Advertisement

The Normal and Pathological Physiology of Brain Water

  • K. G. Go
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 23)

Summary

The physicochemical properties of water enable it to act as a solvent for electrolytes, and to influence the molecular configuration and hence the function— enzymatic in particular—of Polypeptide chains in biological systems. The association of water with electrolytes determines the osmotic regulation of cell volume and allows the establishment of the transmembrane ion concentration gradients that underlie nerve excitation and impulse conduction.

Keywords

Apparent Diffusion Coefficient Choroid Plexus Arachnoid Cyst Brain Water Content Pathological Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarabi B, Long DM (1979) Dynamics of cerebral edema. The role of an intact vascular bed in the production and propagation of vasogenic brain edema. J Neurosurg 51: 779–784PubMedGoogle Scholar
  2. 2.
    Aleu FP, Katzman R, Terry RD (1963) Fine structure and electrolyte analysis of cerebral edema induced by alkyltin intoxication. J Neuropath Exp Neurol 22: 403–413PubMedGoogle Scholar
  3. 3.
    Alksne JF, Lovings ET (1972) Functional ultrastructure of the arachnoid villus. Arch Neurol 27: 371–377PubMedGoogle Scholar
  4. 4.
    Alksne JF, White LE (1965) Electron microscopic study of the effect of increased intracranial pressure on the arachnoid villus. J Neurosurg 22: 481–488PubMedGoogle Scholar
  5. 5.
    Amenta F, Cavalotti C, Collier WL, Ferrante F, Napoleone P (1989) 3H-muscimol binding sites within the rat choroid plexus: pharmacological characterization and autoradiographic localization. Pharmacol Res 21: 369–373PubMedGoogle Scholar
  6. 6.
    Ames A III, Sakanoue M, Endo S (1964) Na, K, Ca, Mg and Cl concentrations in choroid plexus fluid and cisternal fluid compared with plasma ultrafiltrate. J Neurophysiol 27: 672–681PubMedGoogle Scholar
  7. 7.
    Andersen BJ, Unterberg AW, Clarke GD, Marmarou A (1988) Effect of posttraumatic hypoventilation on cerebral energy metabolism. J Neurosurg 68: 601–607PubMedGoogle Scholar
  8. 8.
    Andersson B, Westbye O (1970) Synergistic action of sodium and angiotensin on brain mechanisms controlling fluid balance. Life Sci 9: 601–608Google Scholar
  9. 9.
    Andres KH (1967) Zur Feinstruktur der Arachnoidalzotten bei Mammalia. Z Zellforsch 82: 92–109PubMedGoogle Scholar
  10. 10.
    Ariëns-Kappers CU (1929) The evolution of the nervous system in invertebrates, vertebrates and man. de Erven, Bohn, HaarlemGoogle Scholar
  11. 11.
    Back A (1993) Liquid water and the origin of life. Orig Life Evol Biosph 23: 3–10Google Scholar
  12. 12.
    Baethmann A, Reulen HJ, Brendel W (1968) Die Wirkung des Antimetaboliten 6-Aminonicotinamid (6-ANA) auf Wasser-und Elektrolytgehalt des Rattenhirns und ihre Hemmung durch Nicotinsäure. Zschr Ges Exp Med 146: 226–240Google Scholar
  13. 13.
    Baethmann A, Van Harreveld A (1973) Water and electrolyte distribution in gray matter rendered edematous with a metabolic inhibitor. J Neuropath Exp Neurol 32: 408–423PubMedGoogle Scholar
  14. 14.
    Bakay L, Kobayashi T (1971) Cerebral isotope uptake in acute experimental hypercapnic hypoxia. Exp Neurol 32: 303–312PubMedGoogle Scholar
  15. 15.
    Baldissera S, Menani JW, Sotero dos Santos LF, Favaretto ALV, Gutkowska J, Turrin MQA, McCann SM, Antunes-Rodriguez J (1989) Role of the hypothalamus in the control of atrial natriuretic peptide release. Proc Natl Acad Sci USA 86: 9621–9625PubMedGoogle Scholar
  16. 16.
    Banks WA, Kastin AJ, Fischman AJ, Coy DH, Strauss SL (1986) Carriermediated transport of enkephalins and N-Tyr-MIF-1 across blood-brain barrier. Am J Physiol (London) 251: E477–482Google Scholar
  17. 17.
    Bedford JJ, Leader JP (1993) Response of tissues of the rat to anisosmolarity in vivo. Am J Physiol 264: R1164–R1179PubMedGoogle Scholar
  18. 18.
    Beks JWF, Kerckhoffs HPM (1972) Studies on the water content of cerebral tissues and intracranial pressure in vasogenic brain oedema. In: Brock M, Dietz H (eds) Intracranial pressure. Springer, Berlin Heidelberg New York Tokyo, pp 119–126Google Scholar
  19. 19.
    Berendsen HJC (1975) Specific interactions of water with biopolymers. In: Franks F (ed) Water, a comprehensive treatise, 5. Water in disperse systems. Plenum, New York, pp 293–330Google Scholar
  20. 20.
