Certain marine animals were known to the ancients for their potent biological constituents and presumed use in primitive medicine. The early periods of recorded history contain references to support these assumptions (1). Illustrative are hieroglyphics on the Egyptian Pharaoh Ti’s tomb (approximately 2700 BC) that describe the poisonous puffer fish Tetraodon stellatus. One of the earliest recorded uses of a marine organism in primitive medical practice has been attributed to the Roman, Gaius Plinius Secundus (AD 29–79, Pliny the Elder), who recommended that the sting system of the stingray be ground up and used for treatment of toothache and in obstetrics. One of the first modern pharmacological and chemical studies of potent marine animal constituents involved tetrodotoxin from the poisonous puffer fish (2, 3). About 40 years ago some especially important observations began to be recorded. Illustrative was the fact that extracts from certain sponges and coelenterates were shown to have antibiotic properties (4–8) and that marine invertebrates produce various other potentially medically useful components (9–11). Very importantly, from the viewpoint of anticancer drug discovery, were reports that starfish meal (12–14) and fractions from the peanut worm Bonellia fulginosa (15, 16), certain sea cucumbers, and molluscs [clams (16) and oysters (9, 11)] exhibited antitumor activity against sarcoma-180 and Krebs-2 ascites tumor (10, 17–19).


Total Synthesis Aldol Condensation Aldol Reaction Heteronuclear Multiple Bond Correlation Aldol Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halstead, B.W.: Poisonous and Venomous Marine Animals of the World, Vols. 1, 2. Washington, D.C.: US Government Printing Office. 1965, 1967.Google Scholar
  2. 2.
    Woodward, R.B., and J.Z. Gougoutas: The Structure of Tetrodotoxin. J. Amer. Chem. Soc., 86, 5030 (1964).Google Scholar
  3. 3.
    Goto, T., Y. Kishi, S. Takahashi, and Y. Hirata: Tetrodotoxin. Tetrahedron, 21, 2059 (1965).Google Scholar
  4. 4.
    Nigrelli, R.F., S. Jakowska, and I. Calventi: Ectyonin, an Antimicrobial Agent from the Sponge Microciona prolifera Verrill. Zoologica, 44, 173 (1959).Google Scholar
  5. 5.
    Jakowska, S., and R.F. Nigrelli: Antimicrobial Substances from Sponges. Ann. NY Acad. Sci., 90, 913(1960).Google Scholar
  6. 6.
    Burkholder, P.R., and L.M. Burkholder: Antimicrobial Activity of Horny Corals. Science, 127, 1174(1958).Google Scholar
  7. 7.
    Ciereszko, L.S., D.H. Sifford, and A.J. Weinheimer: Chemistry of Coelenterates. I. Occurrence of Terpenoid Compounds in Gorgonians. Ann. NY Acad. Sci., 90, 917 ( 1960).Google Scholar
  8. 8.
    Ciereszko, L.S.: Chemistry of Coelenterates, III: Occurrence of Antimicrobial Terpenoid Compounds in the Zooxanthellae of Alcyonarians. Trans. NY Acad. Sci., 24, 502 (1962).Google Scholar
  9. 9.
    Marderosian, A.H.D.: Marine Pharmaceuticals. J. Pharm. Sci., 58, 1 (1969).Google Scholar
  10. 10.
    Nigrelli, R.F., M.F. Stempien, C.D. Ruggieri, V.R. Ligouri, and J.T. Cecil: Substances of Potential Biomedical Importance from Marine Organisms. Fed. Proa, 26, 1197 (1967).Google Scholar
  11. 11.
    Sigel, M.M., L.L. Wellham, W. Licgter, L.E. Dudeck, J.L. Gargus, and A.H. Lucas: Anticellular and Antitumor Activity of Extracts from Typical Marine Invertebrates. In: Food-Drugs from the Sea Proceedings 1969 (H.W. Youngken, Jr., ed.), p. 281. Washington, D.C.: Marine Technology Society. 1969.Google Scholar
  12. 12.
    Whitson, D., and H.W. Titus: The Use of Starfish Meal in Chick Diets. Bull. Bingham Oceanog. Coll, 9, 24 (1945).Google Scholar
  13. 13.
    Lee, C.F.: US Fish Wildlife Service. Fish Leaflet, 391 (1951).Google Scholar
  14. 14.
    Heilbrunn, L.V., A.B. Chaet, A. Dunn, and W.L. Wilson: Antimitotic Substances from Ovaries. Biol. Bull., 106, 158 (1954).Google Scholar
  15. 15.
    Baltzer, F.: Über die Giftwirkung weiblicher Bonellia-Gewebe auf das Bonellia-Männchen und andere Organismen und ihre Beziehung zur Bestimmung des Geschlechts der Bonellienlarve. Mitt. Naturf. Ges. Bern, 8, 98 (1925).Google Scholar
  16. 16.
    Baltzer, F.: Über die Giftwirkung der weiblichen Bonellia und ihre Beziehung zur Geschlechtsbestimmung der Larve. Rev. Suisse Zool., 32, 87 (1925).Google Scholar
  17. 17.
    Friess, S.L., F.G. Standaert, E.R. Whitcomb, R.F. Nigrelli, J.D. Chanley, and H. Sobotka: Some Pharmacologie Properties of Holothurin A, a Glycosidic Mixture from the Sea Cucumber. Ann. NY Acad. Sci., 90, 893 (1960).Google Scholar
  18. 18.
    Schmeer, M.R., and C.V. Huala: Mercenene: In Vivo Effects of Mollusk Extracts on the Sarcoma 180. Ann. NY Acad. Sci., 118, 605 (1965).Google Scholar
  19. 19.
    Li, C.P., B. Prescott, and W.B. Jahnes: Antiviral Activity of a Fraction of Abalone Juice. Proc. Soc. Exp. Biol. Med, 109, 534 (1962).Google Scholar
  20. 20.
    Pettit, G.R., J.F. Day, J.L. Hartwell, and H.B. Wood: Antineoplastic Components of Marine Animals. Nature, 227, 962 (1970).Google Scholar
  21. 21.
    Pettit, G.R., J.L. Hartwell, and H.B. Wood: Arthropod Antineoplastic Agents. Cancer Res., 28, 2168(1968).Google Scholar
  22. 22.
