Advertisement

Abstract

In 1982, Jolad et al. isolated uvaricin, a new antitumor agent, from the roots of Uvaria acuminata (Annonaceae), a bis-tetrahydrofuranoid fatty acid lactone (1) related to polyketides or acetogenins. However, it contained a number of original structural characteristics, particularly a linear acetogenin, a bis-tetrahydrofuran pattern flanked by hydroxyls and a terminal unsaturated lactone. Two years later, Dabrah and Sneden (2, 3 and Cortes et al. (4) described four new products presenting the same structural characteristics. Because these products formed a new class of natural compounds, and are only found in species belonging to the family of Annonaceae, they are commonly called acetogenins from Annonaceae.

Keywords

High Performance Liquid Chromatography Circular Dichroism Absolute Configuration Relative Configuration Allylic Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jolad, S.D., J.J. Hoffmann, K.H. Schram, J.R. Cole, M.S. Tempesta, G.R. Kriek, and R.B. Bates: Uvaricin, a New Antitumor Agent from Uvaria acuminata (Annonaceae). J. Org. Chem., 47, 3151–3153 (1982).CrossRefGoogle Scholar
  2. 2.
    Dabrah, T.T., and A.T. Sneden: Rollinone, a New Cytotoxic Acetogenin from Rollinia papilioneila. J. Nat. Prod., 47, 652–657 (1984).CrossRefGoogle Scholar
  3. 3.
    Dabrah, T.T., and A.T. Sneden: Rollinicin and Isorollinicin, Cytotoxic Acetogenins from Rollinia papilioneila. Phytochemistry, 23, 2013–2016 (1984).CrossRefGoogle Scholar
  4. 4.
    Cortes, D., J.L. Rios, A. Víllar, and S. Valverde: Cherimoline et dihydrocherimoline, deux nouvelles γ-lactones, bis-tétrahydrofuraniques possédant une activité antimicrobienne. Tetrahedron Lett., 25, 3199–3202 (1984).CrossRefGoogle Scholar
  5. 5.
    Rupprecht, J.K., Y.-H. Hui, and J.L. Mclaughlin: Annonaceous Acetogenins: a Review. J. Nat. Prod., 53, 237–278 (1990).CrossRefGoogle Scholar
  6. 6.
    Fang, X.-P., M.J. Rieser, Z.-M. Gu, G.-X. Zhao, and J.L. Mclaughlin: Annonaceous Acetogenins: an Updated Review. Phytochem. Anal. (1993), 4, 27–48; Annonaceous Acetogenins: an Updated Review, Appendices. Phytochem. Anal., 4, 49-67 (1993).CrossRefGoogle Scholar
  7. 7.
    Xu, L., C.-J. Chang, J.-G. Yu, and J.M. Cassady: Chemistry and Selective Cytotoxicity of Annonacin-10-one, Isoannonacin, and Isoannonacin-10-one. Novel Polyketides from Annona densicoma (Annonaceae). J. Org. Chem., 54, 5418–5421 (1989).CrossRefGoogle Scholar
  8. 8.
    Cavé, A.: Acetogenins from Annonaceae. In: Phytochemistry of Plants Used in Traditional Medicine (HOSTETTMANN, K., A. Marston, M. Maillard, and M. Hamburger, eds.), pp 228–248. Oxford: Clarendon Press, 1995.Google Scholar
  9. 9.
    Duret, P., A. Laurens, R. Hocquemiller, D. Cortes, and A. Cavé: Isoacetogenins, Artifacts Issued from Translactonization from Annonaceous Acetogenins. Heterocycles, 39, 741–749(1994).CrossRefGoogle Scholar
  10. 10.
    Nonfon, M., F. Lieb, H. Moeschler, and D. Wendisch: Four Annonins from Annona squamosa, Phytochemistry, 29, 1951–1954 (1990).CrossRefGoogle Scholar
  11. 11.
    Fang, X.-P., Z.-M. Gu, M.J. Rieser, Y.-H. Hui, J.L. Mclaughlin, M. Nonfon, F. Lieb, H.-F. Moeschler, and D. Wendisch: Structural Revisions of Some Non-adjacent Bis-Tetrahydrofuran Annonaceous Acetogenins. J. Nat. Prod., 56, 1095–1100 (1993).CrossRefGoogle Scholar
  12. 12.
    Cortes, D., B. Figadère, and A. Cavé: Bis-Tetrahydrofuran Acetogenins from Annonaceae. Phytochemistry, 32, 1467–1473 (1993).CrossRefGoogle Scholar
  13. 13.
    Yu, J.G., X.Z. Luo, L. Sun, C.Y. Liu, S.L. Hong, and L.B. Ma: Squamostatin-B, a New Polyketide from Annona squamosa (Annonaceae). Chin. Chem. Lett., 4, 423–426 (1993).Google Scholar
  14. 14.
    Yu, J.G., X.Z. Luo, C.Y. Liu, L. Sun, S.L. Hong, and L.B. Ma: Studies on the Chemical Constituents of Annona squamosa Seed. Acta Pharmaceutica Sinica, 29, 443–448 (1994).Google Scholar
  15. 15.
    Fujimoto, Y., C. Murasaki, K. Kakinuma, T. Eguchi, N. Ikekawa, M. Furuya, K. Hirayama, T. Ikekawa, M. Sahai, Y.K. Gupta, and A.B. Ray: Squamostatin-A: Unprecedented Bis-Tetrahydrofuran Acetogenin from Annona squamosa. Tetrahedron Lett., 31, 535–538 (1990).CrossRefGoogle Scholar
  16. 16.
    Cortes, D., S.H. Myint, B. Dupont, and D. Davoust: Bioactive Acetogenins from Seeds of Annona cherimolia. Phytochemistry, 32, 1475–1482 (1993).CrossRefGoogle Scholar
  17. 17.
    Duret, P., D. Gromek, R. Hocquemiller, A. Cavé, and D. Cortes: Isolation and Structure of Three New Bis-Tetrahydrofuranic Acetogenins from the Roots of Annona cherimolia. J. Nat. Prod., 57, 911–916 (1994).CrossRefGoogle Scholar
  18. 18.
    Gu, Z.-M., L. Zeng, X.-P. Fang, T. Colman-Saizarbitoria, M. Huo, and J.L. Mclaughlin: Determining Absolute Configurations of Stereocenters in Annonaceous Acetogenins through Formaldehyde Acetal Derivatives and Mosher Ester Methodology. J. Org. Chem., 59, 5162–5172 (1994).CrossRefGoogle Scholar
  19. 19.
    Nishioka, S., H. Araya, C. Murasaki, M. Sahai, and Y. Fujimoto: Determination of Absolute Stereochemistry at Carbinol Stereocenters of Tetrahydrofuranic Acetogenins by the Advanced Mosher Ester Method. Nat. Prod. Lett., 5, 117–121 (1994).CrossRefGoogle Scholar
  20. 20.
    Fujimoto, Y., C. Murasaki, H. Shimada, S. Nishioka, K. Kakinuma, S. Singh, M. Singh, K.K. Gupta, and M. Sahai: Annonaceous Acetogenins from the seeds of Annona squamosa. Non-adjacent Bis-Tetrahydrofuranic Acetogenins. Chem. Pharm. Bull., 42, 1175-1184(1994).Google Scholar
  21. 21.
    Sahpaz, S.: Étude chimique et biologique des acétogénines des graines d’Annona senegalensis et de Rollinia membranacea (Annonaceae). Doctorat de l’Université Paris-Sud, Châtenay-Malabry, 1995.Google Scholar
  22. 22.
    Sahpaz, S., M.C. González, R. Hocquemiller, M.C. Zafra-Polo, and D. Cortes: Annonasenegalin and Annogalene: Two Cytotoxic Monotetrahydrofuran Acetogenins from Annona senegalensis and Annona cherimolia. Phytochemistry, 42, 103–107 (1996).CrossRefGoogle Scholar
  23. 23.
    Colman-Saizarbitoria, T., Z.-M. Gu, and J.L. Mclaughlin: TWO New Bioactive Monotetrahydrofuran Annonaceous Acetogenins from the Bark of Xylopia aromatica. J. Nat. Prod., 57, 1661–1669 (1994).CrossRefGoogle Scholar
  24. 24.
    Etcheverry, S., S. Sahpaz, D. Fall, A. Laurens, and A. Cavé: Annoglaucin, an Acetogenin from Annona glauca. Phytochemistry, 38, 1423–1426 (1995).CrossRefGoogle Scholar
  25. 25.
    Zeng, L., F.-E. Wu, and J.L. Mclaughlin: Annohexocin, a Novel Mono-THF Acetogenin with Six Hydroxyls, from Annona muricata (Annonaceae). Bioorg. Med. Chem. Lett., 5, 1865–1868 (1995).CrossRefGoogle Scholar
  26. 26.
    Jossang, A., B. Dubaele, A. Cavé, M.-H. Bartoli, and H. Bériel: Deux nouvelles acétogénines monotétrahydrofuraniques cytotoxiques: l’annomonicine et la montanacine. Tetrahedron Lett., 31, 1861–1864 (1990).CrossRefGoogle Scholar
  27. 27.
    Chang, F.-R., Y.-C. Wu, C.-Y. Duh, and S.-K. Wang: Studies on the Acetogenins of Formosan Annonaceous Plants, II. Cytotoxic Acetogenins from Annona reticulata. J. Nat. Prod., 56, 1688–1694 (1993).CrossRefGoogle Scholar
  28. 28.
    Jossang, A., B. Dubaele, A. Cavé, M.-H. Bartoli, and H. Bériel: Annomontacine: une nouvelle acétogénine γ-lactone-monotétrahydrofuranique cytotoxique de l’ Annona montana. J. Nat. Prod, 54, 967–971 (1991).CrossRefGoogle Scholar
  29. 29.
    Fang, X.-P., J.E. Anderson, D.L. Smith, J.L. Mclaughlin, and K.V. Wood. Gigantetronenin and Gigantrionenin: Novel Cytotoxic Acetogenins from Goniothalamus giganteus. J. Nat. Prod., 55, 1655–1663 (1992).CrossRefGoogle Scholar
  30. 30.