    Berendsen HJC, Edzes HT (1973) The observation and general interpretation of sodium magnetic resonance in biological material. Ann NY Acad Sci 204: 459–489PubMedGoogle Scholar
  21. 21.
    Berger HA, Travis SM, Welsh MJ (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl channel by specific protein kinases and protein phosphatases. J Biol Chem 268: 2037–2047PubMedGoogle Scholar
  22. 22.
    Bering EA (1958) Problems of the dynamics of the cerebrospinal fluid with particular reference to the formation of cerebrospinal fluid and its relationship to cerebral metabolism. Clin Neurosurg 5: 77–98Google Scholar
  23. 23.
    Betz AL, Firth JA, Goldstein GW (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res 192: 17–28PubMedGoogle Scholar
  24. 24.
    Betz AL (1983a) Sodium transport in capillaries isolated from rat brain. J Neurochem 41: 1150–1157PubMedGoogle Scholar
  25. 25.
    Betz AL (1983b) Sodium transport from blood to brain: inhibition by furosemide and amiloride. J Neurochem 41: 1158–1164PubMedGoogle Scholar
  26. 26.
    Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1: 413–426PubMedGoogle Scholar
  27. 27.
    Bodsch W, Hossmann KA (1983) 125I-antibody autoradiography and peptide fragments of albumin in cerebral edema. J Neurochem 41: 239–243PubMedGoogle Scholar
  28. 28.
    Braakman R, Schouten HJA, Blaauw-van Dishoeck M, Minderhoud M (1983) Megadose steroids in severe head injury. Results of a prospective double-blind clinical trial. J Neurosurg 58: 326–330PubMedGoogle Scholar
  29. 29.
    Bradbury MWB, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240: F329–F336PubMedGoogle Scholar
  30. 30.
    Brightman MW, Hori M, Rapoport SI, Reese TS, Westergaard E (1973) Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152: 317–326PubMedGoogle Scholar
  31. 31.
    Brody MJ, Alpers RH, O’Neill TP, Porter JP (1986) 1. Central neural control of the cardiovascular system. In: Zanchetti A, Tarazi RC (eds) Pathophysiology of hypertension, Handbook of hypertension, vol 8. Elsevier, Amsterdam, pp 1–25Google Scholar
  32. 32.
    Bullock R, Maxwell WL, Graham DI, Teasdale GM, Adams JH (1991) Glial swelling following human cerebral contusion: an ultrastructural study. J Neurol Neurosurg Psychiatry 54: 427–434PubMedGoogle Scholar
  33. 33.
    Burstein D (1988) On the in vivo detection of intracellular water and sodium by nuclear magnetic resonance with shift reagents. Biophys J 54: 191–192PubMedGoogle Scholar
  34. 34.
    Burstyn PGR (1978) Sodium and water metabolism under the influence of prolactin, aldosterone, and antidiuretic hormone. J Physiol 275: 39–50PubMedGoogle Scholar
  35. 35.
    Cala PM (1985) Volume regulation by amphiuma red blood cells: strategies for identifying alkali metal/H+ transport. Fed Proc 44: 2500–2507PubMedGoogle Scholar
  36. 36.
    Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467–470PubMedGoogle Scholar
  37. 37.
    Carey ME, Vela AR (1974) Effect of systemic arterial hypotension on the rate of cerebrospinal fluid formation in dogs. J Neurosurg 41: 350–355PubMedGoogle Scholar
  38. 38.
    Casey KF, Vries JK (1989) Cerebral fluid overproduction in the absence of tumor or villous hypertrophy of the choroid plexus. Childs Nerv Syst 5: 332–334PubMedGoogle Scholar
  39. 39.
    Chabrier PE, Roubert P, Braquet P (1987) Specific binding of atrial natriuretic factor in brain microvessels. Proc Natl Acad Sci USA 84: 2078–2081PubMedGoogle Scholar
  40. 40.
    Chaplin ER, Free RG, Goldstein GW (1981) Inhibition by steroids of the uptake of potassium by capillaries isolated from rat brain. Biochem Pharmacol 30: 241–245PubMedGoogle Scholar
  41. 41.
    Chaussy L, Baethmann A, Lubitz W (1981) Electrical sizing of nerve and glia cells in the study of cell volume regulation. In: Cervos-Navarro J, Fritschka E (eds) Cerebral microcirculation and metabolism. Raven, New York, pp 29–40Google Scholar
  42. 42.
    Ciasen RA, Brown DVL, Leavitt S, Hass GM (1953) The production by liquid nitrogen of acute closed cerebral lesions. Surg Gynecol Obstet 96: 605–616Google Scholar
  43. 43.
    Ciasen RA, Pandolfi S, Hoeppner TJ, Ciasen JR (1984) Treatment of experimental acute lead encephalopathy. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 633–642Google Scholar
  44. 44.
    Cohadon F, Rigoulet M, Averet N (1984) Alterations of membrane-bound enzymes in vasogenic edema. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 223–231Google Scholar
  45. 45.
    Cohadon F (1987) Physiopathologie des oedèmes cérébraux. Rev Neurol 143: 3–20PubMedGoogle Scholar
  46. 46.