    Pettit, G.R.: The Bryostatins. In: Progress in the Chemistry of Organic Natural Products, No. 57. Founded by Zechmeister, L. Herz, W., G.R. Kirby, W. Steglich, and C.H. Tamm, eds.), p. 153–195. Wien-New York: Springer-Verlag. 1991.Google Scholar
  23. 23.
    Pkttit, G.R.: Marine Animal and Terrestrial Plant Anticancer Constituents. Pure and Appl. Chem., 66, 2271 (1994).Google Scholar
  24. 24.
    Hyman, L.H.: The Invertebrates, Mollusca. American Museum of Natural History. New York: McGraw-Hill. 1967.Google Scholar
  25. 25.
    Eales, N.B.: L.M.B.C. Memoirs, Vol. 24. on “Typical British Marine Plants and Animals, Aplysia” (Hardman, W.A., and J. Johnstone, eds.), Liverpool University Press. 1921.Google Scholar
  26. 26.
    P liny: Historia Naturalis, Lib. 9, Lib. 32, ca. 60 A.D Google Scholar
  27. 27.
    Donati, G., and B. Porfirio: Marine Pharmacology and Toxicology. The Dolastatins. La Conchiglia 16, May, 1984.Google Scholar
  28. 28.
    Engel, H.: The genus Dolabella. Zool. Mededeel. Leyden, 24, 197 (1942).Google Scholar
  29. 29.
    See Ref. 1, Vol. 1, p. 709. 1965.Google Scholar
  30. 30.
    Pettit, G.R., R.H. Ode, C.L. Herald, R.B. Von Dreele, and C. Michel: The Isolation and Structure of Dolatriol. J. Amer. Chem. Soc., 98, 4677 (1976).Google Scholar
  31. 32.
    Bebbington, A.: Aplysiid Species from East Africa with Notes on the Indian Ocean Aplysiomorpha Gastropoda Opisthobranchia. Zool. J. Linn. Soc., 54, 63 (1974).Google Scholar
  32. 32.
    Kuwasawa, K., and K. Matsui: Postjunctional Potentials and Cardiac Acceleration in a Mollusc Dolabella auricularia. Experientia, 26, 1100 (1970).Google Scholar
  33. 33.
    Kuwasawa, S.: Heartbeat Inhibiting Effect of Inhibitory Connective Potential in Dolabella auricularia Heart. J. Physiol. Soc. Jap., 34, 453 (1972).Google Scholar
  34. 34.
    Kuwasawa, K.: Localization of Acetylcholine Response in the Heart of Dolabella auricularia. J. Physiol. Soc. Jpn., 35, 403 (1973).Google Scholar
  35. 35.
    Hill, R.B.: Effects of 5-Hydroxytryptamine on Action Potentials and on Contractile Force in the Ventricle of Dolabella auricularia. J. Exp. Biol., 61, 529 (1974).Google Scholar
  36. 36.
    Hill, R.B.: Effects of Acetylcholine on Resting and Action Potentials and on Contractile Force in the Ventricle of Dolabella auricularia. J. Exp. Biol., 61, 629 (1974).Google Scholar
  37. 37.
    Suzuki, S.: Localization of Intracellular Calcium and its Translocation During Mechanical Activity in the Smooth Muscle of a Mollusk Dolabella auricularia. J. Electron Microsc., 26, 253(1977).Google Scholar
  38. 38.
    Sugi, H., and S. Suzuki: Ultrastructural and Physiological Studies on the Longitudinal Body Wall Muscle of Dolabella auricularia. Part 1. Mechanical Response and Ultrastructure. J. Cell. Biol., 79, 454 (1978).Google Scholar
  39. 39.
    Marino, N.: Hemocyanin from Dolabella auricularia. Part 4. Dissociation by DEAE Cellulose. J. Biochem. (Tokyo), 72, 29 (1972).Google Scholar
  40. 40.
    Watson, M.: Ph.D. Thesis, University of Hawaii. Some Aspects of the Pharmacology, Chemistry and Biology of the Midgut Gland Toxins of Some Hawaiian Sea Hares, especially Dolabella auricularia and Aplysia plumonica. Ann Arbor, Michigan: University Microfilms, Inc. 1969.Google Scholar
  41. 41.
    Scheuer, P.J.: Recent Developments in the Chemistry of Marine Toxins Devries, A., and E. Kochva, eds.). Toxins of Animal and Plant Origin. Vol. 2. Proceedings of the 2nd International Symposium on Animal and Plant Toxins. Tel Aviv, Israel, Feb. 22–28, 1970. New York, London: Gordon and Breach Science Publishers.Google Scholar
  42. 42.
    Watson, M.: Midgut Gland Toxins of Hawaiian Sea Hares. Part 1. Isolation and Preliminary Toxicological Observations. Toxicon, 11, 259 (1973).Google Scholar
  43. 43.
    Pettit, G.R., C.L. Herald, R.H. Ode, P. Brown, D.J. Gust, and C. Michel: The Isolation of Loliolide from an Indian Ocean Opisthobranch Mollusc. J. Nat. Prod., 43, 752(1980).Google Scholar
  44. 44.
    Pettit, G.R., Y. Kamano, Y. Fuji, C.L. Herald, M. Inoue, P. Brown, D. Gust, K. Kitahara, J.M. Schidt, D.L. Doubek, and C. Michel: Marine Animal Biosynthetic Constituents for Cancer Chemotherapy. J. Nat. Proc., 44, 482 (1981).Google Scholar
  45. 45.
    Pettit, G.R., Y. Kamano, R. Aoyagi, C.L. Herald, D.L. Doubek, J.M. Schmidt, and J.J. Rudloe: Antineoplastic Agents 100. The Marine Bryozoan Amathia convoluta. Tetrahedron, 41, 985 (1985).Google Scholar
  46. 46.
    Pettit, G.R., Y. Kamano, P. Brown, D. Gust, M. Inoue, and C.L. Herald: Structure of the Cyclic Peptide Dolastatin 3 from Dolabella auricularia. J. Amer. Chem. Soc., 104, 905(1982).Google Scholar
  47. 47.