    Colman-Saizarbitoria, T., Z.-M. Gu, G.-X. Zhao, L. Zeng, J.F. Kozlowski, and J.L. Mclaughlin: Venezenin: A New Bioactive Annonaceous Acetogenin from the Bark of Xylopia aromatica. J. Nat. Prod., 58, 532–539 (1995).CrossRefGoogle Scholar
  31. 31.
    Wu, F.-E., Z.-M. Gu, L. Zeng, G.-X. Zhao, Y. Zhang, J.L. Mclaughlin, and S. Sastrodihardjo: TWO New Cytotoxic Monotetrahydrofuran Annonaceous Acetogenins, Annomuricins A and B, from the Leaves of Annona muricata. J. Nat. Prod., 58, 830–836 (1995).CrossRefGoogle Scholar
  32. 32.
    Wu, F.-E., L. Zeng, Z.-M. Gu, G.-X. Zhao, Y. Zhang, J.T. Schwedler, J.L. Mclaughlin, and S. Sastrodihardjo: New Bioactive Monotetrahydrofuran Annonaceous Acetogenins, Annomuricin C and Muricatocin C from the Leaves of Annona muricata. J. Nat. Prod., 58, 909–915 (1995).CrossRefGoogle Scholar
  33. 33.
    Wu, F.-E., G.-X. Zhao, L. Zeng, Y. Zhang, J.T. Schwedler, J.L. Mclaughlin, and S. Sastrodihardjo: Additional Bioactive Acetogenins, Annomutacin and (2, 4-trans and cis)-10R-Annonacin-A-ones, from the Leaves of Annona muricata. J. Nat. Prod., 58, 1430–1437(1995).CrossRefGoogle Scholar
  34. 34.
    Zhang, L.-L., R.-Z. Yang, and S.-J. Wu: Studies on the Chemical Composition of Goniothalamus howii (I). Acta Botanica Sinica (Zhiwu Xuebao), 35, 390–396 (1993); Chem. Abstracts, 120: 12949 1m (1994).Google Scholar
  35. 35.
    Mccloud, T.G., D.L. Smith, C.-J. Chang, and J.M. Cassady: Annonacin, A novel, Biologically Active Polyketide from Annona densicoma. Experientia, 43, 947–949 (1987).CrossRefGoogle Scholar
  36. 36.
    Chen, W.-S., Z.-J. Yao, and Y.-L. Wu: Study on the Chemical Constituents of Annona glabra L. Youji Huaxue 15, 85–88 (1995); Chem. Abstracts, 122: 261023f (1995).Google Scholar
  37. 37.
    Lieb, F., M. Nonfon, U. Wachendorff-Neumann, and D. Wendisch: Annonacins and Annonastatin from Annona squamosa. Planta Med., 56, 317–319 (1990).CrossRefGoogle Scholar
  38. 38.
    Cortes, D., S.H. Myint, A. Laurens, R. Hocquemiller, M. Leboeuf, and A. Cavé: Corossolone et corossoline, deux nouvelles γ-lactones mono tétrahydrofuraniques cytotoxiques. Can. J. Chem., 69, 8–11 (1991).CrossRefGoogle Scholar
  39. 39.
    Rieser, M.J., J.F. Kozlowski, K.V. Wood, and J.L. Mclaughlin: Muricatacin: A Simple Biologically Active Acetogenin Derivative from the Seeds of Annona muricata (Annonaceae). Tetrahedron Lett., 32, 1137–1140 (1991).CrossRefGoogle Scholar
  40. 40.
    Rieser, M.J., X.-P. Fang, J.K. Rupprecht, Y.-H. Hui, D.L. Smith, and J.L. Mclaughlin: Bioactive Single-Ring Acetogenins from Seed Extracts of Annona muricata. Planta Med., 59, 91–92 (1993).CrossRefGoogle Scholar
  41. 41.
    Yang, R.-Z., S.-J. Wu, R.-S. Xu, G.-W. Qin, and D.-J. Fan: Annonaceous Acetogenins from Annona muricata. Acta Botanica Sinica (Zhiwu Xuebao), 36, 805–808 (1994); Chem. Abstracts, 122: 209773m (1995).Google Scholar
  42. 42.
    Ye, Q., L. Zeng, Y. Zhang, G.-X. Zhao, J.L. Mclaughlin, M.H. Woo, and D.R. Evert: Longicin and Goniothamamicinone: Novel Bioactive Monotetrahydrofuran Acetogenins from Asimina longifolia. J. Nat. Prod., 58, 1398–1406 (1995).CrossRefGoogle Scholar
  43. 43.
    Ratnayake, S., Z.-M. Gu, L.R. Miesbauer, D.L. Smith, K.V. Wood, D.R. Evert, and J.L. Mclaughlin: Parvifloracin and Parviflorin: Cytotoxic Bistetrahydrofuran Acetogenins with 35 Carbons from Asimina parviflora (Annonaceae). Can. J. Chem., 72, 287–293 (1994).CrossRefGoogle Scholar
  44. 44.
    Alkofahi, A., J.K. Rupprecht, D.L. Smith, C.-J. Chang, and J.L. Mclaughlin: Goniothalamicin and Annonacin: Bioactive Acetogenins from Goniothalamus giganteus (Annonaceae). Experientia, 44, 83–85 (1988).CrossRefGoogle Scholar
  45. 45.
    Hoye, T.R., P.R. Hanson, L.E. Hasenwinkel, E.A. Ramirez, and Z. Zhuang. Stereostructural Studies on the 4-Hydroxylated Annonaceous Acetogenins: a Novel Use of Mosher Ester Data for Determining Relative Configuration [between C(4) and C(36]). Tetrahedron Lett., 35, 8529–8532 (1994).CrossRefGoogle Scholar
  46. 46.
    Rieser, M.J., Y.-H. Hui, J.K. Rupprecht, J.F. Kozlowski, K.V. Wood, J.L. Mclaughlin, P.R. Hanson, Z. Zhuang, and T.R. Hoye: Determination of Absolute Configuration of Stereogenic Carbinol Centers in Annonaceous Acetogenins by 1H and 19F-NMR Analysis of Mosher Ester Derivatives. J. Am. Chem. Soc., 114, 10203–10213 (1992).CrossRefGoogle Scholar
  47. 47.
    Scholz, G., and W. Tochtermann: Optisch aktive γ-lactone aus Cyclooctin und Furan-Synthese von (−)-Muricatacin. Tetrahedron Lett., 32, 5535–5538 (1991).CrossRefGoogle Scholar
  48. 48.
    Marshall, J.A., and G.S. Welmaker: Stereoselective Synthesis of the Cytotoxic Acetogenins ( + )-and (−)-Muricatacin. Synlett, 537–538 (1992).Google Scholar
  49. 49.
    Wang, Z.-M., X.-L. Zhang, K.B. Sharpless, S.C. Sinha, A. Sinha-Bagchi, and E. Keinan: A General Approach to −-lactones via Osmium-catalyzed Asymmetric Dihydroxylation. Synthesis of ( −)-and ( + )-Muricatacin. Tetrahedron Lett., 33, 6407–6410 (1992).CrossRefGoogle Scholar
  50. 50.
    Tochtermann, W., G. Scholz, G. Bunte, C. Wolff, E.-M. Peters, K. Peters, and H.G. von SCHNERING: Tetrahydrofuran and γ-Lactones, V. Optically Active (δ-Hydroxy-γ-lactones from Cyclooctine and Furan. Synthesis of ( − )-(R, R)- and ( + )-(S, S)-Muricatacin and Related Compounds. Liebigs Ann. Chem., 1069–1080 (1992).Google Scholar
  51. 51.
    Makabe, H., A. Tanaka, and T. Oritani: Synthesis of ( − )-Muricatacin. Biosci. Biotech. Biochem, 57, 1028–1029 (1993).CrossRefGoogle Scholar
  52. 52.
    Kang, S.-K., H.-S. Cho, H.-S. Sim, and B.-K. Kim: Synthesis of (4R, 5S)-( − )-and (4S, 5S)-( + )-L-Factors and Muricatacin from D-Glucose. J. Carbohyd. Chem., 11, 807–812(1992).CrossRefGoogle Scholar
  53. 53.
    Marshall, J.A., and G.S. Welmaker: Enantioselective Synthesis of ( + )-and ( − )-Muricatacin through SE2 Addition of Nonracemic γ-Silyloxy Allylic Stannanes to Aldehydes. J. Org. Chem., 59, 4122–4125 (1994).CrossRefGoogle Scholar
  54. 54.
    Sanière, M., I. Charvet, Y. Le Merrer, and J.-C. Depezay: Enantiopure Hydroxylactones from L-Ascorbic and D-Isoascorbic Acids. Part I. Synthesis of ( − )-Muricatacin. Tetrahedron, 51, 1653–1662 (1995).Google Scholar
  55. 55.
    Figadère, B., J.-C. Harmange, A. Laurens, and A. Cavé: Stereospecific Synthesis of ( + )-Muricatacin: a Biologically Active Acetogenin Derivative. Tetrahedron Lett., 32, 7539–7542(1991).CrossRefGoogle Scholar
  56. 56.
    Saïah, M., M. Bessodes, and K. Antonakis: Regioselective Opening of Chiral Hydroxyepoxides: a Short Route to Muricatacin and Its Diastereomer epi-Muricatacin. Tetrahedron Lett., 34, 1597–1598 (1993).CrossRefGoogle Scholar
  57. 57.
    Somfai, P.: An Enantiospecific Total Synthesis of ( + )-Muricatacin. J. Chem. Soc. Perkin Trans. I, 817–819 (1995).Google Scholar
  58. 58.
    Quayle, P., S. Rahman, and J. Herbert: Transition Metal Promoted Acetylene Isomerisation Reactions in Organic Synthesis: A Synthesis of ( + )-(4S, 5S)-Muricatacin. Tetrahedron Lett., 36, 8087–8088 (1995).CrossRefGoogle Scholar
  59. 59.
    Wu, F.-E., L. Zeng, Z.-M. Gu, G.-X. Zhao, Y. Zhang, J.T. Schwedler, J.L. Mclaughlin, and S. Sastrodihardjo: Muricatocins A and B, Two New Bioactive Monotetrahydrofuran Annonaceous Acetogenins from the Leaves of Annona muricata. J. Nat. Prod., 58, 902–908 (1995).CrossRefGoogle Scholar
  60. 60.
