zea mays L). Chem. Abstr., 122, 284356 (1995).Google Scholar
  49. 43.
    Bosch, U., C.J. Mirocha, H.K. Abbas, and M. di Menna: Toxicity and Toxin Production by Fusarium Isolates from New Zealand. Mycopathologia, 108, 73 (1989).Google Scholar
  50. 44.
    Abbas, H.K., and U. Bosch: Evaluation of Trichothecene and Nontrichothecene Mycotoxins Produced by Fusarium in Soybeans. Mycotoxin Res., 6, 13 (1990).Google Scholar
  51. 45.
    Ramakrishna, Y., R.V. Bhat, and V. Ravindranath: Production of Deoxynivalenol by Fusarium Isolates from Sorghum Cultivars Associated with Specific Plant Diseases and Samples of Wheat Associated with a Human Mycotoxicosis Outbreak. Appl. Environ. Microbiol., 55, 2619 (1989).Google Scholar
  52. 45a.
    Styriak, I., E. Conkova, and J. Bohm: Occurrence of Fusarium sacchari var. subglutinans and Its Mycotoxin Production Ability in Broiler Feed. Folia Microbiol., 39, 579 (1994).Google Scholar
  53. 46.
    Golinski, P., R.F. Vesonder, D. Latus-Zietkiewicz, and J. Perkowski: Formation of Fusarenone X, Nivalenol, Zearalenone, α-trans-Zearalenol, β-trans-Zearalenol, and Fusarin C by Fusarium crookwellense. Appl. Environ. Microbiol., 54, 147 (1988).Google Scholar
  54. 47.
    Sugiura, Y., K. Fukasaku, T. Tanaka, Y. Matsui, and Y. Ueno: Fusarium poae and Fusarium crookwellense, Fungi Responsible for the Natural Occurrence of Nivalenol in Hokkaido. Appl. Environ. Microbiol., 59, 3334 (1993).Google Scholar
  55. 48.
    Combrinck, S., W.C.A. Gelderblom, H.S.C. Spies, B.V. Burger, P.G. Thiel, and W.F.O. Marasas: Isolation and Characterization of Trichothecin from Corn Cultures of Fusarium graminearum MRC 1125. Appl. Environ. Microbiol., 54, 1700 (1988).Google Scholar
  56. 49.
    Flesch, P., and I. Voigt-Scheuermann: Isolation and Identification of Iso-Trichothecin from Cultures of the Fungus Trichothecium roseum. Wein Wiss., 48, 15 (1993).Google Scholar
  57. 50.
    Burgess, L.W., P.E. Nelson, and T.A. Toussoun: Characterization, Geographic Distribution and Ecology of Fusarium crookwellense sp. nov. Trans. Brit. Mycol. Soc., 79, 497 (1982).Google Scholar
  58. 51.
    Burgess, L.W., G.A. Forbes, C. Windels, P.E. Nelson, and W.F.O. Marasas: Characterization and Distribution of Fusarium acuminatum subsp. armeniacum subsp. nov. Mycologia, 85, 119 (1993).Google Scholar
  59. 52.
    Wing, N., D.R. Lauren, W.L. Bryden, and L.W. Burgess: Toxicity and Trichothecene Production by Fusarium acuminatum subsp. acuminatum and Fusarium acuminatum subsp. armeniacum. Nat. Toxins, 1, 229 (1993).Google Scholar
  60. 53.
    Gams, W.: Taxonomy and Nomenclature of Microdochium nivale (Fusarium nivale). In: Fusarium Mycotoxins, Taxonomy and Pathogenicity (J. Chelkowski, ed.), p. 195. Amsterdam: Elsevier, 1989.Google Scholar
  61. 54.
    Booth, C.: The Genus Fusarium, p. 193. Kew, U.K.: Commonwealth Mycological Institute, 1971.Google Scholar
  62. 55.
    Miller, J.D., R. Greenhalgh, Y.-Z. Wang, and M. Lu: Trichothecene Chemotypes of Three Fusarium Species. Mycologia, 83, 121 (1991).Google Scholar
  63. 56.
    Blaney, B.J., and R.L. Dodman: Production of the Mycotoxins Zearalenone, 4-Deoxynivalenol, and Nivalenol by Isolates of Fusarium graminearum Groups 1 and 2 from Cereals in Queensland. Aust. J. Agr. Res., 39, 21 (1988).Google Scholar
  64. 57.
    Sydenham, E.W., W.F.O. Marasas, P.G. Thiel, G.S. Shephard, and JJ. Nieuwenhuis: Production of Mycotoxins by Selected Fusarium graminearum and F. crookwellense Isolates. Food Addit. Contain., 8, 31 (1991).Google Scholar
  65. 57a.
    Szecsi, A., and T. Bartok: Trichothecene Chemotypes of Fusarium graminearum Isolated from Corn in Hungary. Mycotox. Res., 11, 85 (1995).Google Scholar
  66. 57b.
    Nirenberg, H.: Morphological Differentiation of Fusarium sambucinum Fuckel s. St., F. torulosum (Berk et Curt.) Nirenberg comb. nov. and F. venenatum Nirenberg sp. nov. Mycopathologia, 129, 131 (1995).Google Scholar
  67. 57c.
    Altomare, C., A. Logrieco, A. Bottalico, G. Mule, A. Moretti, and A. Evidente: Production of Type A Trichothecenes and Enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathologia, 129, 177 (1995).Google Scholar
  68. 57d.
    Thrane, U., and U. Hansen: Chemical and Physiological Characterization of Taxa in the Fusarium sambucinum Complex. Mycopathologia, 129, 183 (1995).Google Scholar
  69. 57e.
    Schmidt, R., P. Zajkowski, and J. Wink: Toxicity of Fusarium sambucinum Fuckel sensu lato to Brine Shrimp. Mycopathologia, 129, 173 (1995).Google Scholar
  70. 57f.
    Jelen, H.H., C J. Mirocha, E. Wasowicz, and E. Kaminski: Production of Volatile Sesquiterpenes by Fusarium sambucinum Strains with Different Abilities to Synthesize Trichothecenes. Appl. Environ. Microbiol., 61, 3815 (1995).Google Scholar
  71. 58.
    Ghosal, S., K. Biswas, R.S. Srivastava, D.K. Chakrabarti, and K.C.B. Chaudhary: Toxic Substances Produced by Fusarium: Occurrence of Zearalenone, Diacetoxyscirpenol, and T-2 Toxin in Moldy Corn Infected with Fusarium moniliforme Sheld. J. Pharm. Sci., 67, 1768 (1978).Google Scholar
  72. 59.
    Chakrabarti, D.K., and S. Ghosal: Occurrence of Free and Conjugated 12,13-Epoxytrichothec-9-enes and Zearalenone in Banana Fruits Infected with Fusarium moniliforme. Appl. Environ. Microbiol., 51, 217 (1986).Google Scholar
  73. 60.
    Mirocha, C.J., H.K. Abbas, and R.F. Vesonder: Absence of Trichothecenes in Toxigenic Isolates of Fusarium moniliforme. Appl. Environ. Microbiol., 56, 520 (1990).Google Scholar
  74. 61.
    Pearson, A.J., and M.K. O’Brien: Trichothecene Synthesis Using Organoiron Complexes: Diastereoselective Total Syntheses of ( ± )-Trichodiene, ( ± )-12,13-Epoxytrichothec-9-ene, and (± )-Trichodermol. J. Org. Chem., 54, 4663 (1989).Google Scholar
  75. 62.
    O’Brien, M.K., A.J. Pearson, A.A. Pinkerton, W. Schmidt, and K. Willman: A Total Synthesis of (± )-Trichodermol. J. Amer. Chem. Soc., 111, 1499 (1989).Google Scholar
  76. 63.
    Colvin, E.W., M.J. Egan, and F.W. Kerr: Synthesis of the Trichothecene Mycotoxin, T-2 Tetraol. Chem. Commun, 1200 (1990).Google Scholar
  77. 64.
    Gilbert, J.C., and R.D. Selliah: Highly Convergent Enantioselective Route to Trichothecenes. Tetrahedron Lett., 33, 6259 (1992).Google Scholar
  78. 65.
    Gilbert, J.C., and R.D. Selliah: Enantioselective Synthesis of an ent-Trichothecene. Tetrahedron, 50, 1651 (1994).Google Scholar
  79. 66.
    Hua, D.H., S. Venkataraman, R. Chan-Yu-King, and J.V. Paukstelis: Enantioselective Total Synthesis of ( + )-12,13-Epoxytrichothec-9-ene and Its Antipode. J. Amer. Chem. Soc., 110, 4741 (1988).Google Scholar
  80. 67.