    Pettit, G.R., Y. Kamano, C.W. Holzapfel, W.J. Van Zyl, A.A. Tuinman, C.L. Herald, L. Baczynskyj, and J.M. Schmidt: The Structure and Synthesis of Dolastatin 3. J. Amer. Chem. Soc., 109, 7581 (1987).Google Scholar
  48. 48.
    Pettit, G.R., Y. Kamano, C.L. Herald, Y. Fuji, H. Kizu, M.R. Boyd, F.E. Boettner, D.L. Doubek, J.M. Schmidt, J.-C. Chapuis, and C. Michel: Isolation of Dolastatins 10-15 from the Marine Mollusc Dolabella auricularia. Tetrahedron, 49, 9151 (1993).Google Scholar
  49. 49.
    Pettit, G.R., Y. Kamano, C.L. Herald, A.A. Tuinman, F.E. Boettner, H. Kizu, J.M. Schmidt, L. Baczynskyj, K.B. Tomer, and R.J. Bontems: The Isolation and Structure of a Remarkable Marine Animal Antineoplastic Constituent: Dolastatin 10. J. Amer. Chem. Soc., 109, 6883(1987).Google Scholar
  50. 50.
    Pettit, G.R., Y. Kamano, H. Kizu, C. Dufresne, C.L. Herald, R. Bontems, J.M. Schmidt, F.E. Boettner, and R.A. Nieman: Isolation and Structure of the Cell Growth Inhibitory Depsipeptides Dolastatins 11 and 12. Heterocycles, 28, 553 (1989).Google Scholar
  51. 51.
    Pettit, G.R., Y. Kamano, C.L. Herald, C. Dufresne, R.L. Cerny, D.L. Herald, J.M. Schmidt, and H. Kizu: Isolation and Structure of the Cytostatic Depsipeptide Dolastatin 13 from the Sea Hare Dolabella auricularia. J. Amer. Chem. Soc., 111, 5015 (1989).Google Scholar
  52. 52.
    Pettit, G.R., Y. Kamano, C.L. Herald, C. Dufresne, R.E. Bates, and J.M. Schmidt: Antineoplastic Agents 190. Isolation and Structure of the Cyclodepsipeptide Dolastatin 14. J. Org. Chem., 55, 2989 (1990).Google Scholar
  53. 53.
    Pettit, G.R., Y. Kamano, C. Dufresne, R.C. Cerny, C.L. Herald, and J.M. Schmidt: Isolation and Structure of the Cytostatic Linear Depsipeptide Dolastatin 15. J. Org. Chem., 54, 6005(1989).Google Scholar
  54. 54.
    Sone, H., T. Nemoto, M. Ojika, and K. Yamada: Isolation, Structure, and Synthesis of Dolastatin C, a New Depsipeptide from the Sea Hare Dolabella auricularia. Tetrahedron Lett., 34, 8445 (1993).Google Scholar
  55. 55.
    Sone, H., T. Nemoto, H. Ishiwata, M. Ojika, and K. Yamada: Isolation, Structure, and Synthesis of Dolastatin D, a Cytotoxic Cyclic Depsipeptide from the Sea Hare Dolabella auricularia. Tetrahedron Lett., 34, 8449 (1993).Google Scholar
  56. 56.
    Yamada, K.: Private communication.Google Scholar
  57. 57.
    Sone, H., T. Nemoto, and K. Yamada: Doliculols A and B, the Non-halogenated C15 Acetogenins with Cyclic Ether from the Sea Hare Dolabella auricularia. Tetrahedron Lett., 34, 3461(1993).Google Scholar
  58. 58.
    Ishiwata, H., H. Sone, H. Kigoshi, and K. Yamada: Enantioselective Total Synthesis of Doliculide, a Potent Cytotoxic Cyclodepsipeptide of Marine Origin, and Structure-Cytotoxicity Relationships of Synthetic Doliculide Congeners. Tetrahedron, 50, 12853 (1994).Google Scholar
  59. 59.
    Yamazaki, M: Antitumor and Antimicrobial Glycoproteins from Sea Hares. Comp. Biochem. Physiol, 105C, 141 (1993).Google Scholar
  60. 60.
    Pettit, G.R., D. Kantoci, D.L. Doubek, B.E. Tucker, W.E. Pettit, and R.M. Schroll: Isolation of the Nickel-Chlorin Chelate Tunichlorin from the South Pacific Sea Hare Dolabella auricularia. J. Nat. Prod., 56, 1981 (1993).Google Scholar
  61. 61.
    Pettit, G.R., P.S. Nelson, and C.W. Holzapfel: Synthesis of the cyclo-[(gly)Thz-(R)-and cyclo-[(gly)Thz-(S)-(gln)Thz-L-Val-L-Leu-L-Pro] Isomers of Dolastatin 3. J. Org. Chem., 50, 2654(1985).Google Scholar
  62. 62.
    Pettit, G.R., and C.W. Holzapfel: Synthesis of the Modified Dolastatin 3 Sequence cyclo-[L-Val-L-Leu-L-Pro-(R, S)-(gln)Thz-(gly)Thz]. J. Org. Chem, 51, 4586 (1986).Google Scholar
  63. 63.
    Pettit, G.R., and C. W. Holzapfel: Synthesis of the Dolastatin 3 Isomer cyclo-[L-Pro-L-Leu-L-Val-(R, S)-(gln)Thz-(gly)Thz]. J. Org. Chem., 51, 4580 (1986).Google Scholar
  64. 64.
    Holzapfel, C.W., and G.R. Pettit: Synthesis of the Dolastatin Thiazole Amino Acid Component (gln)Thz. J. Org. Chem, 50, 2323 (1985).Google Scholar
  65. 65.
    Eckart, K., U. Schmidt, and H. Shwarz: Amino Acids and Peptides; 60. Synthesis of Biologically Active Cyclopeptides; 10. Synthesis of 16 Structural Isomers of Dolastatin 3; II: Synthesis of the Linear Educts and the Cyclopeptides. Liebigs Ann. Chem, 1940 (1986).Google Scholar
  66. 66.