    Zhao, G.-X., M.J., RIESER, Y.-H. Hui, L.R. Misbauer, D.L. Smith, and J.L. Mclaughlin: Biologically Active Acetogenins from Stem Bark of Asimina triloba. Phytochemistry, 33, 1065–1073 (1993).CrossRefGoogle Scholar
  61. 61.
    Yang, R.-Z., X.-C. Zheng, S.-J. Wu, and G.-W. Qin: Annonsilin A, a Novel Seco-tristetrahydrofuranyl Annonaceous Acetogenin. Acta Botanica Sinica, 37, 492–495 (1995).Google Scholar
  62. 62.
    Wu, Y.-C., F.-R. Chang, C.-Y. Duh, and S.-K. Wang: Annoreticuin and Isoannoreticuin: Two New Cytotoxic Acetogenins from Annona reticulata. Heterocycles, 34, 667–674 (1992).CrossRefGoogle Scholar
  63. 63.
    Duret, P., A.-I. Waechter, R. Hocquemiller, A. Cavé, and T. Batten: Annotemoyin-1 and-2: Two Novel Mono-tetrahydrofuranic γ-Lactone Acetogenins from the Seeds of Annona atemoya. Nat. Prod. Lett., 8, 89–95 (1996).CrossRefGoogle Scholar
  64. 64.
    Sahai, M., S. Singh, M. Singh, Y.K. Gupta, S. Akashi, R. Yuji, K. Hirayama, H. Asaki, H. Araya, N. Hara, T. Eguchi, K. Kakinuma, and Y. Fujimoto: Annonaceous Acetogenins from the Seeds of Annona squamosa. Adjacent Bis-Tetrahydrofuranic Acetogenins. Chem. Pharm. Bull., 42, 1163–1174 (1994).CrossRefGoogle Scholar
  65. 65.
    Myint, S.H., D. Cortes, A. Laurens, R. Hocquemiller, M. Leboeuf, A. Cavé, J. Cotte, and A.-M. Quéro: Solamin, a Cytotoxic Monotetrahydrofuranic γ-Lactone Acetogenin from Annona muricata Seeds. Phytochemistry, 30, 3335–3338 (1991).CrossRefGoogle Scholar
  66. 66.
    Ríos, J.L., D. Cortes, and S. Valverde: Acetogenins, Aporphinoids, and Azaantraquinone from Annona cherimolia Seeds. Planta Med., 55, 321–323 (1989).CrossRefGoogle Scholar
  67. 67.
    Ohsawa, K., S. Atsuzawa, T. Mitsui, and I. Yamamoto: Isolation and Insecticidal Activity of Three Acetogenins from Seeds of Pond Apple, Annona glabra. J. Pesticide Sci., 16, 93–96 (1991).CrossRefGoogle Scholar
  68. 68.
    Sahpaz, S., A. Laurens, R. Hocquemiller, A. Cavé, and D. Cortes: Senegalene, une nouvelle acétogénine oléfinique mono-tétrahydrofuranique des graines d’Annona senegalensis. Can. J. Chem., 72, 1533–1536 (1994).CrossRefGoogle Scholar
  69. 69.
    Sahpaz, S., C. Bories, P.M. Loiseau, D. Cortes, R. Hocquemiller, A. Laurens, and A. Cavé: Cytotoxic and Antiparasitic Activity from Annona senegalensis Seeds. Planta Med., 60, 538-540(1994).Google Scholar
  70. 70.
    Ratnayake, S., X.-P. Fang, J.E. Anderson, J.L. Mclaughlin, and D.R. Evert: Bioactive Constituents from the Twigs of Asimina parviflora. J. Nat. Prod., 55, 1462-1467(1992).Google Scholar
  71. 71.
    Rupprecht, J.K., C.-J. Chang, J.M. Cassady, J.L. Mclaughlin, K.L. Mikolajczak, and D. Weisleder: Asimicin, a New Cytotoxic and Pesticidal Acetogenin from the Pawpaw, Asimina triloba (Annonaceae). Heterocycles, 24, 1197–1201 (1986).CrossRefGoogle Scholar
  72. 72.
    Zhao, G., Y. Hui, J.K. Rupprecht, J.L. Mclaughlin, and K.V. Wood: Additional Bioactive Compounds and Trilobacin, a Novel Highly Cytotoxic Acetogenin, from the Bark of Asimina triloba. J. Nat. Prod., 55, 347–356 (1992).CrossRefGoogle Scholar
  73. 73.
    Woo, M.H., L. Zeng, and J.L. Mclaughlin: Asitribin and Asiminenins A and B, Novel Bioactive Annonaceous Acetogenins from the Seeds of Asimina triloba. Heterocycles, 41, 1731–1742 (1995).CrossRefGoogle Scholar
  74. 74.
    Hoye, T.R., and L. Tan: Total Synthesis of the Potent Antitumor, Bistetrahydrofuranyl Annonaceous Acetogenins ( + )-Asimicin and ( + )-Bullatacin. Tetrahedron Lett., 36, 1981–1984 (1995).CrossRefGoogle Scholar
  75. 75.
    Zhang, Y., L. Zeng, M-H. Woo, Z.-M. Gu, Q. Ye, F.-E. Wu, and J.L. Mclaughlin: Goniodenin, a New Bioactive Annonaceous Acetogenin from Goniothalamus giganteus and Its Conversion to tri-THF Acetogenins. Heterocycles, 41, 1743–1755 (1995).CrossRefGoogle Scholar
  76. 76.
    Zhao, G.-X., L.R. Miesbauer, D.L. Smith, and J.L. Mclaughlin: Asimin, Asiminacin, and Asiminecin: Novel Highly Cytotoxic Asimicin Isomers from Asimina triloba. J. Med. Chem., 37, 1971–1976 (1994).CrossRefGoogle Scholar
  77. 77.
    Chen, W.-S., Z.-J. Yao, Y.-B. Zhang, Y.-Z. Xu, and Y.-L. Wu: Atemoyacin-A: a New Bis-Tetrahydrofuranyl Annonaceous Acetogenin from Annona atemoya. Chin. J. Chem., 13, 263-266(1995).Google Scholar
  78. 78.
    Duret, P., R. Hocquemiller, A. Laurens, and A. Cavé: Atemoyin, a New Bis-Tetrahydrofuran Acetogenin from the Seeds of Annona atemoya. Nat. Prod. Lett., 5, 295-302(1995).Google Scholar
  79. 79.
    Gu, Z.-M., X.-P. Fang, L. Zeng, K.V. Wood, and J.L. Mclaughlin: Bullacin: a New Cytotoxic Annonaceous Acetogenin from Annona bullata. Heterocycles, 36, 2221–2228 (1993).CrossRefGoogle Scholar
  80. 80.
    Gu, Z.-M., X.-P. Fang, L. Zeng, J.F. Kozlowski, and J.L. Mclaughlin: Novel Cytotoxic Annonaceous Acetogenins: (2, 4-cis and trans)-Bulladecinones from Annona bullata (Annonaceae). Bioorg. Med. Chem. Lett., 4, 473–478 (1994).CrossRefGoogle Scholar
  81. 81.
    Gu, Z.-M., L. Zeng, J.T. Schwedler, K.V. Wood, and J.L. Mclaughlin: New Bioactive Adjacent Bis-THF Annonaceous Acetogenins from Annona bullata. Phytochemistry, 40, 467–477 (1995).CrossRefGoogle Scholar
  82. 82.
    Zhao, G.-X., J.H. Ng, J.F. Kozlowski, D.L. Smith, and J.L. Mclaughlin: Bullatin and Bullanin: Two Novel, Highly Cytotoxic Acetogenins from Asimina triloba. Heterocycles, 38, 1897–1908 (1994).CrossRefGoogle Scholar
  83. 83.
    Hui, Y.-H., J.K. Rupprecht, Y.M. Liu, J.E. Anderson, D.L. Smith, C.-J. Chang, and J.L. Mclaughlin: Bullatacin and Bullatacinone: Two Highly Potent Bioactive Acetogenins from Annona bullata. J. Nat. Prod., 52, 463–477 (1989).CrossRefGoogle Scholar
  84. 84.
    Li, X.-H., Y.-H. Hui, J.K. Rupprecht, Y.-M. Liu, K.V. Wood, D.L. Smith, C.-J. Chang, and J.L. Mclaughlin: Bullatacin, Bullatacinone, and Squamone, a New Bioactive Acetogenin from the Bark of Annona squamosa. J. Nat. Prod., 53, 81–86 (1990).CrossRefGoogle Scholar
  85. 85.
    Copleanu, F., K. Ohtani, M. Hamburger, M.P. Gupta, P. Sous, and K. Hostettmann: Novel Acetogenins from the Leaves of Annona purpurea. Helv. Chim. Acta., 76, 1379–1388 (1993).CrossRefGoogle Scholar
  86. 86.
    Hui, Y.-H., J.K. Rupprecht, J.E. Anderson, Y.-M. Liu, D.L. Smith, C.-J. Chang, and J.L. Mclaughlin: Bullatacin, a Novel Bioactive Acetogenin from Annona bullata (Annonaceae). Tetrahedron, 45, 6941–6948 (1989).CrossRefGoogle Scholar
  87. 87.
    Shi, G., L. Zeng, Z.-M. Gu, J.M. Macdougal, and J.L. Mclaughlin: Absolute Stereochemistries of Sylvaticin and 12, 15-cis-Sylvaticin, Bioactive C-20, 23-cis Non-adjacent Bis-Tetrahydrofuran Annonaceous Acetogenins, from Rollinia mucosa. Heterocycles, 41, 1785–1796 (1995).CrossRefGoogle Scholar
  88. 88.
    Gu, Z.-M., L. Zeng, and J.L. Mclaughlin: Isolation and Structural Elucidation of Bioactive C-12, 15-cis Non-adjacent bis-THF Annonaceous Acetogenins. Heterocycles, 41, 229–236 (1995).CrossRefGoogle Scholar
  89. 89.