    Roush, W.R., and S. Russo-Rodriguez: Trichothecene Degradation Studies, 3: Synthesis of 12,13-Deoxy-12,13-methanoanguidine and 12-Epianguidine, Two Optically Active Analogues of the Epoxytrichothecene Mycotoxin Anguidine. J. Org. Chem., 52, 603 (1987).Google Scholar
  81. 68.
    Cameron, S., and E.W. Colvin: Trichothecene Mycotoxin Interconversions: Partial Syntheses of Calonectrin and Deoxynivalenol, and of a Trichothecene epi-Epoxide, 3α, 4β, 15-Triacetoxy-12,13-epi-epoxytrichothec-9-ene. J. Chem. Soc., Perkin Trans. 1, 887 (1989).Google Scholar
  82. 68a.
    Nemoto, H., J. Miyata, H. Hakamata. M. Nagamochi, and K. Fukumoto: A Novel and Efficient Route to Chiral A-Ring Aromatic Trichothecanes—The First Enantiocontrolled Total Synthesis of (—)-Debromofiliformin and (—)-Filiformin. Tetrahedron, 51, 5511 (1995).Google Scholar
  83. 68b.
    Nemoto, H., J. Miyata, and K. Fukumoto: Cyclobutane Strategy for the Synthesis of A-Ring Aromatic Trichothecanes. Heterocycles, 42, 165 (1996).Google Scholar
  84. 68c.
    Ishihara, J., R. Nonaka, Y. Terasawa, K. Tadano, and S. Ogawa: Synthetic Studies on the Trichothecene Family from D-Glucose. Tetrahedron Assymm., 5, 2217 (1994).Google Scholar
  85. 69.
    Gilardi, R., C. George, and J.L. Flippen-Anderson: The Structure of T-2 Toxin. Acta Crystallogr., C46, 645 (1990).Google Scholar
  86. 70.
    Mesilaakso, M., and E. Rahkamaa: 1H and 13C NMR Study of the Trichothecenes T-2 Toxin and T-2 Triol. J. Prakt. Chem., 334, 53 (1992).Google Scholar
  87. 71.
    Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part V: Transformation Products of 4β,15-Diacetoxy-3α,7α-dihydroxy-12,13-epoxytrichothec-9-en-8-one and the Structures of Nivalenol and Fusarenone. J. Chem. Soc., C, 375 (1970).Google Scholar
  88. 72.
    Jarvis, B.B., D.B. Mazzocchi, H.L. Ammon, E.P. Mazzola, J.L. Flippen-Anderson, R.D. Gilardi, and C.F. George: Conformational Effects in Trichothecenes: Structures of 15-Hydroxy C4 and C8 Ketones. J. Org. Chem., 55, 3660 (1990).Google Scholar
  89. 73.
    Greenhalgh, R., A.W. Hanson, J.D. Miller, and A. Taylor: Production and X-ray Crystal Structure of 3α-Acetoxy-7α, 15-dihydroxy-12,13-epoxytrichothec-9-en-8-one. J. Agric. Food Chem., 32, 945 (1984).Google Scholar
  90. 74.
    Novak, T.J., and K. Quinn-Doggett: 2-(Diphenylacetyl)-l,3-indandione 1-hydrazone (DIPAIN) Derivatives for Detection of Trichothecene Mycotoxins. Anal. Lett., 24, 913 (1991).Google Scholar
  91. 75.
    Ziegler, F.E., and S.B. Sobolov: Synthesis of a Highly Functionalized Carbon Ring Skeleton for the Trichothecene Anguidine. J. Amer. Chem. Soc., 112, 2749 (1990).Google Scholar
  92. 76.
    Anderson, D.W., R.M. Black, C.G. Lee, C. Pottage, R.L. Rickard, M.S. Sandford, T.D. Webber, and N.E. Williams: Structure-Activity Studies of Trichothecenes: Cytotoxicity of Analogues and Reaction Products Derived from T-2 Toxin and Neosolaniol. J. Med. Chem., 32, 555 (1989).Google Scholar
  93. 77.
    Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part 10: The Preparation and Rearrangement of Diacetylneosolaniol 9β,10β-Epoxide. J. Chem. Soc. Perkin Trans. 1, 1199 (1990).Google Scholar
  94. 78.
    Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part 9: Reactions of Some 9β, 10β: 12,13-Diepoxytrichothecanes. J. Chem. Soc. Perkin Trans. 1,115 (1990).Google Scholar
  95. 79.
    Burrows, E.P., and L.L. Szafraniec: Hypochlorite-Promoted Transformations of Trichothecenes 3: Deoxynivalenol. J. Nat. Prod., 50, 1108 (1987).Google Scholar
  96. 80.
    Roush, W.R., and S. Russo-Rodriguez: Trichothecene Degradation Studies, 2: Synthesis of [13-14C]Anguidine. J. Org. Chem., 52, 598 (1987).Google Scholar
  97. 81.
    Trost, B.M., P.G. McDOUGAL, and K.J. Haller: A Tandem Cycloaddition-Ene Strategy for the Synthesis of (± )-Verrucarol and ( ± )-4, ll-Diepi-12,13-deoxyverrucarol. J. Amer. Chem. Soc., 106, 383 (1984).Google Scholar
  98. 82.
    Kraus, G.A., and P.J. Thomas: Synthesis of 7,7,8-Trideuteriated Trichothecenes. J. Org. Chem., 53, 1395 (1988).Google Scholar
  99. 83.
    Dillen, J.L.M., C.P. Gorst-Allman, and P.S. Steyn: Trichothecene Chemistry: Conversion of Diacetoxyscirpenol into Neosolaniol Monoacetate and Its Epimer. S. Afr. Tydskr. Chem., 39, 111 (1986).Google Scholar
  100. 84.
    Muller, B., R. Achini, and Ch. Tamm: Biosynthese der Verrucarine und Roridine, Teil 3: Der Einbau von (3R)-[5-14C]-, [2-14C]-und an C(2) stereospezifisch tritiiertem Mevalonat in Verrucarol. Helv. Chim. Acta, 58, 471 (1975).Google Scholar
  101. 85.
    Jarvis, B.B., J.O. Midiwo, and E.P. Mazzola: Antileukemic Compounds Derived by Chemical Modification of Macrocyclic Trichothecenes, 2: Derivatives of Roridins A and H and Verrucarins A and J. J. Med. Chem., 27, 239 (1984).Google Scholar
  102. 86.
    Colvin, E.W., and S. Cameron: Partial Syntheses of the Trichothecene Mycotoxins, Calonectrin and Deoxynivalenol. Tetrahedron Lett., 29, 493 (1988).Google Scholar
  103. 87.
    Jeker, N., and CH. Tamm: Synthesis of New Unnatural Macrocyclic Trichothecenes: 4-Epiverrucarin. A. Helv. Chim. Acta, 71, 1904 (1988).Google Scholar
  104. 88.
    Roush., W.R., and T.A. Blizzard: Synthesis of Verrucarin B. J. Org. Chem., 49, 4332 (1984).Google Scholar
  105. 89.
    Jeker, N., and Ch. TAMM: Synthesis of New Unnatural Macrocyclic Trichothecenes: 3-Isoverrucarin A [(1″ — 0) (3 → 4) abeo-Verrucarin A], Verrucinol, and Verrucene. Helv. Chim. Acta, 71, 1895 (1988).Google Scholar
  106. 90.
    Richardson, S.K., A. Jeganathan, R.S. Mani, B.E. Haley, D.S. Watt, and L.R. Trusal: Synthesis and Biological Activity of C-4 and C-15 Aryl Azide Derivatives of Anguidine. Tetrahedron, 43, 2925 (1987).Google Scholar
  107. 91.
    Chu, F.S., S. Grossman, R.-D. Wei, and C.J. Mirocha: Production of Antibody Against T-2 Toxin. Appl. Env. Microbiol., 37, 104 (1979).Google Scholar
  108. 92.
    Ohtani, K., O. Kawamura, and Y. Ueno: Improved Preparation of T-2 Toxin-Protein Conjugates. Toxicon, 26, 1107 (1988).Google Scholar
  109. 93.
    Duffy, M.J., and R.S. Reid: Measurement of the Stability of T-2 Toxin in Aqueous Solution. Chem. Res. Toxicol., 6, 524 (1993).Google Scholar
  110. 94.
    Savard, M.E., and R. Greenhalgh: Synthesis and NMR Analysis of New Trichothecenes. J. Nat. Prod., 50, 953 (1987).Google Scholar
  111. 95.
    Anderson, D.W., R.M. Black, D.A. Leigh, and J.F. Stoddart: Novel 4,15-Polyether Analogues of Macrocyclic Trichothecenes. Tetrahedron Lett., 28, 2653 (1987).Google Scholar
  112. 96.