    Coulter DM (1989) Postnatal fluid and electrolyte changes and clinical implications. In: Brace RA, Ross MG, Robillard JE (eds) Fetal and neonatal body fluids: the scientific basis for clinical practice. Perinatal, Ithaca, pp 319–367Google Scholar
  47. 47.
    Crockard A, Ianotti F, Hunstock AT, Smith RD, Harris RJ, Symon L (1980) Cerebral blood flow and edema following carotid occlusion in the gerbil. Stroke 11:494–498PubMedGoogle Scholar
  48. 48.
    Crone C (1963) The permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 58: 292–305PubMedGoogle Scholar
  49. 49.
    Crook RB, Farber MB, Prusiner SB (1984) Hormones and neurotransmitters control cyclic AMP metabolism in choroid plexus epithelial cells. J Neurochem 42: 340–350PubMedGoogle Scholar
  50. 50.
    Crook RB, Farber MB, Prusiner SB (1986) H2 histamine receptors on the epithelial cells of choroid plexus. J Neurochem 46: 489–493PubMedGoogle Scholar
  51. 51.
    Cruickshank GC, Rampling R (1994) Peri-tumoural hypoxia in human brain: peroperative measurement of the tissue oxygen tension around malignant brain tumours. Acta Neurochir (Wien) [Suppl] 60: 375–377Google Scholar
  52. 52.
    Cserr HF, Cooper DN, Milhorat TH (1976) Production, circulation, and absorption of brain interstitial fluid. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 95–97Google Scholar
  53. 53.
    Cserr HF, De Pasquale M, Nicholson C, Patlak CS, Pettigrew KD, Rice ME (1991) Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia. J Physiol (London) 442: 277–295Google Scholar
  54. 54.
    Cushing H (1914) Studies on the cerebrospinal fluid. I. Introduction. J Med Res 31: 1–19Google Scholar
  55. 55.
    Cutler RWP, Page L, Galicich J, Watters GV (1968) Formation and absorption of cerebrospinal fluid in man. Brain 91: 707–720PubMedGoogle Scholar
  56. 56.
    Dandy WE, Blackfan KD (1914) Internal hydrocephalus. An experimental clinical and pathological study. Am J Dis Child 8: 406–482Google Scholar
  57. 57.
    Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8: 429–440PubMedGoogle Scholar
  58. 58.
    Daumas-Duport C, Monsaigneon V, Blond S, Munari C, Musolino A, Chodkiewicz JP, Missir O (1987) Serial stereotactic biopsies and CT scan in gliomas: correlative study in 100 astrocytomas, oligo-astrocytomas and oligodendrogliomas. J Neurooncol 4: 317–328PubMedGoogle Scholar
  59. 59.
    D’Avella D, Baroni A, Mingrino S, Scanarini M (1980) An electron microscope study of human arachnoid villi. Surg Neurol 14: 41–47Google Scholar
  60. 60.
    Davson H, Luck CP (1957) The effect of acetazolamide on the chemical composition of the aqueous humour and cerebrospinal fluid of some mammalian species and on the rate of turnover of 24Na in these fluids. J Physiol (London) 137: 279–293Google Scholar
  61. 61.
    Davson H, Spaziani E (1962) Effect of hypothermia on certain aspects of the cerebrospinal fluid. Exp Neurol 6: 118–128PubMedGoogle Scholar
  62. 62.
    Davson H, Pollay M (1963) Influence of various drugs on the transport of 131I and PAH across the cerebrospinal fluid—blood barrier. J Physiol (London) 167: 239–246Google Scholar
  63. 63.
    De Bold AJ (1986) Atrial natriuretic factor: an overview. Fed Proc 45: 2081–2085PubMedGoogle Scholar
  64. 64.
    De Rougemont J, Ames A III, Nesbett FB, Hofmann HF (1960) Fluid formed by choroid plexus. J Neurophysiol 23: 485–495Google Scholar
  65. 65.
    De Salles AAF, Kontos HA, Becker DP, Yang MS, Ward JD, Moulton R, Gruemer HD, Lutz H, Maset AL, Jenkins L, Marmarou A, Muizelaar (1986) Prognostic significance of ventricular CSF lactate acidosis in severe head injury. J Neurosurg 65: 615–624Google Scholar
  66. 66.
    De Souza SW, Dobbing J (1971) Cerebral edema in developing brain. I. Normal water and cation content in developing rat brain and postmortem changes. Exp Neurol 32: 431–438PubMedGoogle Scholar
  67. 67.
    Diamond JM, Bossert WH (1967) Standing gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50: 2061–2083PubMedGoogle Scholar
  68. 68.
    Di Mattio J, Hochwald GM, Malhan C, Wald A (1975) Effects of changes in serum osmolarity on bulk flow of fluid into cerebral ventricles and on brain water content. Pflügers Arch 359: 253–264Google Scholar
  69. 69.
    Diringer M, Ladenson PW, Stern BJ, Schleimer J, Hanley DF (1988) Plasma atrial natriuretic factor and subarachnoid hemorrhage. Stroke 19: 1119–1124PubMedGoogle Scholar
  70. 70.