    Schmidt, U., and R. Utz: Synthetic Studies on the Elucidation of the Structure and Configuration of Dolastatin 3. Angew Chem, Int. Ed. Engl., 23, 725 (1984).Google Scholar
  67. 67.
    Hamada, Y., K. Kohda, and T. Shioiri: Proposed Structure of the Cyclic Peptide Dolastatin 3, A Powerful Cell Growth Inhibitor, Should Be Revised! Tetrahedron Lett., 25, 5303(1984).Google Scholar
  68. 68.
    Schmidt, U., and D. Weller: Total Synthesis of Ulithiacyclamide. Tetrahedron Lett., 27, 3495(1986).Google Scholar
  69. 69.
    Schmidt, U., R. Utz, A. Lieberknecht, H. Griesser, B. Potzolli, J. Bahr, K. Wagner, and P. Fischer: Sequenzierung von Thiazolaminosäuren enthaltenden Cyclopentapeptiden (“Dolastatin 3”) durch FAB/MSMS. Synthesis, 236 (1987).Google Scholar
  70. 70.
    Bernier, J.-L., R. Houssin, and J.-P. Henichart: Analog of Dolastatin 3. Synthesis, 1H-NMR Studies and Spatial Conformation. Tetrahedron, 42, 2695 (1986).Google Scholar
  71. 11.
    Holzapfel, C.W., G.R. Pettit, and G.M. Cragg: Biosynthetic Product Molecular Weight Determimations by Solution Phase Secondary Ion Mass Spectrometry Employing Group 1A Metal Salts. J. Nat. Prod., 48, 513 (1985).Google Scholar
  72. 72.
    Pettit, G.R., S.B. Singh, F. Hogan, P. Lloyd-Williams, D.L. Herald, D.D. Burkett, and PJ. Clewlow: The Absolute Configuration and Synthesis of Natural (−)-Dolastatin 10. J. Amer. Chem. Soc., 111, 5463 (1989).Google Scholar
  73. 73.
    Hayashi, K., Y. Hamada, and T. Shioiri: Synthetic Study on Dolastatin 10, an Antineoplastic Pentapeptide of Marine Origin. In: Peptide Chemistry (YANAIHARA, N., ed.), p. 291. Osaka: Protein Research Foundation. 1990.Google Scholar
  74. 74.
    Kano, S., Y. Yuasa, and S. Shibuya: Highly Diastereoselective Synthesis of N-Boc Dolaisoleuine, Unusual Amino Acid in Dolastatin 10. Heterocycles, 31, 1597 (1990).Google Scholar
  75. 75.
    Maugras, I., J. Poncet, and P. Jouin: Stereocontrolled Synthesis of N, O-Di-methyl-γ-Amino-β-Hydroxy Acids: Analogues of the (R)-Melle-Ψ(CHOMe)-Gly Residue of the Cytotoxic Marine Pseudopeptide Dolastatin 10. Tetrahedron, 46, 2807 (1990).Google Scholar
  76. 76.
    Bredenkamp, M.W., C.W. Holzapfel, R.M. Snyman, and W.J. Van Zyl: Observations on the Hantzsch Reaction: Synthesis of N-tBoc-S-Dolaphenine. Synth. Commun., 22, 3029(1992).Google Scholar
  77. 77.
    Hamada, Y., K. Hayashi, and T. Shioiri: Efficient Stereoselective Synthesis of Dolastatin 10, an Antineoplastic Peptide from a Sea Hare. Tetrahedron Lett., 32, 931 (1991).Google Scholar
  78. 78.
    Tomioka, K., M. Kanai, and K. Koga: An Expeditious Synthesis of Dolastatin 10. Tetrahedron Lett., 32, 2395 (1991).Google Scholar
  79. 79.
    Shioiri, T., K. Hayashi, and Y. Hamada: Stereoselective Synthesis of Dolastatin 10 and Its Congeners. Tetrahedron, 49, 1913 (1993).Google Scholar
  80. 80.
    Roux, F., I. Maugras, J. Poncet, G. Niel, and P. Jouin: Synthèse de la Dolastatine 10 et de la [R-Doe]-Dolastatine 10. Tetrahedron, 50, 5345 (1994).Google Scholar
  81. 81.
    Ireland, C.M., and P.J. Scheuer: Ulicyclamide and Ulithiacyclamide, Two New Small Peptides from a Marine Tunicate. J. Amer. Chem. Soc., 102, 5688 (1980).Google Scholar
  82. 82.
    Ireland, C.M., A.R. Durso, JR., R.A. Newman, and M.P. Hacker: Antineoplastic Cyclic Peptides from the Marine Tunicate Lissoclinum Patella. J. Org. Chem., 47, 1807 (1982).Google Scholar
  83. 83.
    Biskupiak, J.E., and C.M. Ireland: Absolute Configuration of Thiazole Amino Acids in Peptides. J. Org. Chem., 48, 2302 (1983).Google Scholar
  84. 84.
    Hamamoto, Y., M. Endo, M. Nakagawa, T. Nakanishi, and K. Mizukawa: A New Cyclic Peptide, Ascidiacyclamide, Isolated from Ascidian. J. Chem. Soc., Chem. Commun., 323 (1983).Google Scholar
  85. 85.
    Wasylyk, J.M., J.E. Biskupiak, C.E. Costello, and C.M. Ireland: Cyclic Peptide Structures from the Tunicate Lissoclinum Patella by FAB Mass Spectrometry. J. Org. Chem., 48, 4445 (1983).Google Scholar
  86. 86.
    Hamada, Y., S. Kato, and T. Shioiri: New Methods and Reagents in Organic Synthesis. 51. A Synthesis of Ascidiacyclamide, a Cytotoxic Cyclic Peptide from Ascidian — Determination of Its Absolute Configuration. Tetrahedron Lett., 26, 3223 (1985).Google Scholar
  87. 87.
    Hamada, Y., M. Shibata, and T. Shioiri: New Methods and Reagents in Organic Synthesis. 58. A Synthesis of Patellamide A, a Cytotoxic Cyclic Peptide from a Tunicate. Revision of Its Proposed Structure. Tetrahedron Lett., 26, 6501 (1985).Google Scholar
  88. 88.