    Anderson, D.W., R.M. Black, D.A. Leigh, and J.F. Stoddart: Novel 3,4-and 8,15-Polyether Analogues of Macrocyclic Trichothecenes. Tetrahedron Lett., 28, 2657 (1987).Google Scholar
  113. 97.
    Mesilaakso, M., M. Moilanen, and E. Rahkamaa: 1H and 13C NMR Analysis of Some Trichothecenes. Arch. Environ. Contam. Toxicol., 18, 365 (1989).Google Scholar
  114. 98.
    Grove, J.F., A.J. McAlees, and A. Taylor: Preparation of 10-g Quantities of 15-O-Acetyl-4-deoxynivalenol. J. Org. Chem., 53, 3860 (1988).Google Scholar
  115. 99.
    Savard, M.E., B.A. Blackwell, and R. Greenhalgh: A 1H NMR Study of Derivatives of 3-Hydroxy-12,13-epoxytrichothec-9-enes. Canad. J. Chem., 65, 2254 (1987).Google Scholar
  116. 99a.
    Sinha, R.C., M.E. Savard, and R. Lau: Production of Monoclonal Antibodies for the Specific Detection of Deoxynivalenol and 15-Acetyldeoxynivalenol by ELISA. J. Agric. Food Chem., 43, 1740 (1995).Google Scholar
  117. 100.
    Savard, M.E.: Deoxynivalenol Fatty Acid and Glucoside Conjugates. J. Agric. Food Chem., 39, 570 (1991).Google Scholar
  118. 101.
    Lauren, D.R., W.A. Smith, and A.L. Wilkins: Preparation, Purification, and NMR Spectra of Some Mono-and Dihemisuccinates of the Trichothecene Mycotoxin Nivalenol. J. Agric. Food Chem., 42, 828 (1994).Google Scholar
  119. 102.
    Roush., W.R., and T.E. D’ambra: Total Synthesis of (±)-Verrucarol. J. Amer. Chem. Soc., 105, 1058 (1983).Google Scholar
  120. 103.
    Still, W.C., and M.-Y. Tsai: Total Synthesis of (±)-Trichodermol. J. Amer. Chem. Soc., 102, 3654 (1980).Google Scholar
  121. 104.
    Bamburg, J.R., N.V. Riggs, and F.M. Strong: The Structures of Toxins from Two Strains of Fusarium tricinctum. Tetrahedron, 24, 3329 (1968).Google Scholar
  122. 105.
    Ehrlich., K.C., and K.W. Daigle: Protein Synthesis Inhibition by 8-Oxo-12,13-epoxytrichothecenes. Biochim. Biophys. Acta, 923, 206 (1987).Google Scholar
  123. 106.
    Anderson, D.W., R.M. Black, D.A. Leigh, J.F. Stoddart, and N.E. Williams: The Facile Conversion of T-2 Toxin and Neosolaniol into Anguidine. Tetrahedron Lett., 28, 2661 (1987).Google Scholar
  124. 107.
    Yagan, B., and B.B. Jarvis: Synthesis of Tritium Labelled Verrucarol and Verrucarin A. J. Lab. Comp. Radiopharm., 27, 675 (1989).Google Scholar
  125. 108.
    Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part II: Regioselective Reactions with Derivatives of the Trichothecene Mycotoxins, Nivalenol and Vomitoxin. J. Nat. Prod., 57, 1491 (1994).Google Scholar
  126. 109.
    Dess, D.B., and J.C. Martin: Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones. J. Org. Chem., 48, 4155 (1983).Google Scholar
  127. 110.
    Sigg, H.P., R. Mauli, F. Flury, and D. Hauser: Die Konstitution von Diacetoxyscirpenol. Helv. Chim. Acta, 48, 962 (1965).Google Scholar
  128. 111.
    Zamir, L.O., A. Nikolakakis, and F. Sauriol: Target-Oriented Inhibitors of the Late Stages of Trichothecene Biosynthesis, 1: Design, Syntheses, and Proof of Structures of Putative Inhibitors. J. Agric. Food Chem., 40, 676 (1992).Google Scholar
  129. 112.
    Davis, F.A., L.C. Vishwakarma, J.M. Billmers, and J. Finn: Synthesis of α-Hydroxy Carbonyl Compounds (Acyloins): Direct Oxidation of Enolates Using 2-Sulfenyloxaziridines. J. Org. Chem., 49, 3241 (1984).Google Scholar
  130. 113.
    Ehrlich, K.C: Preparation of the Fusarium Toxin, Nivalenol, by Oxidation of the Putative Biosynthetic Precursor, 7-Deoxynivalenol. Mycopathologia, 107, 111 (1989).Google Scholar
  131. 114.
    King, R.R., and R. Greenhalgh: Structural Elucidation of a Novel Deoxynivalenol Analogue. J. Org. Chem., 52, 1605 (1987).Google Scholar
  132. 115.
    Jarvis, B.B., M.E. Alvarez, G. Wang, and H.L. Ammon: Solvolytic Cyclization of 4,15-Anhydroverrucarol. A Facile Trichothecene → 10,13-CycloTrichothecene Rearrangement. J. Org. Chem., 54, 4493 (1989).Google Scholar
  133. 116.
    Greenhalgh., R., D.A. Fielder, L.A. Morrison, J.-P. Charland, B.A. Blackwell, M.E. Savard, and J.W. Apsimon: Secondary Metabolites of Fusarium Species: ApoTrichothecene Derivatives. J. Agric. Food Chem., 37, 699 (1989).Google Scholar
  134. 117.
    Greenhalgh., R., D.A. Fielder, L.A. Morrison, J.-P. Charland, B.A. Blackwell, J.D. Miller, M.E. Savard, and J.W. Apsimon: ApoTrichothecenes-Minor Metabolites of the Fusarium Species. Bioactive Mols., 10, 223 (1989).Google Scholar
  135. 118.
    Kononenko, G.P., A.R. Bekker, A.N. Leonov, and N.A. Soboleva: Gramilaurone, a Novel Natural Sesquiterpenoid from Fusarium graminearum Schw. Tetrahedron Lett., 32, 1893 (1991).Google Scholar
  136. 119.
    Takitani, S., Y. Asabe, T. Kato, M. Suzuki, and Y. Ueno: Spectrodensitometric Determination of Trichothecene Mycotoxins with 4-(p-Nitrobenzyl)pyridine on Silica Gel Thin-Layer Chromatograms. J. Chromatogr., 172, 335 (1979).Google Scholar
  137. 120.
    Novak, T.J., and K.A. Quinn: Catalytic NBP Spot Test for the Detection of Trichothecene Mycotoxin T-2. Anal. Lett., 19, 2001 (1986).Google Scholar
  138. 121.
    Ramakrishna, Y., and R.V. Bhat: Comparison of Different Spray Reagents for Identification of Trichothecenes. Curr. Sci., 56, 524 (1987).Google Scholar
  139. 122.
    Cameron, S., and E.W. Colvin: Chemical Deoxygenation of the Trichothecenes Diacetoxyscirpenol and Deoxynivalenol. J. Chem. Soc., Perkin Trans. 1, 365 (1989).Google Scholar
  140. 123.
    Machida, Y., and S. Nozoe: Biosynthesis of Trichothecin. Tetrahedron Lett., 1969 (1972).Google Scholar
  141. 124.
    VanMiddlesworth, F., A.E. Desjardins, S.L. Taylor, and R.D. Plattner: Trichodiene Accumulation by Ancymidol Treatment of Gibberella pulicaris. Chem. Commun, 1156 (1986).Google Scholar
  142. 125.
    Desjardins, A.E., R.D. Plattner, and M.N. Beremand: Ancymidol Blocks Trichothecene Biosynthesis and Leads to Accumulation of Trichodiene in Fusarium sporotrichioides and Gibberella pulicaris. Appl. Environ. Microbol, 53, 1860 (1987).Google Scholar
  143. 126.
    Zamir, L.O., M.J. Gauthier, K.A. Devor, Y. Nadeau, and F. Sauriol: Trichodiene Is a Precursor to Trichothecenes. Chem. Commun., 598 (1989).Google Scholar
  144. 127.
    Zamir, L.O., Y. Nadeau, C.-D. Nguyen, K. Devor, and F. Sauriol: Mechanism of 3-Acetyldeoxynivalenol Biosynthesis. Chem. Commun., 127 (1987).Google Scholar
  145. 128.
    Vasavada, A.B., and D.P.H. Hsieh: Manganese Inhibition of 3-Acetyldeoxynivalenol Biosynthesis in Fusarium graminearum R 2118. Appl. Microbiol. Biotechnol., 33, 335 (1990).Google Scholar
  146. 129.
    Cane, D.E.: Stereochemical Studies of Natural Products Biosynthesis. Pure Appl. Chem., 61, 493 (1989).Google Scholar
  147. 130.