    Doczi T, Szerdahelyi P, Gulya K, Kiss J (1982) Brain water accumulation after the central administration of Vasopressin. Neurosurgery 11: 402–407PubMedGoogle Scholar
  71. 71.
    Doczi T, Joo F, Szerdahelyi P, Bodosi M (1987) Regulation of brain water and electrolyte contents: the possible involvement of central atrial natriuretic factor. Neurosurgery 21: 454–458PubMedGoogle Scholar
  72. 72.
    Domer FR (1969) The effect of furosemide on cerebrospinal fluid formation and potassium movement. Exp Neurol 24: 54–64PubMedGoogle Scholar
  73. 73.
    Duckrow RB, La Manna JC, Rosenthal M, Levasseur JE, Patterson JL (1981) Oxidative metabolic activity of cerebral cortex after fluid percussion head injury in the cat. J Neurosurg 54: 607–614PubMedGoogle Scholar
  74. 74.
    Edvinsson L, West KA (1971) Relation between intracranial pressure and ventricular size at various stages of experimental hydrocephalus. Acta Neurol Scand 47: 451–457PubMedGoogle Scholar
  75. 75.
    Eisenberg HM, McLennan JE, Welch K (1974a) Ventricular perfusion in cats with kaolin-induced hydrocephalus. J Neurosurg 41: 20–28PubMedGoogle Scholar
  76. 76.
    Eisenberg HM, McComb JG, Lorenzo AV (1974b) Cerebrospinal fluid overproduction and hydrocephalus associated with choroid plexus papilloma. J Neurosurg 40: 381–385PubMedGoogle Scholar
  77. 77.
    Eisenberg HM, Suddith RL (1979) Cerebral vessels have the capacity to transport sodium and potassium. Science 206: 1083–1085PubMedGoogle Scholar
  78. 78.
    Engel J (1991) Domains in proteins and proteoglycans of the extracellular matrix with functions in assembly and cellular activities. Int J Biol Macromol 13: 147–151PubMedGoogle Scholar
  79. 79.
    Epstein MH, Feldman AM, Brusilow SW (1977) Cerebrospinal fluid production: Stimulation by cholera toxin. Science 196: 1012–1013PubMedGoogle Scholar
  80. 80.
    Espinas OE, Poser CM (1969) Blood hyperosmolality and neurologic deficit. Arch Neurol 20: 182–186PubMedGoogle Scholar
  81. 81.
    Eveloff JL, Warnock DG (1987) Activation of ion transport systems during cell volume regulation. Am J Physiol 252: F1–F10PubMedGoogle Scholar
  82. 82.
    Faber WM (1937) The nasal mucosa and the subarachnoid space. Am J Anat 62: 121–148Google Scholar
  83. 83.
    Falke JJ, Kanes KJ, Chan SI (1985) The minimal structure containing the band 3 anion transport site. A 35C1 NMR study. J Biol Chem 260: 13294–13303PubMedGoogle Scholar
  84. 84.
    Faraci FM, Kinzenbaw D, Heistad DD (1994) Effect of endogenous Vasopressin on blood flow to choroid plexus during hypoxia and intracranial hypertension. Am J Physiol 266: H393–H398PubMedGoogle Scholar
  85. 85.
    Feinberg DA, Mark AS (1987) Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 103: 793–799Google Scholar
  86. 86.
    Felgenhauer K, Schliep G, Rapic N (1976) Evaluation of the blood-CSF barrier by protein gradients and the humoral immune response within the central nervous system. J Neurol Sci 30: 113–128PubMedGoogle Scholar
  87. 87.
    Fenstermacher JD, Li CL, Levin VA (1970) Extracellular space of the cerebral cortex of normothermic and hypothermic cats. Exp Neurol 27: 101–114PubMedGoogle Scholar
  88. 88.
    Flamm ES, Ransohoff J, Wuchinich D, Broadwin A (1978) Preliminary experience with ultrasonic aspiration in neurosurgery. Neurosurgery 2: 240–245PubMedGoogle Scholar
  89. 89.
    Ford JC, Hackney DB, Alsop DC, Jara H, Joseph PM, Hand CM, Black P (1994) MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med 31: 488–494PubMedGoogle Scholar
  90. 90.
    Friis-Hansen B (1961) Body water compartments in children: changes during growth and related changes in body composition. Pediatrics 28: 169–181PubMedGoogle Scholar
  91. 91.
    Fullerton GD, Potter JL, Dornbluth NC (1982) NMR relaxation of protons in tissues and other macromolecular water solutions. Magn Reson Imag 1: 39–55Google Scholar
  92. 92.
    Furuse M, Gonda T, Kuchiwaki H, Hirai N, Inao S, Kageyama N (1984) Thermal analysis on the state of free and bound water in normal and edema-tous brains. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 293–298Google Scholar
  93. 93.
    Galambos R (1971) The glia-neuronal interaction: some observations. J Psychiatr Res 8: 219–224PubMedGoogle Scholar
  94. 94.
    Galbraith S, Cardoso E, Patterson J, Marmarou A (1984) The water content of white matter after head injury in man. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 323–330Google Scholar
  95. 95.