    Hamada, Y., M. Shibata, and T. Shioiri: New Methods and Reagents in Organic Synthesis. 55. Total Syntheses of Patellamides B and C, Cytotoxic Cyclic Peptides from a Tunicate. 1. Their Proposed Structures Should Be Corrected. Tetrahedron Lett., 26, 5155(1985).Google Scholar
  89. 89.
    Hamada, Y., M. Shibata, and T. Shioiri: New Methods and Reagents in Organic Synthesis. 56. Total Syntheses of Patellamides B and C, Cytotoxic Cyclic peptides from a Tunicate. 1. Their Real Structures have been Determined by Their Syntheses. Tetrahedron Lett., 26, 5159 (1985).Google Scholar
  90. 90.
    Schmidt, U., R. Utz, and P. Gleich: What is the Structure of the Patellamides? Tetrahedron Lett., 26, 4367 (1985).Google Scholar
  91. 91.
    Schmidt, U., and H. Griesser: Total Synthesis and Structure Determination of Patellamide B. Tetrahedron Lett., 27, 163 (1986).Google Scholar
  92. 92.
    Kato, S., Y. Hamada, and T. Shioiri: Total Synthesis of Ulithiacyclamide, a Strong Cytotoxic Cyclic Peptide. Tetrahedron Lett., 27, 2653 (1986).Google Scholar
  93. 93.
    Schmidt, U., and P. Gleich: Total Synthesis of Ulicyclamide. Angew. Chem., Int. Ed. Engl., 24, 569 (1985).Google Scholar
  94. 94.
    Bredenkamp, M., C. Holzapfel, and W. Van Zyl: The Chiral Synthesis of Thiazole Amino Acid Enantiomers. Synth. Commun., 20, 2235 (1990).Google Scholar
  95. 95.
    Kelly, R.C., I. Gebhard, and N. Wicnienski: Synthesis of (R)-and (S)-(glu)Thz and the Corresponding Bisthiazole Dipeptide of Dolastatin 3. J. Org. Chem., 51, 4590 (1986).Google Scholar
  96. 96.
    Pettit, G.R., F. Hogan, D.D. Burkett, S.B. Singh, D. Kantoci, J. Srirangam, and M.D. Williams: The Dolastatins 16. Synthesis of Dolaphenine. Heterocycles, 39, 81 (1994).Google Scholar
  97. 97.
    Parikh, J.R., and W. Von E. Doering: Sulfur Trioxide in the Oxidation of Alcohols by Dimethyl Sulfoxide. J. Amer. Chem. Soc., 89, 5505 (1967).Google Scholar
  98. 98.
    Fatiadi, A.J.: Active Manganese Dioxide Oxidation in Organic Chemistry. Synthesis, 65, 133 (1976).Google Scholar
  99. 99.
    Hayashi, K., Y. Hamada, and T. Shioiri: Stereoselective Total Synthesis of Dolastatin 10 Utilizing the Evans-Aldol Reaction. In: Third Symposium on the Chemistry of Natural Products. Osaka. 1991.Google Scholar
  100. 100.
    Irako, N., Y. Hamada, and T. Shioiri: A New Efficient Synthesis of (S)-Dolaphenine ((S)-2-Phenyl-l-(2-thiazolyl)ethylamine), the C-Terminal Unit of Dolastatin 10. Tetrahedron, 48, 7251 (1992).Google Scholar
  101. 101.
    Schmidt, U., P. Gleich, H. Griesser, and R. Utz: Synthesis of Optically Active 2-(l-Hydroxyalkyl)-thiazole-4-carboxylic Acids and 2-(l-Aminoalkyl)-thiazole-4-carboxylic Acids. Synthesis, 992 (1986).Google Scholar
  102. 102.
    Rinehart, K.L., R. Sakai, V. Kishore, D.W. Sullins, and K.-M. Li: Synthesis and Properties of the Eight Isostatine Stereoisomers. J. Org. Chem., 57, 3007 (1992).Google Scholar
  103. 103.
    Rinehart, K.L., B. Kishore, S. Nagarajan, R.J. Lake, J.B. Gloer, F.A. Bozich, K.-M. Li, R.E. Maleczka, JR., W.L. Todsen, M.H.G. Munro, D.W. Sullins, and R. Sakai: Total Synthesis of Didemnins A, B, and C. J. Amer. Chem. Soc., 109, 6846 (1987).Google Scholar
  104. 104.
    Schmidt, U., M. Kroner, and H. Griesser: Total Synthesis of the Didemnins-2. Synthesis of Didemnin A, B, C and Prolyldidemnin A. Tetrahedron Lett., 29, 4407 (1988).Google Scholar
  105. 105.
    Hamada, Y., Y. Kondo, M. Shibata, and T. Shioiri: Efficient Total Synthesis of Didemnins A and B. J. Amer. Chem. Soc., 111, 669 (1989).Google Scholar
  106. 106.
    Maibaum, J., and D.H. Rich: Inhibition of Porcine Pepsin by Two Substrate Analogues Containing Statine. The Effect of Histidine at the P2 Subsite on the Inhibition of Aspartic Proteinases. J. Med. Chem., 31, 625 (1988).Google Scholar
  107. 107.
    Wagner, I., and H. Musso: New Naturally Occurring Amino Acids. Angew. Chem., Int. Ed. Engl., 22, 816(1983).Google Scholar
  108. 108.
    Ewing, W.R., B.D. Harris, K.L. Bhat, and M.M. Jouillié: Synthetic Studies of the Detoxin Complex. 1. Total Synthesis of ( − )-Detoxinine. Tetrahedron, 42, 2421 ( 1986).Google Scholar
  109. 109.
    Hagiwara, H., K. Kimura, and H. Uda: High Diastereoselection in the Aldol Reaction of the Bistrimethylsilyl Enol Ether of Methyl Acetoacetate with 2-Benzyloxyhexanal. Synthesis of (−)-Pestalotin. J. Chem. Soc., Perkin Trans. 1, 693 (1992).Google Scholar
  110. 110.
    Franck-Nhumann, M., P.-J. Colson, P. Geoffroy, K.M. Taba: The Aldol Condensation Reaction of Diene (Tricarbonyl)iron Complexes. From Metal Coordinated Trimethylsilyl Enol Ethers to Polyols of Known Configuration. Tetrahedron Lett., 33, 1903 (1992).Google Scholar
  111. 111.