    Cane, D.E.: Enzymatic Formation of Sesquiterpenes. Chem. Rev., 90, 1089 (1990).Google Scholar
  148. 131.
    Cane, D.E., and H.-J. Ha: Trichodiene Biosynthesis and the Role of Nerolidyl Pyrophosphate in the Enzymatic Cyclization of Farnesyl Pyrophosphate. J. Amer. Chem. Soc., 110, 6865 (1988).Google Scholar
  149. 132.
    Cane, D.E., J.L. Pawlak, R.M. Horak, and T.M. Hohn: Studies of the Cryptic Allylic Pyrophosphate Isomerase Activity of Trichodiene Synthase Using the Anomalous Substrate 6,7-Dihydrofarnesyl Pyrophosphate. Biochemistry, 29, 5476 (1990).Google Scholar
  150. 132a.
    Cane, D.E., and G. Yang: Trichodiene Synthase. Stereochemical Studies of the Cryptic Allylic Diphosphate Isomerase Activity Using an Anomalous Substrate. J. Org. Chem., 59, 5794 (1994).Google Scholar
  151. 133.
    Hohn, T.M., and M.N. Beremand: Regulation of Trichodiene Synthase in Fusarium sporotrichioides and Gibberella pulicaris (Fusarium sambucinum). Appl. Environ. Microbiol., 55, 1500 (1989).Google Scholar
  152. 134.
    Hohn, T.M., and F. VanMiddlesworth: Purification and Characterization of the Sesquiterpene Cyclase Trichodiene Synthetase from Fusarium sporotrichioides. Arch. Biochem. Biophys., 251, 756 (1986).Google Scholar
  153. 134a.
    Cane, D.E., G. Yang, Q. Xue, and J.H. Shim: Trichodiene Synthase. Substrate Specificity and Inhibition. Biochemistry, 34, 2471 (1995).Google Scholar
  154. 134b.
    Cane, D.E., J.H. Shim, Q. Xue, B.C. Fitzsimons, and T.M. Hohn: Trichodiene Synthase. Identification of Active Site Residues by Site-Directed Mutagenesis. Biochemistry, 34, 2480 (1995).Google Scholar
  155. 134c.
    Cane, D.E., and Q. Xue: Trichodiene Synthase. Enzymatic Formation of Multiple Sesquiterpenes by Alteration of the Cyclase Active Site. J. Am. Chem. Soc., 118, 1563 (1996).Google Scholar
  156. 134d.
    Proctor, R.H., T.M. Hohn, and S.P. McCormick: Reduced Virulence of Gibberella zeae Caused by Disruption of a Trichothecene Toxin Biosynthetic Gene. Mol. Plant-Microbe Interact., 8, 593 (1995).Google Scholar
  157. 135.
    Hohn, T.M., and R.D. Plattner: Expression of the Trichodiene Synthase Gene of Fusarium sporotrichioides in Escherichia coli Results in Sesquiterpene Production. Arch. Biochem. Biophys., 275, 92 (1989).Google Scholar
  158. 136.
    Hohn, T.M., and P.D. Beremand: Isolation and Nucleotide Sequence of a Sesquiterpene Cyclase Gene from Trichothecene-Producing Fungus Fusarium sporotrichioides. Gene, 79, 131 (1989).Google Scholar
  159. 137.
    Cane, D.E., Z. Wu, J.S. Oliver, and T.M. Hohn: Overproduction of Soluble Trichodiene Synthase from Fusarium sporotrichioides in Escherichia coli. Arch. Biochem. Biophys., 300, 416 (1993).Google Scholar
  160. 138.
    Hohn, T.M., and J.B. Ohlrogge: Expression of a Fungal Sesquiterpene Cyclase Gene in Transgenic Tobacco. Plant Physiol., 97, 460 (1991).Google Scholar
  161. 139.
    Desjardins, A.E., T.M. Hohn, and S.P. McCormick: Effect of Gene Disruption of Trichodiene Synthase on the Virulence of Gibberella pulicaris. Mol. Plant-Microbe Interact, 5, 214 (1992).Google Scholar
  162. 140.
    Hohn, T.M., and A.E. Desjardins: Isolation and Gene Disruption of the Tox5 Gene Encoding Trichodiene Synthase in Gibberella pulicaris. Mol. Plant-Microbe Interact., 5, 249 (1992).Google Scholar
  163. 141.
    Desjardins, A.E., R.D. Plattner, and F. VanMiddlesworth: Trichothecene Biosynthesis in Fusarium sporotrichioides: Origin of the Oxygen Atoms of T-2 Toxin. Appl. Environ. Microbiol., 51, 493 (1986).Google Scholar
  164. 142.
    Desjardins, A.E., R.D. Plattner, and G.F. Spencer: Inhibition of Trichothecene Toxin Biosynthesis by Naturally Occurring Shikimate Aromatics. Phytochem., 27, 767 (1988).Google Scholar
  165. 143.
    Beremand, M.N.: Isolation and Characterization of Mutants Blocked in T-2 Toxin Biosynthesis. Appl. Environ. Microbiol., 53, 1855 (1987).Google Scholar
  166. 144.
    Zamir, L.O., K.A. Devor, N. Morin, and F. Sauriol: Biosynthesis of Trichothecenes: Oxygenation Steps Post-Trichodiene. Chem. Commun., 1033 (1991).Google Scholar
  167. 145.
    Hesketh., A.R., L. Gledhill, D.C. Marsh, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Isotrichodiol: A Post-Trichodiene Intermediate in the Biosynthesis of Trichothecene Mycotoxins. Chem. Commun., 1184 (1990).Google Scholar
  168. 146.
    Zamir, L.O., and K.A. Devor: Kinetic Pulse-Labeling Study of Fusarium culmorum. Biosynthetic Intermediates and Dead-End Metabolites. J. Biol. Chem., 262, 15348 (1987).Google Scholar
  169. 147.
    Zamir, L.O., K.A. Devor, A. Nikolakakis, Y. Nadeau, and F. Sauriol: Structures of New Metabolites from Fusarium species: An Apotrichothecene and Oxygenated Trichodienes. Tetrahedron Lett., 33, 5181 (1992).Google Scholar
  170. 148.
    Greenhalgh., R., B.A. Blackwell, J.R.J. Pare, J.D. Miller, D. Levandier, R.-M. Meier, A. Taylor, and J.W. ApSimon: Isolation and Characterization by Mass Spectrometry and NMR Spectroscopy of Secondary Metabolites of Some Fusarium Species. In: Mycotoxins and Phycotoxins (P.S. Steyn and R. Vleggaar, eds.), p. 137. Amsterdam: Elsevier, 1986.Google Scholar
  171. 149.
    Roesslein, L., Ch. Tamm, W. Zurcher, A. Reisen, and M. Zehnder: Sambucinic Acid, a New Metabolite of Fusarium sambucinum. Helv. Chim. Acta, 71, 588 (1988).Google Scholar
  172. 150.
    Mohr, P., Ch. Tamm, W. Zurcher, and M. Zehnder: Sambucinol and Sambucoin, Two New Metabolites of Fusarium sambucinum Possessing Modified Trichothecene Structures. Helv. Chim. Acta, 67, 406 (1984).Google Scholar
  173. 151.
    Greenhalgh., R., D. Levandier, W. Adams, J.D. Miller, B.A. Blackwell, A.J. Mcalees, and A. Taylor: Production and Characterization of Deoxynivalenol and Other Secondary Metabolites of Fusarium culmorum (CMI 14764, HLX 1503). J. Agric. Food Chem., 34, 98 (1986).Google Scholar
  174. 152.
    Greenhalgh., R., R.-M. Meier, B.A. Blackwell, J.D. Miller, A. Taylor, and J.W. ApSimon: Minor Metabolites of Fusarium roseum (ATCC 28114). J. Agric. Food Chem., 34, 115 (1986).Google Scholar
  175. 153.
    Corley, D.G., G.E. Rottinghaus, and M.S. Tempesta: Secondary Metabolites from Fusarium. Two New Modified Trichothecenes from Fusarium sporotrichioides MC-72083. J. Nat. Prod., 50, 897 (1987).Google Scholar
  176. 154.
    Ziegler, F.E., A. Nangia, and M.S. Tempesta: Sporol: A Structure Revision. Tetrahedron Lett., 29, 1665 (1988).Google Scholar
  177. 155.
    Corley, D.G., G.E. Rottinghaus, and M.S. Tempesta: Novel Trichothecenes from Fusarium sporotrichioides. Tetrahedron Lett., 27, 427 (1986).Google Scholar
  178. 156.
    Nozoe, S., and Y. Machida: Structure of Trichodiene. Tetrahedron Lett., 2671 (1970).Google Scholar
  179. 157.