    Gazendam J, Go KG, Van Zanten AK (1979a) Composition of isolated edema fluid in cold-induced edema. J Neurosurg 51: 70–77PubMedGoogle Scholar
  96. 96.
    Gazendam J, Go KG, Van Zanten AK (1979b) The effect of intracerebral ouabain administration on the composition of edema fluid isolated from cats with cold-induced brain edema. Brain Res 175: 279–298PubMedGoogle Scholar
  97. 97.
    Gazendam J, Go KG, Van der Meer J, Zuiderveen F (1979c) Changes of electrical impedance in edematous cat brain during hypoxia and after intracerebral ouabain injections. Exp Neurol 55: 78–87Google Scholar
  98. 98.
    Gazendam J, Houthoff HJ, Huitema S, Go KG (1984a) Cerebral edema formation and blood-brain barrier impairment by intraventricular collagenase infusion. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 159–173Google Scholar
  99. 99.
    Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12: 564–574PubMedGoogle Scholar
  100. 100.
    Gerschenfeld HM, Wald F, Zadunaisky JA, de Robertis EDP (1959) Function of astroglia in the water-ion metabolism of the central nervous system. Neurology 9: 412–425PubMedGoogle Scholar
  101. 101.
    Ghandour MS, Langley OK, Zhu XL, Waheed A, Sly WS (1992) Carbonic anhydrase IV in brain capillary endothelial cells: a marker associated with the blood-brain barrier. Proc Nat Acad Sci USA 89: 6823–6827PubMedGoogle Scholar
  102. 102.
    Go KG, Ebels EJ, Beks JWF, ter Weeme CA (1967) The spreading of cerebral edema from a cold injury in cats. Psychiat Neurol Neurochir (Amsterdam) 70: 403–411Google Scholar
  103. 103.
    Go KG, van Woudenberg F, de Lange WE, Sluiter WJ (1972a) The influence of saline-loading on cold-induced cerebral oedema in the rat. J Neurol Sci 16: 209–214PubMedGoogle Scholar
  104. 104.
    Go KG, Van der Veen PH, Ebels EJ, Van Woudenberg F (1972b) A study of electrical impedance of oedematous cerebral tissue during operations. Acta Neurochir (Wien) 27: 113–124Google Scholar
  105. 105.
    Go KG, Ebels EJ, Van Woudenberg F, Geerlings T (1973a) The development of oedema in the immature brain. Psychiat Neurol Neurochir (Amsterdam) 76: 427–437Google Scholar
  106. 106.
    Go KG, de Lange WE, Sluiter WJ, van Woudenberg F, Ebels EJ, Blaauw EH (1973b) The influence of salt-free solutions on cold-induced cerebral oedema. A chemical and morphological study in the rat. J Neurol Sci 18: 323–333PubMedGoogle Scholar
  107. 107.
    Go KG, Zijlstra WG, Flanderijn H, Zuiderveen F (1974) Circulatory factors influencing exudation in cold-induced cerebral edema. Exp Neurol 42: 332–338PubMedGoogle Scholar
  108. 108.
    Go KG, Edzes HT (1975) Water in brain edema. Observations by the pulsed nuclear magnetic resonance technique. Arch Neurol 32: 464–465Google Scholar
  109. 109.
    Go KG, Pratt JJ (1975) The dependence of the blood to brain passage of radioactive sodium on blood pressure and temperature. Brain Res 93: 329–336PubMedGoogle Scholar
  110. 110.
    Go KG, Patberg WR, Teelken AW, Gazendam J (1976a) The Starling hypothesis of capillary fluid exchange in relation to brain edema. In: Pappius HM, Feindel W (eds) Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 63–67Google Scholar
  111. 111.
    Go KG, Zuiderveen F, Kuipers-de Jager TI (1976b) Responses of cortical vein wedge pressure, ventricular fluid pressure and brain tissue pressure to elevation of arterial blood pressure under conditions of hyperventilation and freezing injury to the brain. In: Beks JWF, Bosch DA, Brock M (eds) Intracranial pressure III. Springer, Berlin Heidelberg New York, pp 5–9Google Scholar
  112. 112.
    Go KG, Houthoff HJ, Blaauw EH, Stokroos I, Blaauw G (1978) Morphology and origin of arachnoid cysts. Scanning and transmission electron microscopy of three cases. Acta Neuropathol (Berl) 44: 57–62Google Scholar
  113. 113.
    Go KG, Gazendam J, Van Zanten AK (1979b) Influence of hypoxia on the composition of isolated edema fluid in cold-induced brain edema. J Neurosurg 51: 78–84PubMedGoogle Scholar
  114. 114.
    Go KG, Koster-Otte L, Pratt JJ (1979a) Brain sodium uptake after choroid plexectomy. Brain Res 170: 325–331PubMedGoogle Scholar
  115. 115.
    Go KG, Lammertsma AA, Paans AMJ, Vaalburg W, Woldring M (1981) Extraction of water labeled with oxygen-15 during single capillary transit. Influence of blood pressure, osmolarity and blood-brain barrier damage. Arch Neurol 38: 581–584PubMedGoogle Scholar
  116. 116.