    Kobayashi, S., and I. Hachiya: The Aldol Reaction of Silyl Enol Ethers with Aldehydes in Aqueous Media. Tetrahedron Lett., 33, 1625 (1992).Google Scholar
  112. 112.
    Devant, R.M., and H.-E. Radunz: A Short Novel and Efficient Asymmetric Synthesis of Statine Analogues. Tetrahedron Lett., 29, 2307 (1988).Google Scholar
  113. 113.
    Wuts, P.G.M., and S.R. Putt: Synthesis of N-Boc-Statine and epi-Statine. Synthesis, 951 (1989).Google Scholar
  114. 114.
    Pettit, G.R., S.B. Singh, D.L. Herald, P. Lloyd-Williams, D. Kantoci, D.D. Burkett, J. Barkóczy, F. Hogan, and T.R. Wardlaw: The Dolastatins. 17. Synthesis of Dolaproine and Related Diastereoisomers. J. Org. Chem., 59, 6287 (1994).Google Scholar
  115. 115.
    Smith, A.B., III, T.L. Leenay, H.-J. Liu, L.A.K. Nelson, and R.G. Ball: A Caveat on the Swern Oxidation. Tetrahedron Lett., 29, 49 (1988).Google Scholar
  116. 116.
    Braun, M., and R. Devant: Effective Synthetic Equivalents of a Chiral Acetate Enolate. Tetrahedron Lett., 25, 5031 (1984).Google Scholar
  117. 117.
    Kantoci, D., G.R. Pettit, and T.R. Wardlaw: Efficient Separation of Dolaproine Stereoisomers by Optimization of a Three Component Chromatographic Solvent System. J. Liq. Chromatogr., 13, 3915 (1990).Google Scholar
  118. 118.
    Pettit, G.R., S.B. Singh, F. Hogan, and D.D. Burkett: Chiral Modifications of Dolastatin 10: The Potent Cytostatic Peptide(19aR)-Isodolastatin 10. J. Med. Chem., 33, 2177(1990).Google Scholar
  119. 119.
    Diem, M.J., D.F. Burow, and J.L. Fry: Oxonium Salt Alkylation of Structurally and Optically Labile Alcohols. J. Org. Chem., 42, 180 (1990).Google Scholar
  120. 120.
    Walker, M.A., and C.H. Heathcock: Extending the Scope of the Evans Asymmetric Aldol Reaction: Preparation of Anti and Non-Evans Syn Aldols. J. Org. Chem., 56, 5747(1991).Google Scholar
  121. 121.
    Gage, J.R., and D.A. Evans: Diastereoselective Aldol Condensation Using a Chiral Oxazolidinone Auxiliary: (2S*, 3S*)-3-Hydroxy-3-Phenyl-2-Methylpropanoic Acid. Org. Synth., 68, 83(1989).Google Scholar
  122. 122.
    Van Draanen, N.A., S. Arseniyadis, M.T. Crimmins, and C.H. Heathcock: Protocols for the Preparation of Each of the Four Possible Stereoisomeric α-Alkyl-β-hydroxy Carboxylic Acids from a Single Chiral Aldol Reagent. J. Org. Chem., 56, 2499 (1991).Google Scholar
  123. 123.
    Heathcock, C.H.: Understanding and Controlling Diastereofacial Selectivity in Carbon-Carbon Bond-Forming Reactions. Aldrichimica Acta, 23, 99 (1990).Google Scholar
  124. 124.
    Danda, H., M.M. Hansen, and C.H. Heathcock: Reversal of Stereochemistry in the Aldol Reactions of a Chiral Boron Enolate. J. Org. Chem., 55, 173 (1990).Google Scholar
  125. 125.
    Pettit, G.R., S.B. Singh, J.K. Srirangam, F. Hogan-Pierson, and M.D. Williams: The Dolastatins. 19. Synthesis of Dolaisoleuine. J. Org. Chem., 59, 1796 (1994).Google Scholar
  126. 126.
    Pettit, G.R., M.D. Williams, J.K. Srirangam, F. Hogan, N.L. Benoiton, and D. Kantoci: The dolastatins 25. Conformational isomerism of N-benzyloxycarbonyl-N-methylisoleucinol and related substances. J. Chem. Soc., Perkin Trans. 2, 919 (1995).Google Scholar
  127. 127.
    Mcdermott, J.R., and N.L. Benoiton: N-Methylamino Acids in Peptides Synthesis. III. Racemization During Deprotection by Saponification and Acidolysis. Can. J. Chem., 51, 2555 (1973).Google Scholar
  128. 128.
    Mcdermott, J.R., and N.L. Benoiton: N-Methylamino Acids in Peptides Synthesis. IV. Racemization and Yields in Peptide-Bond Formation. Can. J. Chem., 51, 2562 (1973).Google Scholar
  129. 129.
    Mcdermott, J.R., and N.L. Benoiton: N-Methylamino Acids in Peptides Synthesis. II. A New Synthesis of N-Benzyloxycarbonyl N-Methylamino Acids. Can. J. Chem., 51, 1915(1973).Google Scholar
  130. 130.
    Evans, D.A., J. Bartroli, and T.L. Shih: Enantioselective Aldol Condensations. 2. Erythro-Selective Chiral Aldol Condensations via Boron Enolates. J. Amer. Chem. Soc., 103, 2127(1981).Google Scholar
  131. 131.
    Boger, D.L., and T.T. Curran: Synthesis of the Lower Subunit of Rhizoxin. J. Org. Chem., 50, 1830(1985).Google Scholar
  132. 132.
    Gutierrez, C.G., and L.R. Summerhays: Organotin-Mediated Selective Desulfurization: Tri-N-butyltin Hydride Reduction of Unsymmetric Sulfides. J. Org. Chem., 49, 5206(1984).Google Scholar
  133. 133.
    Anderson, G.W., and F.M. Callahan: t-Butyl Esters of Amino Acids and Peptides and Their Use in Peptide Synthesis. J. Amer. Chem. Soc., 82, 3359 (1960).Google Scholar
  134. 134.