    Zamir, L.O.: Biosynthesis of 3-Acetyldeoxynivalenol and Sambucinol. Tetrahedron, 45, 2277 (1989).Google Scholar
  180. 158.
    Fort, D.M., C.L. Barnes, M.S. Tempesta, H.H. Casper, E. Bekele, A.A. Rottinghaus, and G.E. Rottinghaus: Two New Modified Trichothecenes from Fusarium sporotrichioides. J. Nat. Prod., 56, 1890 (1993).Google Scholar
  181. 159.
    Nozoe, S., and Y. Machida: The Structures of Trichodiol and Trichodiene. Tetrahedron, 28, 5105 (1972).Google Scholar
  182. 160.
    Hesketh., A.R., B.W. Bycroft, P.M. Dewick, and J. Gilbert: Revision of the Stereochemistry in Trichodiol, Trichotriol and Related Compounds, and Concerning Their Role in the Biosynthesis of Trichothecene Mycotoxins. Phytochem., 32, 105 (1993).Google Scholar
  183. 161.
    Ziegler, F.E., A. Nangia, and G. Schulte: The Synthesis of Neosporol: A Trichothecene in Search of a Natural Product. Tetrahedron Lett., 29, 1669 (1988).Google Scholar
  184. 162.
    Ziegler, F.E., C.A. Metcalf, and G. Schulte: Confirmation by Total Synthesis of the Revised Structure of Sporol: An Application of Cyclic Thionocarboate-Initiated Radical Cyclization. Tetrahedron Lett., 33, 3117 (1992).Google Scholar
  185. 163.
    Apsimon, J.W., B.A. Blackwell, R. Greenhalgh, R.-M. Meier, D. Miller, J.R.J. Pare, and A. Taylor: Secondary Metabolites Produced by Some Fusarium Species. In: Mycotoxins and Phycotoxins (P.S. Steyn and R. Vleggaar, eds.), p. 125. Amsterdam: Elsevier, 1986.Google Scholar
  186. 164.
    Zamir, L.O., K.A. Devor, Y. Nadeau, and F. Sauriol: Structure Determination and Biosynthesis of a Novel Metabolite of Fusarium culmorum, Apotrichodiol. J. Biol. Chem., 262, 15354 (1987).Google Scholar
  187. 165.
    Gledhill, L., A.R. Hesketh, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Biosynthesis of Trichothecene Mycotoxins: Cell-Free Epoxidation of a Trichodiene Derivative. FEMS Microbiol. Lett., 81, 241 (1991).Google Scholar
  188. 166.
    Hesketh., A.R., L. Gledhill, D.C. Marsh, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Biosynthesis of Trichothecene Mycotoxins: Identification of Isotrichodiol as a Post-Trichodiene Intermediate. Phytochem., 30, 2237 (1991).Google Scholar
  189. 167.
    Zamir, L.O., K.A. Devor, A. Nikolakakis, and F. Sauriol: Biosynthesis of Fusarium culmorum Trichothecenes. J. Biol. Chem., 265, 6713 (1990).Google Scholar
  190. 168.
    Savard, M.E., B.A. Blackwell, and R. Greenhalgh: The Role of 13C-Labeled Trichodiene and Bazzanene in the Secondary Metabolism of Fusarium culmorum. J. Nat. Prod., 52, 1267 (1989).Google Scholar
  191. 169.
    Greenhalgh., R., R.-M. Meier, B.A. Blackwell, J.D. Miller, A. Taylor, and J.W. ApSimon: Minor Metabolites of Fusarium roseum (ATCC 28114). J. Agric. Food Chem., 32, 1261 (1984).Google Scholar
  192. 170.
    Hesketh., A.R., L. Gledhill, B.W. Bycroft, P.M. Dewick, and J. Gilbert: Potential Inhibitors of Trichothecene Biosynthesis in Fusarium culmorum: Epoxidation of a Trichodiene Derivative. Phytochem., 32, 93 (1993).Google Scholar
  193. 171.
    Beremand, M.N., F. VanMiddlesworth, S. Taylor, R.D. Plattner, and D. Weisleder: Leucine Auxotrophy Specifically Alters the Pattern of Trichothecene Production in a T-2 Toxin-Producing Strain of Fusarium sporotrichioides. Appl. Environ. Microbiol., 54, 2759 (1988).Google Scholar
  194. 172.
    VanMiddlesworth, F., M.N. Beremand, T.A. Isbell, and D. Weisleder: T-2 Toxin Biosynthesis: Origin of the Isovalerate Side Chain. J. Org. Chem., 55, 1237 (1990).Google Scholar
  195. 173.
    Desjardins, A.E., and M. Beremand: A Genetic System for Trichothecene Toxin Production in Gibberella pulicaris (Fusarium sambucinum). Phytopathol., 77, 678 (1987).Google Scholar
  196. 174.
    Beremand, M.N.: Genetic and Mutational Tools for Investigating the Genetics and Molecular Biology of Trichothecene Production in Gibberella pulicaris (Fusarium sambucinum). Mycopathologia, 107, 67 (1989).Google Scholar
  197. 175.
    Hohn, T.M., A.E. Desjardins, and S.P. McCormick: Analysis of Tox5 Gene Expression in Gibberella pulicaris Strains with Different Trichothecene Production Phenotypes. Appl. Environ. Microbiol., 59, 2359 (1993).Google Scholar
  198. 176.
    Beremand, M.N., and A.E. Desjardins: Trichothecene Biosynthesis in Gibberella pulicaris: Inheritance of C-8 Hydroxylation. J. Ind. Microbiol., 3, 167 (1988).Google Scholar
  199. 777.
    Beremand, M.N., A.E. Desjardins, T.M. Hohn, and F.L. VanMiddlesworth: Survey of Fusarium sambucinum (Gibberella pulicaris) for Mating Type, Trichothecene Production, and Other Selected Traits. Phytopathol., 81, 1452 (1991).Google Scholar
  200. 178.
    Hohn, T.M., S.P. McCormick, and A.E. Desjardins: Evidence for a Gene Cluster Involving Trichothecene-Pathway Biosynthetic Genes in Fusarium sporotrichioides. Curr. Genet., 24, 291 (1993).Google Scholar
  201. 179.
    Desjardins, A.E., T.M. Hohn, and S.P. McCormick: Trichothecene Biosynthesis in Fusarium Species: Chemistry, Genetics, and Significance. Microbiol. Rev., 57, 595 (1993).Google Scholar
  202. 179a.
    McCormick, S.P., T.M. Hohn, and A.E. Desjardins: Isolation and Characterization of Tri3, a Gene Encoding 15-0-Acetyltransferase from Fusarium sporotrichioides. Appl. Environ. Microbiol., 62, 353 (1996).Google Scholar
  203. 179b.
    Hohn, T.M., A.E. DESJARDINS, and S.P. McCormick: The Tri4 Gene of Fusarium sporotrichioides Encodes a Cytochrome P450 Monooxygenase Involved in Trichothecene Biosynthesis. Mol. Gen. Genet., 248, 95 (1995).Google Scholar
  204. 179c.
    Proctor, R.H., T.M. Hohn, S.P. McCormick, and A.E. Desjardins: Tri6 Encodes an Unusual Zinc Finger Protein Involved in Regulation of Trichothecene Biosynthesis in Fusarium sporotrichioides. Appl. Environ. Microbiol., 61, 1923 (1995).Google Scholar
  205. 180.
    Cane, D.E., G. Yang, R.M. Coates, H.-J. Pyun, and T.M. Hohn: Trichodiene Synthase. Synergistic Inhibition by Inorganic Pyrophosphate and Aza Analogs of the Bisabolyl Cation. J. Org. Chem., 57, 3454 (1992).Google Scholar
  206. 180a.
    Roinestad, K.S., T.J. Montville, and J.D. Rosen: Inhibition of Trichothecene Biosynthesis in Fusarium tricinctum by Sodium Bicarbonate. J. Agric. Food Chem., 41, 2344 (1993).Google Scholar
  207. 180b.
    Roinestad, K.S., T.J. Montville, and J.D. Rosen: Mechanism for Sodium Bicarbonate Inhibition of Trichothecene Biosynthesis in Fursarium tricinctum. J. Agric. Food Chem., 42, 2025 (1994).Google Scholar
  208. 181.
    Zamir, L.O., B. Rotter, K.A. Devor, and F. Vairinhos: Target-Oriented Inhibitors of the Late Stages of Trichothecene Biosynthesis, 2: In vivo Inhibitors and Chick Embryotoxicity Bioassay. J. Agric. Food Chem., 40, 681 (1992).Google Scholar
  209. 182.