    Gu, Z.-M., X.-P. Fang, M.J. Rieser, Y.-H. Hui, L.R. Miesbauer, D.L. Smith, K.V. Wood, and J.L. Mclaughlin: New Cytotoxic Annonaceous Acetogenins: Bullatanocin and cis- and trans-Bullatanocinone, from Annona bullata (Annonaceae). Tetrahedron, 49, 747–754 (1993).CrossRefGoogle Scholar
  90. 90.
    Hui, Y.-H., J.K. Rupprecht, J.E. Anderson, K.V. Wood, and J.L. Mclaughlin: Bullatalicinone, a New Potent Bioactive Acetogenin, and Squamocin from Annona bullata (Annonaceae). Phytother. Res., 5, 124–129 (1991).CrossRefGoogle Scholar
  91. 91.
    Pinheiro Santos L., M.A.D. Boaventura, and A. Braga de Oliveira: Crassiflorina, uma acetogenina tetrahydrofurânica citotóxica de Annona crassiflora (Araticum). Quim. Nova, 17, 387–390 (1994).Google Scholar
  92. 92.
    Li, C.-M., H.-D. Sun, H.-L. Zheng, and G.-D. Tao: Annonaceous Acetogenins from Annona glabra. Yunnan Zhiwu Yanjiu, 17, 221–224 (1995); Chem. Abstracts, 123: 222803m (1995).Google Scholar
  93. 93.
    Hui, Y.-H., K.V. Wood, and J.L. Mclaughlin: Bullatencin, 4-Deoxyasimicin. and the Uvariamicins: Additional Bioactive Annonaceous Acetogenins from Annona bullata Rich (Annonaceae). Natural Toxins, 1, 4–14 (1992).CrossRefGoogle Scholar
  94. 94.
    Gromek, D., B. Figadère, R. Hocquemiller, A. Cavé, and D. Cortes: Corepoxylone, a Possible Precursor of Mono-tetrahydrofuran γ-lactone Acetogenins. Biomimetic Synthesis of Corossolone. Tetrahedron, 49, 5247–5252 (1993).CrossRefGoogle Scholar
  95. 95.
    Meneses da Silva, E.L., F. Roblot, O. Laprévote, P. Varenne, and A. Cavé: Coriacin and 4-Deoxycoriacin, Two New Mono-THF Acetogenins from the Roots of Annona coriacea. Nat. Prod. Lett., 7, 235–242 (19CrossRefGoogle Scholar
  96. 96.
    Meneshs de Silva, E.L., F. Roblot, J. Mahuteau, and A. Cavé: Coriadienin, the First Annonaceous Acetogenin with Two Double Bonds Isolated from Annona coriacea Mart. J. Nat. Prod., 59, 528–530 (19CrossRefGoogle Scholar
  97. 97.
    Yao, Z.-J., and Y.-L. Wu: Synthetic Studies Toward Mono-THF Annonaceous Acetogenins: A Diastereoselective and Convergent Approach to Corossolone and (10RS)-Corossolin. J. Org. Chem., 60, 1170–1176 (1995).CrossRefGoogle Scholar
  98. 98.
    Yao, Z.-J., and Y.-L. Wu: Total Synthesis of (10ζ, 15R, 16S, 19S, 34R)-Corossolin. Tetrahedron Lett., 35, 157–160 (1994).CrossRefGoogle Scholar
  99. 99.
    Gu, Z.-M., X.-P. Fang, L. Zeng, and J.L. Mclaughlin: Goniocin from Goniothalamus giganteus: The First tri-THF Annonaceous Acetogenin. Tetrahedron Lett., 35, 5367–5368(1994).CrossRefGoogle Scholar
  100. 100.
    Gu, Z.-M., X.-P. Fang, L. Zeng, R. Song, J.H. Ng, K.V. Wood, D.L. Smith, and J.L. Mclaughlin: Gonionenin: A New Cytotoxic Annonaceous Acetogenin from Goniothalamus giganteus and the Conversion of Mono-THF Acetogenins to Bis-THF Acetogenins. J. Org. Chem., 59, 3472–3479 (1994).CrossRefGoogle Scholar
  101. 101.
    Yu, J.G., D.K. Ho, J.M. Cassady, L. Xu, and C.-J. Chang: Cytotoxic Polyketides from Annona densicoma (Annonaceae): 10, 13-trans-13, 14-erythro-Densicomacin, 10, 13-trans-13, 14-threo-Densicomacin, and 8-Hydroxyannonacin. J. Org. Chem., 57, 6198–6202(1992).CrossRefGoogle Scholar
  102. 102.
    Hu, X.-E., and J.M. Cassady: Determination of Absolute Configuration of Vicinal Diols by 1H NMR Analysis of Mosher Ester Derivatives. Absolute Configuration of Polyketide ( + )-Densicomacin. 207th A.C.S. Meeting, San Diego, 13-18/03/1993.Google Scholar
  103. 103.
    Fang, X.-P., J.E. Anderson, D.L. Smith, K.V. Wood, and J.L. Mclaughlin: Giganenin, a Highly Potent Monotetrahydrofuran Acetogenin and 4-Deoxygigantecin from Goniothalamus giganteus. Heterocycles, 34, 1075–1083 (1992).CrossRefGoogle Scholar
  104. 104.
    Zheng, X.-C., R.-Z. Yang, G.-W. Qin, R.-S. Xu, and D.-J. Fan: Three Novel Chemical Compounds of Annonaceous Acetogenins from the Seeds of Annona squamosa. Acta Botanica Sinica, 37, 238–243 (1995).Google Scholar
  105. 105.
    Jolad, S.D., J.J. Hoffmann, J.R. Cole, C.E. Barry, R.B. Bates, G.S. Linz, and W.A. Konig: Desacetyluvaricin from Uvaria acuminata. Configuration of Uvaricin at C-36. J. Nat. Prod., 48, 644–645 (1985).CrossRefGoogle Scholar
  106. 106.
    Laprévote, O., F. Roblot, R. Hocquemiller, and A. Cavé: Structural Elucidation of Two New Acetogenins, Epoxyrollins A and B, by Tandem Mass Spectrometry. Tetrahedron Lett., 31, 2283–2286 (1990).CrossRefGoogle Scholar
  107. 107.
    Laprévote, O., C. Girard, B.C. Das, T. Laugel, F. Roblot, M. Leboeuf, and A. Cavé: Location of Epoxy Rings in a Long Chain Acetogenin by Fast Atom Bombardment and Linked Scan (B/E) Mass Spectrometry of Lithium Cationized Molecules. Rapid Commun. Mass Spectrom., 6, 352–355 (1992).CrossRefGoogle Scholar
  108. 108.
    Roblot, F., T. Laugel, M. Leboeuf, A. Cavé, and O. Laprévote: TWO Acetogenins from Annona muricata Seeds. Phytochemistry, 34, 281–285 (1993).CrossRefGoogle Scholar
  109. 109.
    Hisham, A., U. Sreekala, L. Pieters, T. De Bruyne, H. Van Den Heuvel, and M. Claeys: Epoxymurins A and B, two Biogenetic Precursors of Annonaceous Acetogenins from Annona muricata. Tetrahedron, 49, 6913–6920 (1993).CrossRefGoogle Scholar
  110. 110.
    Vu Thi Tam, Phan Quan Chi Hieu, B. Chappe, F. Roblot, O. Laprévote, B. Figadère, and A. Cavé: Four New Acetogenins from the Seeds of Annona reticulata. Nat. Prod. Lett., 4, 255–262 (19CrossRefGoogle Scholar
  111. 111.
    Sahpaz, S., R. Hocquemiller, A. Cavé, J. Saez, and D. Cortes: Diepoxyrollin and Diepomuricanin-B, Two New Bis-Epoxyacetogenins from Rollinia membranacea Seeds. J. Nat. Prod., in preGoogle Scholar
  112. 112.
    Wu, Y.-C., F.-R. Chang, K.-S. Chen, S.-C. Liang, and M.-R. Lee: Diepoxymontin, a Novel Acetogenin from Annona montana. Heterocycles, 38, 1475–1478 (1994).CrossRefGoogle Scholar
  113. 113.
    Fang, X.-P., R. Song, Z.-M. Gu, M.J. Rieser, L.R. Miesbauer, D.L. Smith, and J.L. Mclaughlin: A New Type of Cytotoxic Annonaceous Acetogenin: Giganin from Goniothalamus giganteus. Bioorg. Med. Chem. Lett., 3, 1153–1156 (1993).CrossRefGoogle Scholar
  114. 114.
    Yu, J.-G., X.E. Hu, D.K. Ho, M.F. Bean, R.E. Stephens, J.M. Cassady, L.S. Brinen, and J. Clardy: Absolute Stereochemistry of ( + )-Gigantecin from Annona coriacea (Annonaceae). J. Org. Chem., 59, 1598–1599 (1994).CrossRefGoogle Scholar
  115. 115.
    Alkofahi, A., J.K. Rupprecht, Y.-M. Liu, C.-J. Chang, D.L. Smith, and J.L. Mclaughlin: Gigantecin: A Novel Antimitotic and Cytotoxic Acetogenin, with Nonadjacent Tetrahydrofuran Rings, from Goniothalamus giganteus (Annonaceae). Experientia, 46, 539–541 (1990).CrossRefGoogle Scholar
  116. 116.
    Fang, X.-P., J.K. Rupprecht, A. Alkofahi, Y.-H. Hui, Y.-M. Liu, D.L. Smith, K.V. Wood, and J.L. Mclaughlin: Gigantetrocin and Gigantriocin: Two Novel Bioactive Annonaceous Acetogenins from Goniothalamus giganteus. Heterocycles, 32, 11–17 (1991).CrossRefGoogle Scholar
  117. 117.
    Yang, R.-Z., L.-L. Zhang, and S.-J. Wu: The Chemical Constituents of Goniothalamus howii (II). Acta Botanica Sinica (Zhiwu Xuebao), 36, 561–567 (1994); Chem. Abstracts 122: 310664b (1995).Google Scholar
  118. 118.
    Li, C.M., Q. Mu, X.J. Hao, H.D. Sun, H.L. Zheng, and Y.C. Wu: Three New Bioactive Annonaceous Acetogenins from Annona muricata. Chin. Chem. Lett., 5, 747–750 (1994).Google Scholar
  119. 119.