    Go KG, van Dijk P, Luiten AL, Brouwer-van Herwijnen AA, van der Leeuw IJCL, Kamman RL, Vencken LM, Wilmink J, Berendsen HJC (1983) Interpretation of nuclear magnetic resonance tomograms of the brain. J Neurosurg 59: 574–584PubMedGoogle Scholar
  117. 117.
    Go KG, Houthoff HJ, Huitema S, Spatz M (1984a) Protein tracer permeability of the blood-brain barrier after transient cerebral ischemia in gerbils. In: Go KG, Baetmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 539–550Google Scholar
  118. 118.
    Go KG, Houthoff HJ, Blaauw EH, Havinga P, Hartsuiker J (1984b) Arachnoid cysts of the Sylvian fissure. Evidence of fluid secretion. J Neurosurg 60: 803–813PubMedGoogle Scholar
  119. 119.
    Go KG, Houthoff HJ, Hartsuiker J, Van der Molen-Woldendorp D, Zuiderveen F, Teelken AW (1985 Klatzo I, Spatz M (eds) Brain edema. Springer, Berlin Heidelberg New York Tokyo, pp 76Google Scholar
  120. 120.
    Go KG, Houthoff HJ, Hartsuiker J, Blaauw EH, Havinga P (1986) Fluid secretion in arachnoid cysts as a clue to cerebrospinal fluid absorption at the arachnoid granulation. J Neurosurg 65: 642–648PubMedGoogle Scholar
  121. 121.
    Go KG, Wilmink JT, Molenaar WM (1988a) Peritumoral brain edema associated with meningiomas. Neurosurgery 23: 175–179PubMedGoogle Scholar
  122. 122.
    Go KG, Prenen GHM, Korf J (1988b) Protective effect of fasting upon cerebral hypoxic-ischemic injury. Metab Brain Dis 3: 257–264PubMedGoogle Scholar
  123. 123.
    Go KG (1988c) Physical and biochemical methods for analysis of fluid compartments. In: Boulton AA, Baker GB, Waltz W (eds) Neuromethods. The neuronal microenvironment, vol 9. The Humana Press, Clifton, pp 127–185Google Scholar
  124. 124.
    Go KG (1991) Cerebral pathophysiology. An integral approach with some emphasis on clinical implications. Elsevier, AmsterdamGoogle Scholar
  125. 125.
    Go KG, Kamman RL, Wilmink JT, Mooyaart EL (1993a) A study on peritumoural brain oedema around meningiomas by CT and MRI scanning. Acta Neurochir (Wien) 125: 41–46Google Scholar
  126. 126.
    Go KG, Hew JM, Kamman RL, Molenaar WM, Pruim J, Blaauw EH (1993b) Cystic lesions of the brain. A classification based on pathogenesis, with consideration of histological and radiological features. Eur J Radiol 17: 69–84PubMedGoogle Scholar
  127. 127.
    Go KG, Keuter EJW, Kamman RL, Pruim J, Metzemaekers JDM, Staal MJ, Paans AMJ, Vaalburg W (1994a) Contribution of magnetic resonance spectroscopic imaging and L-[l-11C]tyrosine positron emission tomography to localization of cerebral gliomas for biopsy. Neurosurgery 34: 994–1002PubMedGoogle Scholar
  128. 128.
    Go KG, Kamman RL, Mooyaart EL, Heesters MAAM, Pruim J, Vaalburg W, Paans AMJ (1995) Localised proton spectroscopy and spectroscopic imaging in cerebral gliomas, with comparison to positron emission tomography. Neuroradiology 37: 198–206PubMedGoogle Scholar
  129. 129.
    Goldstein GW, Betz L (1983) Recent advances in understanding brain capillary functions. Ann Neurol 14: 389–395PubMedGoogle Scholar
  130. 130.
    Gomez DG, Potts DG (1977) Effects of pressure on the arachnoid villus. Exp Eye Res 25: 117–125PubMedGoogle Scholar
  131. 131.
    Gonatas NK, Zimmerman HM, Levine S (1963) Ultrastructure of inflammation with edema in the rat brain. Am J Pathol 42: 455–469PubMedGoogle Scholar
  132. 132.
    Goodfriend TL, Elliot ME, Atlas SA (1984) Actions of synthetic atrial natriuretic factor on bovine adrenal glomerulosa. Life Sci 35: 1675–1682PubMedGoogle Scholar
  133. 133.
    Goulon M, Babinet P, Raphael JC, Grosbuis S, Gajdos P (1971) Les manifestations neurologiques des hyponatrémies. Rev Neurol 125: 219–237PubMedGoogle Scholar
  134. 134.
    Graham DI, Adams JH, Doyle (1978) Ischaemic brain damage in fatal nonmissile head injuries. J Neurol Sci 39: 213–234PubMedGoogle Scholar
  135. 135.
    Grant R, Condon B, Lawrence A, Hadley DM, Patterson J, Bone I, Teasdale GM (1988) Is cranial CSF volume under hormonal influence? An MR study. J Comp Ass Tomogr 12: 36–39Google Scholar
  136. 136.