    Cook, B., R.R. Hill, and G.E. Jeffs: Efficient One-Step Synthesis of Diastereoisomeric Cyclic Dipeptides from Amino Acids: Three Diastereoisomers of Cyclo-L-isoleucyl-L-isoleucine. J. Chem. Soc., Perkin Trans. 1, 1199 (1992).Google Scholar
  135. 135.
    Abraham, R.J., J.T. Jackson, and W.A. Thomas: The Fixed Conformation of the Leucyl Side-Chain in a Tripeptide. Org. Mag. Res., 14, 543 (1980).Google Scholar
  136. 136.
    Torii, K., and Y. Iitaka: The Crystal Structure of L-Isoleucine. Acta Crystallogr., B27, 2237(1971).Google Scholar
  137. 137.
    Coggins, J.J.R., and N.L. Benoiton: Synthesis of N-Methylamino Acid Derivative from Amino Acid Derivatives Using Sodium Hydride-Methyl Iodide. Can. J. Chem., 49, 1968(1971).Google Scholar
  138. 138.
    Steinauer, R., F.M.F. Chen, and N.L. Benoiton: N-Methylamino Acids in Peptide Synthesis. Int. J. Peptide Protein Res., 26, 109 (1985).Google Scholar
  139. 139.
    Pettit, G.R., J. Barkoczy, J.K. Srirangam, S.B. Singh, D.L. Herald, M.D. Williams, D. Kantoci, F. Hogan, and T.L. Groy: The Dolastatins. 22. Synthesis of Boc-dolaproinyl-dolaphenine and Four Related Chiral Isomers. J. Org. Chem., 59, 2935(1994).Google Scholar
  140. 140.
    Wenger, R.M.: Synthesis of Cyclosporine and Analogues: Structural Requirements for Immunosuppressive Activity. Angew. Chem., Int. Ed. Engl., 24, 77 (1985).Google Scholar
  141. 141.
    Coste, J., M.-M. Dufour, A. Pantaloni, and B. Castro: BROP: A New Reagent for Coupling N-Methylated Amino Acids. Tetrahedron Lett., 31, 669 (1990).Google Scholar
  142. 142.
    Yamada, S., I. Ikota, T. Shioiri, and S. Tachibana: Diphenyl Phosphorazidate (DPPA) and Diethyl Phosphorocyanidate (DEPC), Two New Reagents for Solid-Phase Peptide Synthesis and Their Application to the Synthesis of Porcine Motulin. J. Amer. Chem. Soc., 97, 7174 (1975).Google Scholar
  143. 143.
    Bowman, R.E., and H.H. Stroud: N-Substituted Amino-acids. Part 1. A New Method of Preparation of Dimethylamino-acids. J. Chem. Soc., 1342 (1950).Google Scholar
  144. 144.
    Pettit, G.R., J.K. Srirangam, S.B. Singh, M.D. Williams, D.L. Herald, J. Barkoczy, D. Kantoci, and F. Hogan: The Dolastatins. 24. Synthesis of (−)-dolastatin 10. J. Chem. Soc., Perkin Trans. 1, 859 (1996).Google Scholar
  145. 145.
    Shioiri, T.: Total Synthesis of Dolastatin 10, an Antitumor Marine Peptide Containing Unusual Amino Acids. Chem. Soc. Jpn., 52, 392 (1994).Google Scholar
  146. 146.
    Pettit, G.R., J.K. Srirangam, J. Barkoczy, M.D. Williams, K.P.M. Durkin, M.R. Boyd, R. Bai, E. Hamel, J.M. Schmidt, and J.-C. Chapuis: Antineoplastic Agents 337. Synthesis of dolastatin 10 structural modifications. Anti-Cancer Drug Design, 10, 529 (1995).Google Scholar
  147. 147.
    Aguilar, E., and A.I. Meyers: Reinvestigation of a Modified Hantzsch Thiazole Synthesis. Tetrahedron Lett., 35, 2473 (1994).Google Scholar
  148. 148.
    Pettit, G.R., D. Kantoci, D.L. Herald, J. Barkoczy, and J.A. Slack: Procedures for the Analyses of Dolastatins 10 and 15 by High Performance Liquid Chromatography. J. Liq. Chromatogr., 17, 191 (1994).Google Scholar
  149. 149.
    Pettit, G.R., J.K. Srirangam, D.L. Herald, and E. Hamel: The Dolastatins. 21. Synthesis, X-ray Crystal Structure, and Molecular Modeling of (6R)-Isodolastatin 10. J. Org. Chem., 59, 6127 (1994).Google Scholar
  150. 150.
    Hamel, E.: Interactions of Tubulin with Small Ligands. In: Microtubule Proteins (Avila, J., ed.), p. 89. Boca Raton: CRC Press. 1990.Google Scholar
  151. 151.
    Bai, R., G.R. Pettit, and E. Hamel: Structure-Activity Studies with Chiral Isomers and with Segments of the Antimitotic Marine Peptide Dolastatin 10. Biochem. Pharmacol., 40, 1859(1990).Google Scholar
  152. 152.
    Bai, R., G.R. Pettit, and E. Hamel: Binding of Dolastatin 10 to Tubulin at a Distinct Site for Peptide Antimitotic Agents Near the Exchangeable Nucleotide and Vinca Alkaloid Sites. J. Biol. Chem., 265, 17141 (1990).Google Scholar
  153. 153.
    Bai, R., G.R. Pettit, and E. Hamel: Dolastatin 10, A Powerful Cytostatic Peptide Derived from a Marine Animal: Inhibition of Tubulin Polymerization Mediated through the Vinca Alkaloid Binding Domain. Biochem. Pharmacol., 39, 1941 (1990).Google Scholar
  154. 154.
    Bai, R., M.C. Roach, S.K. Jayaram, J. Barkoczy, G.R. Pettit, R.F. Luduena, and E. Hamel: Differential Effects of Active Isomers, Segments, and Analogs of Dolastatin 10 on Ligand Interactions with Tubulin. Biochem. Pharmacol., 45, 1503 (1993).Google Scholar
  155. 155.