    Rieser, M.J., X.-P. Fang, J.E. Anderson, L.R. Miesbauer, D.L. Smith, and J.L. Mclaughlin: Muricatetrocins A and B and Gigantetrocin B: Three New Cytotoxic Monotetrahydrofuran-ring Acetogenins from Annona muricata. Helv. Chim. Acta, 76, 2433–2444 (1993).CrossRefGoogle Scholar
  120. 120.
    Waechter, A.-I., R. Hocquemiller, A. Laurens, and A. Cavé: Glaucanisin, a New Acetogenin from Annona glauca. Nat. Prod. Lett., 6, 133–138 (19CrossRefGoogle Scholar
  121. 121.
    Gu, Z.-M., X.-P. Fang, Y.-H. Hui, and J.L. Mclaughlin: 10-, 12-, and 29-Hydroxybullatacinones: New Cytotoxic Annonaceous Acetogenins from Annona bullata Rich (Annonaceae). Natural Toxins, 2, 49–55 (1994).CrossRefGoogle Scholar
  122. 122.
    Gu, Z.-M., X.-P. Fang, L.R. Miesbauer, D.L. Smith, and J.L. Mclaughlin: 30-, 31-, and 32-Hydroxybullatacinones: Bioactive Terminally Hydroxylated Annonaceous Acetogenins from Annona bullata. J. Nat. Prod., 56, 870–876 (1993).CrossRefGoogle Scholar
  123. 123.
    Pan, X.P., and D.Q. Yu: Uvarigranin: A New Acetogenin from Uvaria grandiflora Roxb. Chin. Chem. Lett., 6, 473–476 (1995).Google Scholar
  124. 124.
    Hisham, A., L.A.C. Pieters, M. Claeys, H. Van Den Heuvel, E. Esmans, R. Dommisse, and A.J. Vlietinck: Acetogenins from Root Bark of Uvaria narum. Phytochemistry, 30, 2373-2377(1991).Google Scholar
  125. 125.
    Myint, S.H., A. Laurens, R. Hocquemiller, A. Cavé, D. Davoust, and D. Cortes: Murisolin: A New Cytotoxic Mono-tetrahydrofuran-γ-lactone from Annona muricata. Heterocycles, 31, 861–867 (19CrossRefGoogle Scholar
  126. 126.
    Yang, R.-Z., S.-J. Wu, R.-S. Xu, and G.-W. Qin: Annonaceous Acetogenins from Annona muricata 2. Acta Botanica Yunnanica (Yunnan Zhiwu Yanjiu), 16, 187–190 (1994); Chem. Abstracts 121: 297130g (1994).Google Scholar
  127. 127.
    Cortes, D., S.H. Myint, M. Leboeuf, and A. Cavé: A New Type of Cytotoxic Acetogenins: The Tetrahydrofuranic β-Hydroxymethyl γ-lactones. Tetrahedron Lett., 32, 6133-6134(19Google Scholar
  128. 128.
    Saez, J., S. Sahpaz, L. Villaescusa, R. Hocquemiller, A. Cavé, and D. Cortes: Rioclarine et membranacine, deux nouvelles acétogénines bis-tétrahydrofuraniques des graines de Rollinia membranacea. J. Nat. Prod., 56, 351–356 (19CrossRefGoogle Scholar
  129. 129.
    Chen, W.-S., Z.-J. Yao, and Y.-L. Wu: Study on the Chemical Constituents of Annona atemoya Hort and the Isolation and Structure of Atemoyacin-B. Huaxue Xuebao, 53, 516–520 (1995); Chem. Abstracts 123: 79506j (1995).Google Scholar
  130. 130.
    Cortes, D., S.H. Myint, and R. Hocquemiller: Molvizarin and Motrilin: Two Novel Cytotoxic Bis-Tetrahydrofuranic γ-lactone Acetogenins from Annona cherimolia. Tetrahedron, 47, 8195–8202 (1991).CrossRefGoogle Scholar
  131. 131.
    Hisham, A., C. Sunitha, U. Sreekala, L. Pieters, T. De Bruyne, H. Van Den Heuvel, and M. Claeys: Reticulacinone, an Acetogenin from Annona reticulata. Phytochemistry, 35, 1325-1329(1994).Google Scholar
  132. 132.
    Londershausen, M., W. Leicht, F. Lieb, H. Moeschler, and H. Weiss: Molecular Mode of Action of Annonins. Pestic. Sci., 33, 427–438 (1991).CrossRefGoogle Scholar
  133. 133.
    Shi, G., D. Alfonso, M.O. Fatope, L. Zeng, Z.-M. Gu, G.-X. Zhao, K. He, J.M. Macdougal, and J.L. Mclaughlin: Mucocin: A New Annonaceous Acetogenin Bearing a Tetrahydropyran Ring. J. Am. Chem. Soc., 117, 10409–10410 (1995).CrossRefGoogle Scholar
  134. 134.
    Gui, H.Q., J.G. Yu, and Z.L. Yu: Muricatalin, a New Polyketide from Annona muricata (Annonaceae). Chin. Chem. Lett., 6, 45–48 (1995).Google Scholar
  135. 135.
    Zeng, L., F.-E. Wu, Z.-M. Gu, and J.L. Mclaughlin: Murihexocins A and B, Two Novel Mono-THF Acetogenins with Six Hydroxyls, from Annona muricata (Annonaceae). Tetrahedron Lett., 36, 5291–5294 (1995).CrossRefGoogle Scholar
  136. 136.
    Woo, M.H., L. Zeng, Q. Ye, Z.-M. Gu, G.-X. Zhao, and J.L. Mclaughlin: 16, 19-cis-Murisolin and Murisolin A, Two Novel Bioactive Mono-tetrahydrofuran Annonaceous Acetogenins from Asimina triloba Seeds. Bioorg. Med. Chem. Lett., 5, 1135–1140(1995).CrossRefGoogle Scholar
  137. 137.
    Padmaja, V., V. Thankamany, and A. Hisham: Antibacterial, Antifungal and Anthelmintic Activities of Root Barks of Uvaria hookeri and Uvaria narum. J. Ethnopharmacol., 40, 181–186(1993).CrossRefGoogle Scholar
  138. 138.
    Kawazu, K., J.P. Alcantara, and A. Kobayashi: Isolation and Structure of Neoannonin, a Novel Insecticidal Compound from the Seeds of Annona squamosa. Agric. Biol. Chem., 53, 2719–2722 (1989).CrossRefGoogle Scholar
  139. 139.
    Hisham, A., L.A.C. Pieters, M. Claeys, E. Esmans, R. Dommisse, and A.J. Vlietinck: Squamocin-28-one and Panalicin, Two Acetogenins from Uvaria narum. Phytochemistry, 30, 545–548(1991).CrossRefGoogle Scholar
  140. 140.
    Zheng, X.-C., R.-Z. Yang, R.-S. Xu, and G.-W. Qin: Plagionicin A, with C-5-OH, a New Monotetrahydrofuran Acetogenin. Acta Botanica Sinica, 36, 557–560 (1994).Google Scholar
  141. 141.
    Hisham, A., L.A.C. Pieters, M. Claeys, E. Esmans, R. Dommisse, and A.J. Vlietinck: Uvariamicin-I, II and III: Three Novel Acetogenins from Uvaria narum. Tetrahedron Lett., 31, 4649–4652 (1990).CrossRefGoogle Scholar
  142. 142.
    Saad, J.M., Y.-H. Hui, J.-K. Rupprecht, J.E. Anderson, J.F. Kozlowski, G.-X. Zhao, K.V. Wood, and J.L. Mclaughlin: Reticulatacin: A New Bioactive Acetogenin from Annona reticulata (Annonaceae). Tetrahedron, 47, 2751–2756 ( 1991).Google Scholar
  143. 143.
    Vu Thi Tam, Phan Quan Chi Hieu, B. Chappe, F. Roblot, B. Figadère, and A. Cavé: Reticulatain-1 and-2 with Reticulatamone: Three New Polyketides from the Seeds of Annona reticulata. Bull. Soc. Chim. Fr., 132, 324–329 (19Google Scholar
  144. 144.
    Makabe, H., A. Tanaka, and T. Oritani: Total Synthesis of Solamin and Reticulatacin. J. Chem. Soc. Perkin Trans. I, 1975–1981 (1994).CrossRefGoogle Scholar
  145. 145.
    Vu Thi Tam, C. Chaboche, B. Figadère, B. Chappe, BUI CHI HIEU, and A. Cavé: First Synthesis of a New Acetogenin of Anonaceae, Reticulatamol: Activated Tin Hydride with Enhanced Reducing Ability. Tetrahedron Lett., 35, 883–886 (19CrossRefGoogle Scholar
  146. 146.
    Abreo, M.J., and A.T. Sneden: 4-Hydroxy-25-desoxyneorollinicin, a New Bistetrahydrofuranoid Acetogenin from Rollinia papilionella. J. Nat. Prod., 52, 822–828 (1989).CrossRefGoogle Scholar
  147. 147.
    Vu Thi Tam, Bui Chi Hieu, and B. Chappe: Squamocin and Rolliniastatin-1 from the Seeds of Annona reticulata. Planta Med., 59, 576 (1993).CrossRefGoogle Scholar
  148. 148.
    Pettit, G.R., G.M. Cragg, J. Polonsky, D.L. Herald, A. Goswami, C.R. Smith, C. Moretti, J.M. Schmidt, and D. Weisleder: Isolation and Structure of Rolliniastatin-1 from the South American Tree Rollinia mucosa. Can. J. Chem., 65, 1433–1435 (1987).CrossRefGoogle Scholar
  149. 149.
    Barnes, J.N., B.T. Schaneberg, and A.T. Sneden: Bistetrahydrofuranoid Acetogenins from Rollinia sericea. Planta Med., 61, 486–487 (1995).CrossRefGoogle Scholar
  150. 150.
    Koert, U.: Total Synthesis of ( + )-Rolliniastatin-l. Tetrahedron Lett., 35, 2517–2520 (1994).CrossRefGoogle Scholar
  151. 151.
    Etse, J.T., and P.G. Waterman: Chemistry in the Annonaceae, XXII. 14-Hydroxy-25-desoxyrollinicin from the Stem Bark of Annona reticulata. J. Nat. Prod., 49, 684–686 (1986).CrossRefGoogle Scholar
  152. 152.