    Graves J, Himwich HE (1955) Age and the water content of rabbit brain parts. Am J Physiol 180: 205–208PubMedGoogle Scholar
  137. 137.
    Greco CM, Powell HC, Garrett RS, Lampert PW (1980) Cycloleucine encephalopathy. Neuropathol Appl Neurobiol 6: 349–360PubMedGoogle Scholar
  138. 138.
    Grinstein S, Rothstein A, Sarkadi B, Gelfand EW (1984) Responses of lymphocytes to anisotonic media: volume regulating behavior. Am J Physiol 246: C204–C215PubMedGoogle Scholar
  139. 139.
    Grinstein S, Goetz JD, Cohen S, Furuya W, Rothstein A, Gelfand EW (1985) Mechanisms of regulatory volume increase in osmotically shrunken lymphocytes. Molec Physiol 8: 185–198Google Scholar
  140. 140.
    Gröflin UB, Thölen H (1978) Cerebral edema in the rat with galactosamine induced severe hepatitis. Experientia 34: 1501PubMedGoogle Scholar
  141. 141.
    Gruner JE (1958) Lésions du névraxe secondaires à l’ingestion d’éthyl-étain (Stalinon). Rev Neurol 98: 109–116PubMedGoogle Scholar
  142. 142.
    Guisado R, Arieff AJ, Massry SG (1976) Effects of glycerol administration on experimental brain edema. Neurology 26: 69–75PubMedGoogle Scholar
  143. 143.
    Gutierrez JA, Norenberg MD (1977) Ultrastructural study of methionine sulfoximine-induced Alzheimer type II astrocytosis. Am J Path 86: 285–300PubMedGoogle Scholar
  144. 144.
    Hakim S, Adams RD (1965) The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 2: 307–327PubMedGoogle Scholar
  145. 145.
    Hallaq HA, Haupert GT (1989) Positive inotropic effects of the endogenous Na+K+-transporting ATPase inhibitor from the hypothalamus. Proc Natl Acad Sci USA 86: 10080–10084PubMedGoogle Scholar
  146. 146.
    Hamilton BF, Gould DH (1987) Nature and distribution of brain lesions in rats intoxicated with 3-nitropropionic acid: a type of hypoxic (energy deficient) brain damage. Acta Neuropathol 72: 286–297PubMedGoogle Scholar
  147. 147.
    Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycémie rats. Acta Physiol Scand 102: 324–329PubMedGoogle Scholar
  148. 148.
    Hansen AJ (1987) Disturbed ion gradients in brain anoxia. NIPS 2: 54–57Google Scholar
  149. 149.
    Hansson E, Rönnbäck L (1991) Receptor regulation of the glutamate, GABA and taurine high-affinity uptake into astrocytes in primary culture. Brain Res 548: 215–221PubMedGoogle Scholar
  150. 150.
    Harris HW, Paredes A, Zeidel ML (1993) The molecular structure of the antidiuretic hormone elicited water channel. Pediatr Nephrol 7: 680–684PubMedGoogle Scholar
  151. 151.
    Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischemia. J Cereb Blood Flow Metab 1: 203–210PubMedGoogle Scholar
  152. 152.
    Harris RJ, Symon L (1984) Extracellular pH, potassium and calcium activities in progressive ischaemia of rat cortex. J Cereb Blood Flow Metab 4: 178–186PubMedGoogle Scholar
  153. 153.
    Harrison HE, Darrow DC, Yannet H (1936) The total electrolyte content of animals and its probable relation to the distribution of body water. J Biol Chem 113: 515–529Google Scholar
  154. 154.
    Haupert GT, Sancho JM (1979) Sodium transport inhibitor from bovine hypothalamus. Proc Nat Acad Sci USA 76: 4658–4660PubMedGoogle Scholar
  155. 155.
    Heisey SR, Held D, Pappenheimer JR (1962) Bulk flow and diffusion in the cerebrospinal fluid system of the goat. Am J Physiol 203: 775–781PubMedGoogle Scholar
  156. 156.
    Hekmatpanah J, Hekmatpanah CR (1985) Microvascular alterations following cerebral contusion in rats. J Neurosurg 62: 888–897PubMedGoogle Scholar
  157. 157.
    Henderson LJ (1913) The fitness of the environment. MacMillan, New YorkGoogle Scholar
  158. 158.
    Hennig J, Ott D, Adam T, Friedburg H (1990) Measurement of CSF flow using an interferographic MR technique based on the RARE-fast imaging sequence. Magn Reson Imag 8: 541–556Google Scholar
  159. 159.
    Hertz L (1978) An intense potassium uptake into astrocytes, its further enhancement by high concentrations of potassium, and its possible involvement in potassium homeostasis at the cellular level. Brain Res 145: 202–208PubMedGoogle Scholar
  160. 160.
    Heschl R (1859) Gehirndefekt und Hydrocephalus. Vierteljahrschrift Praktische Heilkunde 61: 59–74Google Scholar
  161. 161.
    Hilal SK, Maudsley AA, Ra JB, Simon HE, Roschmann P, Wittekoek S, Cho ZH, Mun SK (1985) In vivo NMR imaging of sodium-23 in the human head. J Comp Ass Tomogr 9: 1–7Google Scholar
  162. 162.