    Mirocha, C.J.: Metabolism and Residue of Trichothecene Toxins in Animal and Plant Systems. In: Mycotoxins and Phycotoxins (P.S. Steyn and R. Vleggar, eds.), p. 409. Amsterdam: Elsevier, 1986.Google Scholar
  210. 183.
    Yagen, B., and M. Bialer: Metabolism and Pharmacokinetics of T-2 Toxin and Related Trichothecenes. Drug Metab. Rev., 25, 281 (1993).Google Scholar
  211. 184.
    Visconti, A., L.M. Treeful, and C.J. Mirocha: Identification of Iso-TC-1 as a New T-2 Toxin Metabolite in Cow Urine. Biomed. Mass Spectrom., 12, 689 (1985).Google Scholar
  212. 184a.
    Naseem, S.M., J.G. Pace, and R.W. Wannemacher: A High-Performance Liquid Chromatographic Method for Determining [3H]T-2 and Its Metabolites in Biological Fluids of the Cynomolgus Monkey. J. Anal. Toxicol., 19, 151 (1995).Google Scholar
  213. 185.
    Pace, J.G., M.R. Watts, E.P. Burrows, R.E. Dinterman, C. Matson, E.C. Hauser, and R.W. Wannemacher: Fate and Distribution of 3H-Labeled T-2 Mycotoxin in Guinea Pigs. Toxicol. Appl. Pharmacol., 80, 377 (1985).Google Scholar
  214. 186.
    Sintov, A., M. Bialer, and B. Yagen: Pharmacokinetics of T-2 Toxin and Its Metabolite HT-2 Toxin After Intravenous Administration in Dogs. Drug Metab. Dispos., 14, 250 (1986).Google Scholar
  215. 187.
    Sintov, A., M. Bialer, and B. Yagen: Pharmacokinetics of T-2 Tetraol, a Urinary Metabolite of the Trichothecene Mycotoxin, T-2 Toxin, in Dog. Xenobiotica, 17, 941 (1987).Google Scholar
  216. 188.
    Pfeiffer, R.L., S.P. Swanson, and W.B. Buck: Metabolism of T-2 Toxin in Rats: Effects of Dose, Route, and Time. J. Agric. Food Chem., 36, 1227 (1988).Google Scholar
  217. 189.
    Pace, J.G.: Metabolism and Clearance of T-2 Mycotoxin in Perfused Rat Livers. Fund. Appl. Toxicol., 7, 424 (1986).Google Scholar
  218. 190.
    Conrady-lorck, S., M. Gareis, X.C. Feng, W. Amselgruber, W. Forth, and B. Fichtl: Metabolism of T-2 Toxin in Vascularly Autoperfused Jejunal Loops of Rats. Toxicol. Appl. Pharmacol., 94, 23 (1988).Google Scholar
  219. 191.
    Kemppainen, B.W., R.T. Riley, J.G. Pace, F.J. Hoerr, and J. Joyave: Evaluation of Monkey Skin as a Model for in vitro Percutaneous Penetration and Metabolism of [3H] T-2 Toxin in Human Skin. Fund. Appl. Toxicol., 7, 367 (1986).Google Scholar
  220. 192.
    Kemppainen, B.W., R.T. Riley, S. Biles-Thurlow, and R.B. Russell: Comparison of Penetration and Metabolism of [3H] Diacetoxyscirpenol, [3H] Verrucarin A and [3H] T-2 Toxin in Skin. Food Chem. Toxicol., 25, 379 (1987).Google Scholar
  221. 193.
    Kemppainen, B.W., J.G. Pace, and R.T. Riley: Comparison of in vivo and in vitro Percutaneous Absorption of T-2 Toxin in Guinea Pigs. Toxicon, 25, 1153 (1987).Google Scholar
  222. 194.
    Yoshizawa, T., T. Sakamoto, and K. Okamoto: In vitro Formation of 3′-HydroxyT-2 and 3′-HydroxyHT-2 Toxins from T-2 Toxin by Liver Homogenates from Mice and Monkeys. Appl. Environ. Microbiol., 47, 130 (1984).Google Scholar
  223. 195.
    Yagen, B., F. Bergmann, S. Barel, and A. Sintov: Metabolism of T-2 Toxin by Rat Brain Homogenate. Biochem. Pharmacol., 42, 949 (1991).Google Scholar
  224. 196.
    Knupp, C.A., S.P. Swanson, and W.B. Buck: In vitro Metabolism of T-2 Toxin by Rat Liver Microsomes. J. Agric. Food Chem., 34, 865 (1986).Google Scholar
  225. 197.
    Johnsen, H., E. Odden, O. Lie, B.A. Johnsen, and F. Fonnum: Metabolism of T-2 Toxin by Rat Liver Carboxylesterase. Biochem. Pharmacol., 35, 1469 (1986).Google Scholar
  226. 198.
    Kobayashi, J., T. Horikoshi, J.-C. Ryu, F. Tashiro, K. Ishii, and Y. Ueno: The Cytochrome P-450-Dependent Hydroxylation of T-2 Toxin in Various Animal Species. Food Chem. Toxicol., 25, 539 (1987).Google Scholar
  227. 199.
    Johnsen, H., E. Odden, B.A. Johnsen, and F. Fonnum: Metabolism of T-2 Toxin by Blood Cell Carboxylesterases. Biochem. Pharmacol., 37, 3193 (1988).Google Scholar
  228. 200.
    Swanson, S.P., J. Nicoletti, H.D. Rood, W.B. Buck, L.-M. Cote, and T. Yoshizawa: Metabolism of Three Trichothecene Mycotoxins, T-2 Toxin, Diacetoxyscirpenol and Deoxynivalenol, by Bovine Rumen Microorganisms. J. Chromatogr., 414, 335 (1987).Google Scholar
  229. 201.
    Munger, C.E., G.W. Ivie, R.J. Christopher, B.D. Hammock, and T.D. Phillips: Acetylation/Deacetylation Reactions of T-2, AcetylT-2, HT-2, and Acety1HT-2 Toxins in Bovine Rumen Fluid in vitro. J. Agric. Food Chem., 35, 354 (1987).Google Scholar
  230. 202.
    Westlake, W., R.I. Mackie, and M.F. Dutton: T-2 Toxin Metabolism by Ruminal Bacteria and Its Effect on Their Growth. Appl. Environ. Microbiol., 53, 587 (1987).Google Scholar
  231. 203.
    Beeton, S., and A.T. Bull: Biotransformation and Detoxification of T-2 Toxin by Soil and Freshwater Bacteria. Appl. Environ. Microbiol., 55, 190 (1989).Google Scholar
  232. 204.
    Mirocha, C.J., H.K. Abbas, L. Treeful, and G. Bean: T-2 Toxin and Diacetoxyscirpenol Metabolism by Baccharis spp. Appl. Environ. Microbiol., 54, 2277 (1988).Google Scholar
  233. 205.
    Trusal, L.R.: Metabolism of T-2 Mycotoxin by Cultured Cells. Toxicon, 24, 597 (1986).Google Scholar
  234. 206.
    Porcher, J.-M., C. Dahel, C. Lafarge-Frayssinet, F.S. Chu, and C. Frayssinet: Uptake and Metabolism of T-2 Toxin in Relation to Its Cytotoxicity in Lymphoid Cells. Food Chem. Toxicol., 26, 587 (1988).Google Scholar
  235. 207.
    Coppock, R.W., S.P. Swanson, H.B. Gelberg, G.D. Koritz, W.B. Buck, and W.E. Hoffmann: Pharmacokinetics of Diacetoxyscirpenol in Cattle and Swine: Effects of Halothane. Am. J. Vet. Res., 48, 691 (1987).Google Scholar
  236. 208.
    Bauer, J., W. Bollwahn, M. Gareis, B. Gedek, and K. Heinritzi: Kinetic Profiles of Diacetoxyscirpenol and Two of Its Metabolites in Blood Serum of Pigs. Appl. Environ. Microbiol, 49, 842 (1985).Google Scholar
  237. 209.
    Sakamoto, T., S.P. Swanson, T. Yoshizawa, and W.B. Buck: Structure of New Metabolites of Diacetoxyscirpenol in the Excreta of Orally Administered Rats. J. Agric. Food Chem., 34, 698 (1986).Google Scholar
  238. 210.
    Wu, S.-E, and M.A. Marletta: Carboxylesterase Isoenzyme Specific Deacylation of Diacetoxyscirpenol (Anguidine). Chem. Res. Toxicol, 1, 69 (1988).Google Scholar
  239. 211.
    Dowd, P.F, and F. VanMiddlesworth: In vitro Metabolism of the Trichothecene 4-Monoacetoxyscirpenol by Fungus and Non-Fungus-Feeding Insects. Experientia, 45, 393 (1989).Google Scholar
  240. 212.