    Pettit, G.R., R. Riesen, J.E. Leet, J. Polonsky, C.R. Smith, J.M. Schmidt, C. Dufresne, D. Schaufelberger, and C. Moretti: Isolation and Structure of Rolliniastatin-2: A New cell Growth Inhibitory Acetogenin from Rollinia mucosa. Heterocycles, 28, 213–217 (1989).CrossRefGoogle Scholar
  153. 153.
    Naito, H., E. Kawahara, K. Maruta, M. Maeda, and S. Sasaki: The First Total Synthesis of ( + )-Bullatacin, a Potent Antitumor Annonaceous Acetogenin, and ( + )-15, 24-bisepi-Bullatacin. J. Org. Chem., 60, 4419–4427 (1995).CrossRefGoogle Scholar
  154. 154.
    Abreo, M.J., and A.T. Sneden: Rollinone, a Revision and Extension of Structure. J. Nat. Prod., 53, 983–985 (1990).CrossRefGoogle Scholar
  155. 155.
    Sinha, S.C., and E. Keinan: Total Synthesis of Naturally Occurring Acetogenins: Solamin and Reticulatacin. J. Am. Chem. Soc., 115, 4891–4892 (1993).CrossRefGoogle Scholar
  156. 156.
    Trost, B.M., and Z. Shi: A Concise Convergent Strategy to Acetogenins. ( + )-Solamin and Analogues. J. Am. Chem. Soc., 116, 7459–7460 (1994).CrossRefGoogle Scholar
  157. 157.
    Fujimoto, Y., T. Eguchi, K. Kakinuma, N. Ikekawa, M. Sahai, and Y.K. Gupta: Squamocin, a New Cytotoxic Bis-Tetrahydrofuran Containing Acetogenin from Annona squamosa. Chem. Pharm. Bull., 36, 4802–4806 (1988).CrossRefGoogle Scholar
  158. 158.
    Born, L., F. Lieb, J.P. Lorentzen, H. Moeschler, M. Nonfon, R. Söllner, and D. Wendisch: The Relative Configuration of Acetogenins Isolated from Annona squamosa: Annonin I (Squamocin) and Annonin VI. Planta Med., 56, 312–316 (1990).CrossRefGoogle Scholar
  159. 159.
    Hirayama, K., S. Akashi, R. Yuji, U. Niitsu, and Y. Fujimoto: Structural Studies of Polyhydroxybis(tetrahydrofuran)acetogenins from Annona squamosa Using the Combination of Chemical Derivatization and Precursor-ion Scanning Mass Spectrometry. Org. Mass Spectrom., 28, 1516–1524 (1993).CrossRefGoogle Scholar
  160. 160.
    Araya, H., N. Hara, Y. Fujimoto, and M. Sahai: Squamostanal-A, Apparently Derived from Tetrahydrofuranic Acetogenin, from Annona squamosa. Biosci. Biotech. Biochem., 58, 1146–1147 (1994).CrossRefGoogle Scholar
  161. 161.
    Araya, H., N. Hara, Y. Fujimoto, A. Srivastava, and M. Sahai: Squamosten-A, a Novel Mono-tetrahydrofuranic Acetogenin with a Double Bond in the Hydrocarbon Chain, from Annona squamosa L. Chem. Pharm. Bull., 42, 388–391 (1994).CrossRefGoogle Scholar
  162. 162.
    Laprévote, O., F. Roblot, R. Hocquemiller, A. Cavé, B. Charles, and J.-C. Tabet: Structural Elucidation of Five Stereoisomeric Acetogenins, Uleicins A-E, by Tandem Mass Spectrometry. Phytochemistry, 30, 2721–2727 (19CrossRefGoogle Scholar
  163. 163.
    Mikolajczak, K.J., R.V. Madrigal, J.K. Rupprecht, Y.-H. Hui, Y.-M. Liu, D.L. Smith, and J.L. Mclaughlin: Sylvaticin: A New Cytotoxic and Insecticidal Acetogenin from Rollinia sylvatica (Annonaceae). Experientia, 46, 324–327 (1990).CrossRefGoogle Scholar
  164. 164.
    Zhao, G.-X., Z.-M. Gu, L. Zeng, J.-F. Chao, J.F. Koslowski, K.V. Wood, and J.L. Mclaughlin: The Absolute Configuration of Trilobacin and Trilobin, a Novel Highly Potent Acetogenin from the Stem Bark of Asimina triloba (Annonaceae). Tetrahedron, 51, 7149–7160 (1995).CrossRefGoogle Scholar
  165. 165.
    Sahpaz, S., B. Figadere, J. Saez, R. Hocquemiller, A. Cavé, and D. Cortes: Tripoxyrollin, a New Epoxy-acetogenin from the Seeds ofRollinia membranacea. Nat. Prod. Lett., 2, 301–308(19CrossRefGoogle Scholar
  166. 166.
    Laprévote, O.: Alcaloïdes, lignanes et acétogenines de quatre Annonaceae, Unonopsis spectabilis, Rollinia mucosa, Rollinia exsucca et R. ulei. Thèse de Doctorat de l’Université Paris-Sud, Châtenay-Malabry, 1989.Google Scholar
  167. 167.
    Colman-Saizarbitoria, T., J. Zambrano, N.R. Ferrigni, Z.-M. Gu, J.-H. Ng, D.L. Smith, and J.L. Mclaughlin: Bioactive Annonaceous Acetogenins from the Bark of Xylopia aromatica. J. Nat. Prod., 57, 486–493 (1994).CrossRefGoogle Scholar
  168. 168.
    Etse, J.T., A.I. Gray, and P.G. Waterman: Chemistry in the Annonaceae, XXIV. Kaurane and Kaur-16-ene-Diterpenes from the Stem Bark of Annona reticulata. J. Nat. Prod., 50, 979–983 (1987).CrossRefGoogle Scholar
  169. 169.
    Yang, R.-Z., X.-C. Zheng, G.-W. Qin, and R.-S. Xu: Squamosinin A: A Novel Para-Tris-Tetrahydrofuranyl Annonaceous Acetogenin. Acta Botanica Sinica, 36, 809–812(1994).Google Scholar
  170. 170.
    Mclaughlin, J.L., C.-J. Chang, and D.L. Smith: “Bench-Top” Bioassays for the Discovery of Bioactive Natural Products: An Update. In: Studies in Natural Products Chemistry, vol 9, Atta-ur-Rahman ed., Elsevier, Amsterdam, pp 383–409 (1991).Google Scholar
  171. 171.
    Dreux, M., and M. Lafosse: Mesure de la diffusion de la lumière sur des microparticules en phase gazeuse. Utilisations actuelles. Analusis, 20, 587–595 (1992).Google Scholar
  172. 172.
    Gromek, D., R. Hocquemiller, and A. Cavé: Qualitative and Quantitative Evaluation of Annonaceous Acetogenins by High Performance Liquid Chromatography. Phytochem. Anal., 5, 133–140 (19CrossRefGoogle Scholar
  173. 173.
    Gypser, A., C. Bülow, and H.-D. Scharf: Determination of the Absolute Configuration of Annonin I, a Bioactive Natural Acetogenin from Annona squamosa. Tetrahedron, 51, 1921–1930(1995).CrossRefGoogle Scholar
  174. 174.
    Yang, R.-Z., and S.-J. Wu: Annonaceous Acetogenins from Annona muricata 3. Acta Botanica Yunnanica (Yunnan Zhiwu Yanjiu), 16, 309–310 (1994); Chem. Abstracts, 122: 27791h (1995).Google Scholar
  175. 175.
    Cavé, A., D. Cortes, B. Figadère, R. Hocquemiller, O. Laprévote, A. Laurens, and M. Leboeuf: Recent Advances in the Acetogenins of Annonaceae. In: Phytochemical Potential of Tropical Plants (K.R. Downum, J.T. Romeo, H.E. Stafford, eds.) pp 167–202. New York: Plenum Press. 1993.Google Scholar
  176. 175a.
    Cortes, D., S.H. Myint, J.-C. Harmange, S. Sahpaz, and B. Figadère: Catalytic Hydrogenation of Annonaceous Acetogenins. Tetrahedron Lett., 33, 5225–5226 (1992).CrossRefGoogle Scholar
  177. 176.
    Laprévote, O., C. Girard, B.C. Das, D. Cortes, and A. Cavé: Formation of Gas-Phase Lithium Complexes from Acetogenins and their Analysis by Fast Atom Bombardment Mass Spectrometry. Tetrahedron Lett., 33, 5237–5240 (19CrossRefGoogle Scholar
  178. 177.
    Laprévote, O., and B.C. Das: Structural Elucidation of Acetogenins from Annonaceae by Fast Atom Bombardment Mass Spectrometry. Tetrahedron, 50, 8479–8490 (1994).CrossRefGoogle Scholar
  179. 178.
    Smith, D.L., Y.-M. Liu, and K.V. Wood: Structure Elucidation of Natural Products by Mass Spectrometry. In: Modern Phytochemical Methods (N.H. Fischer, M.B. Isman, H.A. Stafford, eds.), pp 251–269. Plenum Press. 199Google Scholar
  180. 179.
    Laprévote, O., C. Girard, B.C. Das, A. Laurens, and A. Cavé: Desorption of Lithium Complexes of Acetogenins by Fast Atom Bombardment: Application to Semi-quantitative Analysis of Crude Plant Extracts. Analusis, 21, 207–210 (1993).Google Scholar
  181. 180.
    Brown, P., J. Kossanyi, and C. Djerassi: Mass Spectrometry in Structural and Stereochemical Problems, CXVIII, Aliphatic Epoxides, Tetrahedron, Suppl. 8, part I, 241–267 (1966).Google Scholar
  182. 181.
    Keough, T., E.D. Mihelich, and D.J. Eickhoff: Differentiation of Monoepoxide Isomers of Polyunsaturated Fatty Acids and Fatty Acid Esters by Low-energy Charge Exchange Mass Spectrometry. Anal. Chem., 56, 1849–1852 (1984).CrossRefGoogle Scholar
  183. 182.