    Kirst, H.A., E.F. Szymanski, D.E. Dormann, J.L. Occolowitz, N.D. Jones, M.O. Chaney, R.L. Hamill, and M.M. Hoehn: Structure of Althiomycin. J. Antibiotics, 28, 286(1975).Google Scholar
  156. 156.
    Cardellina, J.H. II, F.-J. Marner, and R.E. Moore: Malyngamide A, a Novel Chlorinated Metabolite of the Marine Cyanophyte Lyngbya majuscula. J. Amer. Chem. Soc., 101, 240 (1979).Google Scholar
  157. 157.
    Cardellina, J.H. II, and R.E. Moore: The Structure of Pukeleimides A, B, C, D, E, F, and G. Tetrahedron Lett., 2007 (1979).Google Scholar
  158. 158.
    Von Hofheinz, W., and W.E. Oberhansli: Dysidin, ein neuartiger, chlorhaltiger Naturstoff aus dem Schwamm Dysidea herbacea. Helv. Chim. Acta, 60, 660 (1977).Google Scholar
  159. 159.
    Gebreyesus, T., T. Yosief, S. Carmely, and Y. Kashman: Dysidamide, a Novel Hexachloro-metabolite from a Red Sea Sponge Dysidea sp. Tetrahedron Lett., 29, 3863 (1988).Google Scholar
  160. 160.
    Oikawa, Y., K. Sugano, and O. Yonemitsu: Meldrum’s Acid in Organic Synthesis. 2. A General and Versatile Synthesis of β-Keto Esters. J. Org. Chem., 43, 2087 (1978).Google Scholar
  161. 161.
    Pettit, G.R., T.J. Thornton, J.T. Mullaney, M.R. Boyd, D.L. Herald, S.B. Singh, and E.J. Flahive: The Dolastatins 20. A Convenient Route to Dolastatin 15. Tetrahedron, 50, 12097(1994).Google Scholar
  162. 162.
    Jouin, P., B. Castro, and D. Nisato: Stereospecific Synthesis of N-Protected Statine and Its Analogues via Chiral Tetramic Acid. J. Chem. Soc., Perkin Trans. 1, 1177 ( 1987).Google Scholar
  163. 163.
    Patino, N., Frerot, N. Galeotti, J. Poncet, J. Coste, M.-N. Dufour, and P. Jouin: Total Synthesis of the Proposed Structure of Dolastatin 15. Tetrahedron, 48, 4115 (1992).Google Scholar
  164. 164.
    Ishiwata, H., H. Sone, H. Kigoshi, and K. Yamada: Total Synthesis of Doliculide, a Potent Cytotoxic Cyclodepsipeptide from the Japanese Sea hare Dolabella auricularia. J. Org. Chem., 59, 4712 (1994).Google Scholar
  165. 165.
    Ojika, M., H. Kigoshi, T. Ishigaki, and K. Yamada: Further Studies on Aplyronine A, an Antitumor Substance Isolated from the Sea Hare Aplysia kurodai. Tetrahedron Lett., 34, 8501(1993).Google Scholar
  166. 166.
    Kigoshi, H., M. Ojika, T. Ishigaki, K. Suenaga, T. Mutou, A. Sakakura, T. Ogawa, and K. Yamada: Total Synthesis of Aplyronine A, a Potent Antitumor Substance of Marine Origin. J. Amer. Chem. Soc., 116, 7443 (1994).Google Scholar
  167. 167.
    Ojika, M., T. Yoshida, and K. Yamada: Aplysepine, a Novel 1, 4-Benzodiazepine Alkaloid from the Sea Hare Aplysia kurodai. Tetrahedron Lett., 33, 5307 (1993).Google Scholar
  168. 168.
    Quentmeier, H., S. Brauer, G.R. Pettit, and H.D. Drexler: Cytostatic Effects of Dolastatin 10 and Dolastatin 15 on Human Leukemia Cell Lines. Leukemia and Lymphoma, 6, 245(1992).Google Scholar
  169. 169.
    Steube, K.G., H. Quentmeier, G.R. Pettit, T. Pietsch, S. Brauer, D. Grunicke, S.M. Gignac, and H.G. Drexler: Inhibition of Cellular Proliferation by the Natural Peptides Dolastatin 10 and Dolastatin 15. Mol. Biol. Haematapoiesis, 2, 567 (1992).Google Scholar
  170. 170.
    Steube, K.G., D. Grunicke, T. Pietsch, S.M. Gignac, G.R. Pettit, and H.G. Drexler: Dolastatin 10 and Dolastatin 15: Effects of Two Natural Peptides on Growth and Differentiation of Leukemia Cells. Leukemia, 6, 1048 (1992).Google Scholar
  171. 171.
    Hu, Z.-B., S.M. Gignac, H. Quentmeier, G.R. Pettit, and H.G. Drexler: Effects of Dolastatins on Human B-Lymphocytic Leukemia Cell Lines. Leukemia Res., 17, 333 (1993).Google Scholar
  172. 172.
    Kim, I.K., B.S. Lee, Y.T. Hong, H.S. Choi, and N.Y. Kwon: Synthesis of Dolastatin 10 Analogues. J. Korean Chem. Soc., 38, 763 (1994).Google Scholar
  173. 173.
    Luduena, R.F., M.C. Roach, V. Prasad, and G.R. Pettit: Interaction of Dolastatin 10 with Bovine Brain Tubulin. Biochem. Pharmacol., 43, 539 (1992).Google Scholar
  174. 174.
    Bai, R., G.F. Taylor, J.M. Schmidt, M.D. Williams, J.A. Kepler, G.R. Pettit, and E. Hamel: Interaction of Dolastatin 10 with Tubulin: Induction of Aggregation and Binding and Dissociation Reactions. Mol. Pharmacol. 47, 965 (1995).Google Scholar
  175. 175.
    Bai, R., S.J. Friedman, G.R. Pettit, and E. Hamel: Dolastatin 15, a Potent Antimitotic Depsipeptide Derived from Dolabella auricularia. Interaction with Tubulin and Effects on Cellular Microtubules. Biochem. Pharmacol., 43, 2637 (1992).Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • G. R. Pettit
    • 1
  1. 1.Cancer Research Institute and Department of ChemistryArizona State UniversityTempeUSA

Personalised recommendations