    Udell, M.N, and P.M. Dewick: Metabolic Conversions of Trichothecene Mycotoxins: De-esterification Reactions Using Cell-Free Extracts of Fusarium. Z. Naturforsch, C44, 660 (1989).Google Scholar
  241. 213.
    Yoshizawa, T., T. Sakamoto, Y. Ayano, and C.J. Mirocha: 3′-HydroxyT-2 and 3′-HydroxyHT-2 Toxins: New Metabolites of T-2 Toxin, a Trichothecene Mycotoxin, in Animals. Agric. Biol. Chem., 46, 2613 (1982).Google Scholar
  242. 214.
    Visconti, A., and C.J. Mirocha: Identification of Various T-2 Toxin Metabolites in Chicken Excreta and Tissues. Appl. Environ. Microbiol, 49, 1246 (1985).Google Scholar
  243. 215.
    Corley, R.A., S.P. Swanson, and W.B. Buck: Glucuronide Conjugates of T-2 Toxin and Metabolites in Swine Bile and Urine. J. Agric. Food Chem., 33, 1085 (1985).Google Scholar
  244. 216.
    Knupp, C.A., S.P. Swanson, and W.B. Buck: Comparative in vitro Metabolism of T-2 Toxin by Hepatic Microsomes Prepared from Phenobarbital-Induced or Control Rats, Mice, Rabbits and Chickens. Food Chem. Toxicol, 25, 859 (1987).Google Scholar
  245. 217.
    Wei, R.-D, and F.S. Chu: Modification of in vitro Metabolism of T-2 Toxin by Esterase Inhibitors. Appl. Environ. Microbiol, 50, 115 (1985).Google Scholar
  246. 218.
    Knupp, C.A., D.G. Corley, M.S. Tempesta, and S.P. Swanson: Isolation and Characterization of 4’-Hydroxy T-2 Toxin, a New Metabolite of the Trichothecene Mycotoxin T-2. Drug Metab. Dispos, 15, 816 (1987).Google Scholar
  247. 219.
    Pawlosky, R.J., and C.J. Mirocha: Structure of a Metabolic Derivative of T-2 Toxin (TC-6) Based on Mass Spectrometry. J. Agric. Food Chem., 32, 1420 (1984).Google Scholar
  248. 220.
    Gareis, M., A. Hashem, J. Bauer, and B. Gedek: Identification of Glucuronide Metabolites of T-2 Toxin and Diacetoxyscirpenol in the Bile of Isolated Perfused Rat Liver. Toxicol. Appl. Pharmacol, 84, 168 (1986).Google Scholar
  249. 221.
    Cote, L.-M., W. Buck, and E. Jeffery: Lack of Hepatic Microsomal Metabolism of Deoxynivalenol and Its Metabolite, DOM-1. Food Chem. Toxicol, 25, 291 (1987).Google Scholar
  250. 222.
    Yoshizawa, T., H. Takeda, and T. Ohi: Structure of a Novel Metabolite from Deoxynivalenol, a Trichothecene Mycotoxin, in Animals. Agric. Biol. Chem., 47, 2133 (1983).Google Scholar
  251. 223.
    Yoshizawa, T., L.-M. Cote, S.P. Swanson, and W.B. Buck: Confirmation of DOM-1, a Deepoxidation Metabolite of Deoxynivalenol, in Biological Fluids of Lactating Cows. Agric. Biol. Chem., 50, 227 (1986).Google Scholar
  252. 224.
    Worrell, N.R., A.K. Mallett, W.M. Cook, N.C.P. Baldwin, and M.J. Shepherd: The Role of Gut Micro-Organisms in the Metabolism of Deoxynivalenol Administered to Rats. Xenobiotica, 19, 25 (1989).Google Scholar
  253. 225.
    Lake, B.G., J.C. Phillips, D.G. Walters, D.L. Bayley, M.W. Cook, L.V. Thomas, J. Gilbert, J.R. Startin, N.C.P. Baldwin, B.W. Bycroft, and P.M. Dewick: Studies on the Metabolism of Deoxynivalenol in the Rat. Food Chem. Toxicol., 25, 589 (1987).Google Scholar
  254. 226.
    Yoshizawa, T., K. Okamoto, T. Sakamoto, and K. Kuwamura: In vivo Metabolism of T-2 Toxin, a Trichothecene Mycotoxin. On the Formation of Deepoxydation Products. Proc. Jap. Assoc. Mycotox., 21, 9 (1985); Chem. Abstr., 103, 210640 (1985).Google Scholar
  255. 227.
    Yoshizawa, T., T. Sakamoto, and K. Kuwamura: Structures of Deepoxytrichothecene Metabolites from 3′-HydroxyHT-2 Toxin and T-2 Tetraol in Rats. Appl. Environ. Microbiol., 50, 676 (1985).Google Scholar
  256. 228.
    Chatterjee, K., A. Visconti, and C.J. Mirocha: Deepoxy T-2 Tetraol: A Metabolite of T-2 Toxin Found in Cow Urine. J. Agric. Food Chem., 34, 695 (1986).Google Scholar
  257. 229.
    Onji, Y., Y. Dohi, Y. Aoki, T. Moriyama, H. Nagami, M. Uno, T. Tanaka, and Y. Yamazoe: Deepoxynivalenol: A New Metabolite of Nivalenol Found in the Excreta of Orally Administered Rats. J. Agric. Food Chem., 37, 478 (1989).Google Scholar
  258. 230.
    King, R.R., R.E. Mcqueen, D. Levesque, and R. Greenhalgh: Transformation of Deoxynivalenol (Vomitoxin) by Rumen Microorganisms. J. Agric. Food Chem., 32, 1181 (1984).Google Scholar
  259. 231.
    Cote, L.-M., A.M. Dahlem, T. Yoshizawa, S.P. Swanson, and W.B. Buck: Excretion of Deoxynivalenol and Its Metabolite, DOM-1, in Milk, Urine and Feces of Lactating Dairy Cattle. J. Dairy Sci., 69, 2416 (1986).Google Scholar
  260. 232.
    Cote, L.-M., J. Nicoletti, S.P. Swanson, and W.B. Buck: Production of Deepoxydeoxynivalenol (DOM-1), a Metabolite of Deoxynivalenol, by in vitro Rumen Incubation. J. Agric. Food Chem., 34, 458 (1986).Google Scholar
  261. 233.
    He, P., L.G. Young, and C. Forsberg: Microbial Transformation of Deoxynivalenol (Vomitoxin). Appl. Environ. Microbiol., 58, 3857 (1992).Google Scholar
  262. 234.
    Swanson, S.P., H.D. Rood, J.C. Behrens, and P.E. Sanders: Preparation and Characterization of the Deepoxy Trichothecenes: Deepoxy HT-2, Deepoxy T-2 Triol, Deepoxy T-2 Tetraol, Deepoxy 15-Monoacetoxyscirpenol, and Deepoxy Scirpentriol. Appl. Environ. Microbiol., 53, 2821 (1987).Google Scholar
  263. 235.
    Swanson, S.P., C. Helaszek, W.B. Buck, H.D. Rood, and W.M. Haschek: The Role of Intestinal Microflora in the Metabolism of Trichothecene Mycotoxins. Food Chem. Toxicol., 26, 823 (1988).Google Scholar
  264. 236.
    Corley, R.A., S.P. Swanson, G.J. Gullo, L. Johnson, V.R. Beasley, and W.B. Buck: Disposition of T-2 Toxin, a Trichothecene Mycotoxin, in Intravascularly Dosed Swine. J. Agric. Food Chem., 34, 868 (1986).Google Scholar
  265. 237.
    Roush., W.R., M.A., Marletta, S. Russo-rodriguez, and J. Recchia: Trichothecene Metabolism Studies: Isolation and Structure Determination of 15-Acetyl-3α-(1′β-D-gluco-pyranosiduronyl)-scirpen-3,4β,15-triol. J. Am. Chem. Soc., 107, 3354 (1985).Google Scholar
  266. 238.
    Roush., W.R., M.A., Marletta, S. Russo-rodriguez, and J. Recchia: Trichothecene Metabolism Studies, 2: Structure of 3α-(lαβ-D-Glueopyranosiduro-nyl)-8α-isovaleryloxy-scirpen-3,4β,15-triol 15-Acetate Produced from T-2 Toxin in vitro. Tetrahedron Lett., 26, 5231 (1985).Google Scholar
  267. 239.
    Pace, J.G., and M.R. Watts: Hepatic Subcellular Distribution of [3H] T-2 Toxin. Toxicon, 27, 1307 (1989).Google Scholar
  268. 240.
    Sewald, N., J.L. Von Gleissenthall, M. Schuster, G. Muller, and R.T. Aplin: Structure Elucidation of a Plant Metabolite of 4-Desoxynivalenol. Tetrahedron Asymm., 3, 953 (1992).Google Scholar
  269. 241.