    Tumlinson, J.H., R.R. Heath, and R.E. Doolittle: Application of Chemical Ionization Mass Spectrometry of Epoxides to the Determination of Olefin Position in Aliphatic Chains. Anal. Chem., 46, 1309–1312 (1974).CrossRefGoogle Scholar
  184. 183.
    Tabet, J.C., and J. Einhorn: The Use of Constant Neutral Spectra to Determine the Origin of the Acylium Ions in the Cl/NO+ Spectra of Aliphatic Epoxides. Org. Mass spectrom., 20, 310(1985).Google Scholar
  185. 184.
    Ramirez, E.A., and T.R. Hoye: Determination of Relative and Absolute Configuration in the Annonaceous Acetogenins. In: Studies in Natural Products Chemistry, vol. 17 (Atta-ur-Rahman ed.), pp 251–282. Elsevier Science, B.V. 1995.CrossRefGoogle Scholar
  186. 185.
    Hoye, T.R., P.R. Hanson, L.E. Hasenwinkel, E.A. Ramirez, and Z. Zhuang: Stereostructural Studies on the 4-Hydroxylated Annonaceous Acetogenins: Synthesis of Model Butenolides of Known Relative and Absolute Configuration Involving an Intriguing Translactonization Reaction. Tetrahedron Lett., 35, 8525–8528 (1994).CrossRefGoogle Scholar
  187. 186.
    Hoye, T.R., and Z.-P. Zhuang: Validation of the 1H NMR Chemical Shift Method for Determination of Stereochemistry in the Bis-(tetrahydrofuranyl) Moiety of Uvaricin-Related Acetogenins from Annonaceae, Rolliniastatin-1 (and Asimicin). J. Org. Chem., 53, 5578–5580 (1988).CrossRefGoogle Scholar
  188. 187.
    Gale, J.B., J.-G. Yu, X.E. Hu, A. Khare, D.K. Ho, and J.M. Cassady: Stereochemistry of Mono-tetrahydrofuranyl Moiety in Cytotoxic Polyketides. Part A: Synthesis of Model Compounds. Tetrahedron Lett., 34, 5847–5850 (1993).Google Scholar
  189. 188.
    Gale, J.B., J.-G. Yu, A. Khare, X.E. Hu, D.K. Ho, and J.M. Cassady: Stereochemistry of Mono-tetrahydrofuranyl Moiety in Cytotoxic Polyketides. Part B: Application of Proton Chemical Shift Patterns. Tetrahedron Lett., 34, 5851–5854 (1993).Google Scholar
  190. 189.
    Harmange, J.-C., B. Figadère, and A. Cavé: Stereocontrolled Synthesis of 2, 5-Linked Monotetrahydrofuran Units of Acetogenins. Tetrahedron Lett., 33, 5749–5752 (19CrossRefGoogle Scholar
  191. 189a.
    Figadère, B., J.-C. Harmange, L.X. Hai, and A. Cavé: Synthesis of 2, 33-Dihydro-4-oxo-murisolin: Conjugate Addition of Primary Alkyl Iodides to α, β-Unsaturated Ketones. Tetrahedron Lett., 33, 5189–5192 (19CrossRefGoogle Scholar
  192. 190.
    Dale, J.A., and H.S. Mosher: Nuclear Magnetic Resonance Enantiomer Reagents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and α-Methoxy-α-trifluoromethylphenylacetate (MTPA) Esters. J. Am. Chem. Soc., 95, 512–520 (1973).CrossRefGoogle Scholar
  193. 191.
    Sullivan, G.R., J.A. Dale, and H.S. Mosher: Correlation of Configuration and 19F Chemical Shifts of α-Methoxy-α-trifluoromethylphenylacetate Derivatives. J. Org. Chem., 38, 2143 (1973).CrossRefGoogle Scholar
  194. 192.
    Yamaguchi, S.: Asymmetric Synthesis. In: (Morrison, J.D., ed.), vol.1, pp 125–152. New York: Academic Press 1983.Google Scholar
  195. 193.
    Potin, D., F. Dumas, and J. d’ANGELO: New Chiral Auxiliaries: Their Use in the Asymmetric Hydrogenation of β-Acetamidocrotonates. J. Am. Chem. Soc., 112, 3483–3486 (1990).CrossRefGoogle Scholar
  196. 194.
    Schmitz, F.J., and E.D. Lorance: Chemistry of Coelantherates XXI. Lactones from the Gorgonian Pterogorgia guadeloupensis. J. Org. Chem., 36, 719–721 (1971).CrossRefGoogle Scholar
  197. 195.
    Schultz, W.J., M.C. Etter, A.V. Pocius, and S. Smith: New Family of Cation Binding Compounds threo-α-, ω-Poly(cycloalkane)diyl. J. Am. Chem. Soc., 102, 7981–7982 (1980).CrossRefGoogle Scholar
  198. 196.
    Djerassi, C., and W.-K. Lam: Sponge Phospholipids. Acc. Chem. Res., 24, 69–75 (1991).CrossRefGoogle Scholar
  199. 197.
    Carballeira, N.M., and J.R. Medina: New δ-5, 9-Fatty Acids in the Phospholipids of the Sea Anemone Stoichactis helianthus J. Nat. Prod., 57, 1688–1695 (1994).CrossRefGoogle Scholar
  200. 198.
    Hutchinson, J.: Evolution and Phylogeny of Flowering Plants. New York: Academic Press 1969.Google Scholar
  201. 199.
    Takhtajan, A.: Flowering Plants, Origin and Dispersal. Edinburgh: Oliver and Boyd Ltd. 1969.Google Scholar
  202. 200.
    Figadère, B.: Syntheses of Acetogenins of Annonaceae: A New Class of Bioactive Polyketides. Acc Chem. Res., 28, 359–365 (1995).CrossRefGoogle Scholar
  203. 201.
    Figadère, B., and A. Cavé: Total Stereoselective Synthesis of Acetogenins of Annonaceae: A New Class of Bioactive Polyketides. In: Studies in Natural Products Chemistry, vol. 18 (Atta-ur-Rahman, ed.) pp 193–227. Amsterdam: Elsevier, 1996.Google Scholar
  204. 202.
    Harmange, J.C., and B. Figadère: Synthetic Routes to 2, 5-Disubstituted Tetrahydrofurans. Tetrahedron: Asymmetry, 4, 1711–1754 (1993).Google Scholar
  205. 203.
    Figadère, B., C. Chaboche, J.-F. Peyrat, and A. Cavé: Stereocontrolled Synthesis of Key Intermediates in the Total Synthesis of Acetogenins of Annonaceae. Tetrahedron Lett., 34, 8093–8096 (19CrossRefGoogle Scholar
  206. 204.
    Hoppe, R., M. Flasche, and H.-D. Scharf: An Approach Towards 2, 5-Disubstituted Tetrahydrofurans of Annonaceous Acetogenins. Tetrahedron Lett., 35, 2873–2876 (1994).CrossRefGoogle Scholar
  207. 205.
    Rama Rao, A.V., K.L.N. Reddy, and K. Ashok Reddy: Studies on Polyether Natural Products: Asymmetric Synthesis of Bis(tetrahydrofuran). Indian J. Chem., 32B, 1203–1208 (1993).Google Scholar
  208. 206.
    Koert, U., H. Wagner, and U. Pidun: Stereoselective Additions of Chiral, Functionalized Organozinc Reagents to Achiral and Chiral Aldehydes: a Matched-mismatched Case in Organozinc Chemistry. Chem. Ber., 127, 1447–1457 (1994).CrossRefGoogle Scholar
  209. 207.
    Koert, U., H. Wagner, and M. Stein: An Enantiomerically Pure Epoxyorganolithium Reagent for the Synthesis of Oligo (tetrahydrofurans) by an Epoxide-Cascade Reaction. Tetrahedron Lett., 35, 7629–7632 (1994).CrossRefGoogle Scholar
  210. 208.
    Harmange, J.-C., B. Figadère, and R. Hocquemiller: Enantiospecific Preparation of the Lactone Fragment of Murisolin. Tetrahedron: Asymmetry, 2, 347–350 (1991).CrossRefGoogle Scholar
  211. 209.
    Hoye, T.R., P.E. Humpal, J.I. Jiménez, M.J. Mayer, L. Tan, and Z. Ye: An Efficient and Versatile Synthesis of the Butenolide Subunit of 4-Hydroxylated Annonaceous Acetogenins. Tetrahedron Lett., 35, 7517–7520 (1994).CrossRefGoogle Scholar
  212. 210.
    Figadère, B., X. Franck, and A. Cavé: Synthesis of C1-C11 Fragment of Annonacin: A Polyketide Acetogenin of Annonaceae. Tetrahedron Lett., 36, 1637–1640 (19CrossRefGoogle Scholar
  213. 211.
    Trost, B.M., and T.L. Calkins: Synthetic Strategies to Acetogenins. The Hydroxybutenolide Terminus. Tetrahedron Lett., 36, 6021–6024 (1995).CrossRefGoogle Scholar
  214. 212.
    Hoye, T.R., and P.R. Hanson: Assigning the Relative Stereochemistry Between C(2) and C(4) of the 2-Acetonyl-4-alkylbutyrolactone Substructures of the Appropriate Annonaceous Acetogenins. J. Org. Chem., 56, 5092–5095 (1991).CrossRefGoogle Scholar
  215. 213.
    Figadère, B., C. Chaboche, X. Franck, J.-F. Peyrat, and A. Cavé: Carbonyl Reduction of Functionalized Aldehydes and Ketones by Tri-n-butyltin Hydride and SiO2. J. Org. Chem., 59, 7138–7141 (19CrossRefGoogle Scholar
  216. 214.
    Harmange, J.-C.: Synthèse totale énantiosélective d’acétogénines d’Annonaceae (γ-lactones monotétrahydrofuraniques). Thèse de Doctorat de l’Université Paris-Sud, Châtenay-Malabry, 1992.Google Scholar
  217. 215.
    Iwai, K., H. Kosugi, H. Uda, and M. Kawai: New Methods for Synthesis of Various Types of Substituted 2(5H)-Furanones. Bull. Chem. Soc. Jpn, 50, 242 (1977).CrossRefGoogle Scholar
  218. 216.