    Prelusky, D.B., D.M. Veira, H.L. Trenholm, and K.E. Hartin: Excretion Profiles of the Mycotoxin Deoxynivalenol, Following Oral and Intravenous Administration to Sheep. Fund. Appl. Toxicol., 6, 356 (1986).Google Scholar
  270. 242.
    Avent, A.G., J.F. Grove, and J.R. Hanson: 13C NMR Spectra of Some Trichothecene Mycotoxins and Derivatives. Magn. Reson. Chem., 26, 475 (1988).Google Scholar
  271. 243.
    Greenhalgh., R., B.A. Blackwell, and M.E. Savard: The NMR Spectra of Trichothecenes and Related Fungal Metabolites. Tetrahedron, 45, 2373 (1989).Google Scholar
  272. 244.
    Grove, J.F.: Phytotoxic Compounds Produced by Fusarium equiseti, Part 8: Acid Catalyzed Rearrangement of 12,13-Epoxytrichothec-9-enes. J. Chem. Soc., Perkin Trans. 1, 647 (1986).Google Scholar
  273. 245.
    Jeker, N., and CH. Tamm: Apotrichothecene Rearrangement in Macrocyclic Trichothecene Derivatives. Tetrahedron Lett, 30, 6001 (1989).Google Scholar
  274. 246.
    Blackwell, B.A., R. Greenhalgh, and A.D. Bain: Carbon-13 and Proton Nuclear Magnetic Resonance Spectral Assignments of Deoxynivalenol and Other Mycotoxins from Fusarium graminearum. J. Agric. Food Chem., 32, 1078 (1984).Google Scholar
  275. 247.
    Tripathi, D.N., L.R. Chauhan, and A. Bhattacharya: Separation and Identification of Mycotoxins by Thin-Layer Chromatography/Fast Atom Bombardment Mass Spectrometry. Anal. Sci, 7, 423 (1991).Google Scholar
  276. 247a.
    Young, J.C., and D.E. Games: Analysis of Fusarium Mycotoxins by Gas Chromatography-Fourier Transform Infrared Spectroscopy. J. Chromatogr, A663, 211 (1994).Google Scholar
  277. 248.
    Black, R.M., R.J. Clarke, and R.W. Read: Detection of Trace Levels of Trichothecene Mycotoxins in Human Urine by Gas Chromatography-Mass Spectrometry. J. Chromatogr, 367, 103 (1986).Google Scholar
  278. 249.
    Black, R.M., R.J. Clarke, and R.W. Read: Detection of Trace Levels of Trichothecene Mycotoxins in Environmental Residues and Foodstuffs Using Gas Chromatography with Mass Spectrometric or Electron-Capture Detection. J. Chromatogr, 388, 365 (1987).Google Scholar
  279. 250.
    Kostiainen, R., and A. Rizzo: The Characterization of Trichothecenes as Their Heptafluorobutyrate Esters by Negative-Ion Chemical Ionization Tandem Mass Spectrometry. Anal. Chim. Acta, 204, 233 (1988).Google Scholar
  280. 251.
    Raza, S.K., S.A. Howell, and A.I. Mallet: Identification of Mycotoxins in Keratomycosis-Derived Fusarium Isolates by Gas Chromatography-Mass Spectrometry. J. Chromatogr, 620, 243 (1993).Google Scholar
  281. 252.
    Kanhere, S.R, and P.M. Scott: Heptafluorobutyrylation of Trichothecenes Using a Solid-Phase Catalyst. J. Chromatogr, 511, 384 (1990).Google Scholar
  282. 253.
    Wreford, B.J., and K.J. Shaw: Analysis of Deoxynivalenol as Its Trifluoroacetyl Ester by Gas Chromatography-Electron Ionization Mass Spectrometry. Food Addit. Contain, 5, 141 (1987).Google Scholar
  283. 254.
    Schwadorf, K., and H.-M. Muller: Determination of Trichothecenes in Cereals by Gas Chromatography with Ion Trap Detection. Chromatogr. 32, 137 (1991).Google Scholar
  284. 255.
    Kostiainen, R., and A. Hesso: Characterization of Trichothecenes by Ammonia Chemical Ionization and Tandem Mass Spectrometry. Biomed. Environ. Mass Spectrom., 15, 79 (1988).Google Scholar
  285. 256.
    Kostiainen, R.: Characterization of Trichothecenes by Tandem Mass Spectrometry Using Reactive Collisions with Ammonia. Biomed. Environ. Mass Spectrom., 16, 197 (1988).Google Scholar
  286. 257.
    Kostiainen, R.: Effect of Collision Gas Pressure and Collision Energy on Reactions Between Ammonia and Protonated Trichothecenes in the Collision Cell of a Triple-Quadrupole Mass Spectrometer. Biomed. Environ. Mass Spectrom., 18, 116 (1989).Google Scholar
  287. 258.
    Hewetson, D.W., and C.J. Mirocha: Development of Mass Spectral Library of Trichothecenes Based on Positive Chemical Ionization Mass Spectra. J. Assoc. Off. Anal. Chem., 70, 647 (1987).Google Scholar
  288. 259.
    Kostiainen, R., and S. Nokelainen: Use of M-Series Retention Index Standards in the Identification of Trichothecenes by Electron Impact Mass Spectrometry. J. Chromatogr., 513, 31 (1990).Google Scholar
  289. 260.
    Plattner, R.D., M.N. Beremand, and R.G. Powell: Analysis of Trichothecene Mycotoxins by Mass Spectrometry and Tandem Mass Spectrometry. Tetrahedron, 45, 2251 (1989).Google Scholar
  290. 261.
    Mirocha, C.J., R.J. Pawlosky, and H.K. Abbas: Analysis of T-2 Toxin in a Biological Matrix Using Multiple Reaction Monitoring. Arch. Environ. Contam. Toxicol., 18, 349 (1989).Google Scholar
  291. 262.
    Kostiainen, R., A. Rizzo, and A. Hesso: The Analysis of Trichothecenes in Wheat and Human Plasma Samples by Chemical Ionization Tandem Mass Spectrometry. Arch. Environ. Contam. Toxicol., 18, 356 (1989).Google Scholar
  292. 262a.
    Burrows, E.P.: Dimethyl Ether Chemical Ionization Mass Spectrometry of Trichothecene Biotoxins. Biol. Mass Spectrom., 23, 492 (1994).Google Scholar
  293. 263.
    Kostiainen, R., K. Matsuura, and K. Nojima: Identification of Trichothecenes by Frit-Fast Atom Bombardment Liquid Chromatography-High-Resolution Mass Spectrometry. J. Chromatogr., 538, 323 (1991).Google Scholar
  294. 264.
    Rajakyla, E., K. Laasasenaho, and P.J.D. Sakkers: Determination of Mycotoxins in Grain by High-Performance Liquid Chromatography and Thermospray Liquid Chromatography-Mass Spectrometry. J. Chromatogr., 384, 391 (1987).Google Scholar
  295. 265.
    Voyksner, R.D., W.M. Hagler, and S.P. Swanson: Analysis of Some Metabolites of T-2 Toxin, Diacetoxyscirpenol and Deoxynivalenol by Thermospray High-Performance Liquid Chromatography-Mass Spectrometry. J. Chromatogr., 394, 183 (1987).Google Scholar
  296. 266.
    Kostiainen, R.: Identification of Trichothecenes by Thermospray, Plasmaspray and Dynamic Fast-Atom Bombardment Liquid Chromatography-Mass Spectrometry. J. Chromatogr., 562, 555 (1991).Google Scholar
  297. 267.
    Kostiainen, R., and P. Kuronen: Use of l-[p-(2,3-Dihydroxypropoxy)phenyl]-l-alkanones as Retention Index Standards in the Identification of Trichothecenes by Liquid Chromatography-Thermospray and Dynamic Fast Atom Bombardment Mass Spectometry. J. Chromatogr., 543, 39 (1991).Google Scholar
  298. 268.
    Roach., J.A.G., J.A. Sphon, J.A. Easterling, and E.M. Calvey: Capillary Supercritical Fluid Chromatography/Negative Ion Chemical Ionization Mass Spectrometry of Trichothecenes. Biomed. Environ. Mass Spectrom., 18, 64 (1989).Google Scholar
  299. 269.
    Young, J.C., and D.E. Games: Supercritical Fluid Chromatography of Fusarium Mycotoxins. J. Chromatogr., 627, 247 (1992).Google Scholar

Copyright information

© Springer-Verlag Wien 1996

Authors and Affiliations

  • J. F. Grove
    • 1
  1. 1.3 Homestead CourtWelwyn Garden City, HertsUK

Personalised recommendations