    Hoye, T.R., P.R. Hanson, A.C. Kovelesky, T.D. Ocain, and Z. Zhuang: Synthesis of ( + )-15, 16, 19, 20, 23, 24)-hexepi-Uvaricine: A Bis(tetrahydrofuranyl) Annonaceous Acetogenin Analogue. J. Am. Chem. Soc., 113, 9369–9371 (1991).CrossRefGoogle Scholar
  219. 217.
    Hoye, T.R., and P.R. Hanson: Synthesis of (−)-Bullatacin: The Enantiomer of a Potent, Antitumor, 4-Hydroxylated, Annonaceous Acetogenin. Tetrahedron Lett., 34, 5043–5046(1993).CrossRefGoogle Scholar
  220. 218.
    Liu, Z.Y., J.J. Zhang, and W. Chen: A Facile Synthesis of (±)-Muricatacin. Chin. Chem. Lett., 4, 663–664 (1993).Google Scholar
  221. 219.
    Gravier-Pelletier, C., M. Sanière, I. Charvet, Y. Le Merrer, and J.-C. Depezay: Synthesis of ( − )-Muricatacin and ( − )-(5R, 6S)-6-Acetoxy-5-hexadecanolide, the Mosquito Oviposition Attractant Pheromone, from D-Isoascorbic Acid. Tetrahedron Lett., 35, 115–118(1994).CrossRefGoogle Scholar
  222. 220.
    Gravier-Pelletier, C., J. Dumas, Y. Le Merrer, and J.-C. Depezay: A General Way from L-and D-Isoascorbic Acids to Homochiral α-Hydroxy, α, β-Dihydroxy and α, β-epoxy Aldehydes Useful Building Blocks for the Synthesis of Linear Oxygenated Fatty Acids Metabolites. J. Carbohydr. Chem., 11, 969–998 (1992).Google Scholar
  223. 221.
    Bonini, C., C. Federici, L. Rossi, and G. Righi: C-l Reactivity of 2, 3-Epoxyalcohols via Oxirane Opening with Metal Halides: Applications and Synthesis of Naturally Occurring 2, 3-Octanediol, Muricatacin, 3-Octanol, and 4-Dodecanolide. J. Org. Chem., 60, 4803–4812 (1995).CrossRefGoogle Scholar
  224. 222.
    Van Aar, M.P.M., L. Thijs, and B. Zwanenburg: Synthesis of (4R, 5R)-Muricatacin and its (4R, 5S)-Analog by Sequential Use of the Photo-induced Rearrangement of Epoxy Diazomethyl Ketones. Tetrahedron, 51, 11223–11234(1995).CrossRefGoogle Scholar
  225. 223.
    Hoye, T.R., and J.C. Suhadolnik: Stereocontrolled Synthesis of 2, 5-Linked Bistetrahydrofurans via the Triepoxide Cascade Reaction. Tetrahedron, 42, 2855–2862 (1986).CrossRefGoogle Scholar
  226. 224.
    Cassady, J.M., W.M. Baird, and C.-J. Chang: Natural Products as a Source of Potential Cancer Chemotherapeutic and Chemopreventive Agents. J. Nat. Prod., 53, 23–41 (1990).CrossRefGoogle Scholar
  227. 225.
    Poupon, M.-F. (unpublished results).Google Scholar
  228. 226.
    Suffness, M., D.J. Newman, and K. Snader: Discovery and Development of Antineoplastic Agents from Natural Sources. Bioorganic Marine Chemistry 3, pp 134. Berlin Heidelberg: Springer Verlag 1989.Google Scholar
  229. 227.
    Holschneider, C.H., M.T. Johnson, R.B. Knox, A. Rezai, W.J. Ryan, and F.J. Montz: Bullatacin-in vivo and in vitro Experience in an Ovarian Cancer Model. Cancer Chemother. Pharmacol., 34, 166–170 (1994).CrossRefGoogle Scholar
  230. 228.
    Ahammadsahib, K.I., R.M. Hollingworth, J.P. Mcgovren, Y.-H. Hui, and J.L. Mclaughlin: Mode of Action of Bullatacin: A Potent Antitumor and Pesticidal Annonaceous Acetogenin. Life Science, 53, 1113–1120 (1993).CrossRefGoogle Scholar
  231. 229.
    Cavé, A., R. Hocquemiller, and O. Laprévote: Utilisation d’acétogénines en thérapeutique en tant que substances antiparasitaires. F. Patent 1048 N° 88 09 674 (1989).Google Scholar
  232. 230.
    Bories, G., P. Loiseau, D. Cortes, S.H. Myint, R. Hocquemiller, P. Gayral, A. Cavé, and A. Laurens: Antiparasitic Activity of Annona muricata and Annona cherimolia Seeds. Planta Med., 57, 434–436 (19CrossRefGoogle Scholar
  233. 231.
    Moeschler, H.F., W. Pfluger, and D. Wendisch. US Patent N° 4689 232 issued August 25 (1987Google Scholar
  234. 232.
    Lewis, M.A., J.T. Arnason, B.J.R. Philogene, J.K. Rupprecht, and J.L. Mclaughlin: Inhibition of Respiration at Site 1 by Asimicin, an Insecticidal Acetogenin of the Paw paw, Asimina triloba, Annonaceae. Pesticide Biochem. Physiol., 45, 15–23 (1993).CrossRefGoogle Scholar
  235. 232a.
    Ratnayake, S., J.K. Rupprecht, W.M. Potter, and J.L. Mclaughlin: Evaluation of Various Parts of the Paw paw Tree, Asimina triloba (Annonaceae), as Commercial Sources of the Pesticidal Annonaceous Acetogenins. J. Economic Entomol., 85, 2353–2356 (1992).Google Scholar
  236. 233.
    Vu Thi Tam: Étude chimique et biologique des acétogénines des graines d’Annona reticulata, Annonaceae. Doctorat de l’Université Paris-Sud, Châtenay-Malabry (1995).Google Scholar
  237. 234.
    Laurens, A., P. Dutartre, R. Hocquemiller, and A. Cavé: Immunomodulating Activity of Annonacin Isolated from Annona muricata Seeds. Communication to the 18th International IUPAC Symposium on the Chemistry of Natural Products, Strasbourg, France, 30 August-4 September (199Google Scholar
  238. 235.
    Peyrat, J.-F., B. Figadère, A. Cavé, and J. Mahuteau: Study of the Binding Activity of Oligo-tetrahydrofuranic γ-lactones with Cations. Tetrahedron Lett., 36, 7653–7656 (19CrossRefGoogle Scholar
  239. 236.
    Sasaki, S., H. Naito, K. Maruta, E. Kawahara, and M. Maeda: Novel Calcium Ionophores: Supramolecular Complexation by the Hydroxylated-Bistetrahydrofuran Skeleton of Potent Antitumor Annonaceous Acetogenins. Tetrahedron Lett., 35, 3337–3340 (1994).CrossRefGoogle Scholar
  240. 237.
    Sasaki, S., K. Maruta, H. Naito, H. Sugihara, K. Hiratani, and M. Maeda: New Calcium-selective Electrodes Based on Annonaceous Acetogenins and Their Analogs with Neighboring Bistetrahydrofuran. Tetrahedron Lett., 36, 5571–5574 (1995).Google Scholar
  241. 238.
    Padmaja, V., S.M. Jessy, C.R. Sudhakaran Nair, G.R. Nair, V. Thankamani, and A. Hisham: Antimitotic Effects of Uvaria narum and U. hookeri. Fitoterapia, 65, 77–81 (1994).Google Scholar
  242. 239.
    Degli Esposti, M., A. Ghelli, M. Ratta, D. Cortes, and E. Estornell: Natural Substances (Acetogenins) from the Family Annonaceae Are Powerful Inhibitors of Mitochondrial NADH Dehydrogenase(Complex I). Biochem. J., 301, 161-167(1994).Google Scholar
  243. 240.
    Morré, DJ., R. De Cabo, C. Farley, N.H. Oberlies, and J.L. Mclaughlin: Mode of Action of Bullatacin, a Potent Antitumor Acetogenin: Inhibition of NADH Oxidase Activity of HELA and HL-60, but not Liver, Plasma Membranes. Life Sciences, 56, 343–348 (1995).CrossRefGoogle Scholar
  244. 241.
    Faulk, W.P., K. Barabas, I.L. Sun, and F.L. Crane: Transferrin-Adriamycin Conjugates which Inhibit Tumor Cell Proliferation without Interaction with DNA Inhibit Plasma Membrane Oxido-reductase and Proton Release in K562 Cells. Biochem. Int., 25, 815–822 (1991).Google Scholar
  245. 242.
    Gottesman, M.M.: How Cancer Cells Evade Chemotherapy: Sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Research, 53, 747–754 (1993).Google Scholar
  246. 243.
    Simon, S.M., and M. Schindler: Cell Biological Mechanisms of Multidrug Resistance in Tumors. Proc. Natl. Acad. Sci. USA, 91, 3497–3504 (1994).CrossRefGoogle Scholar
  247. 244.
    Friedrich, T., P. Van Heek, H. Leif, T. Ohnishi, E. Forche, B. Kunze, R. Jansen, W. Trowitzsch-Kienast, G. Höfle, H. Reichenbach, and H. Weiss: TWO Binding Sites of Inhibitors in NADH: Ubiquinone Oxidoreductase (Complex I). Relationship of One Site with the Ubiquinone Binding Site of Bacterial Glucose: Ubiquinone Oxidoreductase. Eur. J. Biochem., 219, 691–698 (1994)CrossRefGoogle Scholar
  248. 245.
    Gu, Z.-M., G.-X. Zhao, N.H. Oberlies, L. Zeng, and J.L. Mclaughlin: Annonaceous Acetogenins. In: Phytochemistry of Medicinal Plants (J.T. Arnason, R. Mata, and J.T. Romeo, eds.) pp 249–310, New York; Plenum Press 19Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • A. Cavé
    • 1
  • B. Figadère
    • 1
  • A. Laurens
    • 1
  • D. Cortes
    • 2
  1. 1.Laboratoire de Pharmacognosie Faculté de PharmacieUniversité Paris-SudChâtenay-MalabryFrance
  2. 2.Departamento de Farmacologia, Farmacognosia y FarmacodinamicaFaculdad de Farmacia, Universidad de ValenciaBurjasotSpain

Personalised recommendations