    Hirano A, Zimmerman HM, Levine S (1968) Intramyelinic and extracellular spaces in triethyltin intoxication. J Neuropath Exp Neurol 27: 571–580PubMedGoogle Scholar
  163. 163.
    Hirano A, Matsui T (1975) Vascular structures in brain tumors. Human Pathol 6:611–621Google Scholar
  164. 164.
    Hiratsuka H, Tabata H, Tsuruoka S, Aoyagi M, Okada K, Inaba Y (1982) Evaluation of periventricular hypodensity in experimental hydrocephalus by metrizamide CT ventriculography. J Neurosurg 56: 235–240PubMedGoogle Scholar
  165. 165.
    Hochwald GM, Wald A, Di Mattio J, Malhan C (1974) The effect of serum osmolarity on cerebrospinal fluid volume flow. Life Sci 15: 1309–1316PubMedGoogle Scholar
  166. 166.
    Holliday MA, Kalayci MN, Harrah J (1968) Factors that limit brain volume changes in response to acute and sustained hyper-and hyponatremia. J Clin Invest 47: 1916–1928PubMedGoogle Scholar
  167. 167.
    Hopkins LN, Bakay L, Kinkel WR, Grand W (1977) Demonstration of transventricular CSF absorption by computerized tomography. Acta Neurochir (Wien) 39: 151–157Google Scholar
  168. 168.
    Hounsfield GN, Ambrose J (1973) Computerized transverse axial scanning (tomography). I. Description of system. II. Clinical application. Br J Radiol 46:1016–1047PubMedGoogle Scholar
  169. 169.
    Houthoff HJ, Go KG, Gerrits PO (1982) The mechanisms of blood-brain barrier impairment by hyperosmolar perfusion. Acta Neuropathol 56: 99–112PubMedGoogle Scholar
  170. 170.
    Inoue T, Kuromatsu C, Iwata Y, Matsushima T (1985) Symptomatic choroidal epithelial cyst in the fourth ventricle. Surg Neurol 24: 57–62PubMedGoogle Scholar
  171. 171.
    Ishige N, Pitts LH, Pogliani L, Hashimoto T, Nishimura MC, Bartkowski HM, James TL (1987) Effect of hypoxia on traumatic brain injury in rats. Part 2: Changes in high energy phosphate metabolism. Neurosurgery 20: 854–858PubMedGoogle Scholar
  172. 172.
    Ishige N, Pitts LH, Berry I, Nishimura MC, James TL (1988) The effects of hypovolemic hypotension on high-energy phosphate metabolism of traumatized brain in rats. J Neurosurg 68: 129–136PubMedGoogle Scholar
  173. 173.
    Isales CM, Bollag WB, Kiernan LC, Barrett PG (1989) Effect of ANP on sustained aldosterone secretion stimulated by angiotensin II. Am J Physiol 256: C89–CGoogle Scholar
  174. 174.
    Ito U, Go KG, Walker JT, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in Mongolian gerbils. Behavior of the blood-brain barrier. Acta Neuropathol 34: 1–6PubMedGoogle Scholar
  175. 175.
    Ito U, Ohno K, Nakamura R, Suganuma F, Inaba Y (1979) Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10: 542–547PubMedGoogle Scholar
  176. 176.
    Ito U, Reulen HJ, Huber P (1986) Spatial and quantitative distribution of human peritumoural ooedema in computerised tomography. Acta Neurochir (Wien) 81: 53–60Google Scholar
  177. 177.
    Ito U, Reulen HJ, Tomita H, Ikeda J, Saito J, Maehara T (1988) Formation and propagation of brain oedema fluid around human brain metastases. A CT study. Acta Neurochir (Wien) 90: 35–41Google Scholar
  178. 178.
    Jackson RL, Busch SJ, Cardin AD (1991) Glycosaminoglycans: molecular properties, protein intercations, and role in physiological processes. Physiol Rev 71: 481–539PubMedGoogle Scholar
  179. 179.
    Jaffe LF (1993) Classes and mechanisms of calcium waves. Cell Calcium 14: 736–745PubMedGoogle Scholar
  180. 180.
    Javaheri S, Wagner KR (1992) Bumetanide decreases canine cerebrospinal fluid production. In vivo evidence for NaCl cotransport in the central nervous system. J Clin Invest 92: 2257–2261Google Scholar
  181. 181.
    Jayatilaka ADP (1965) An electronmicroscopic study of sheep arachnoid granulations. J Anat 99: 635–649PubMedGoogle Scholar
  182. 182.
    Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348: 510–514PubMedGoogle Scholar
  183. 183.
    Johnston IH, Howman-Giles R, Whittle IR (1984) The arrest of treated hydrocephalus in children. A radionuclide study. J Neurosurg 61: 752–756PubMedGoogle Scholar
  184. 184.
    Kamman RL, Go KG, Muskiet FAJ, Stomp GP, Van Dijk P, Berendsen HJC (1984) Proton spin relaxation studies of fatty tissue and cerebral white matter. Magn Reson Med 2: 211–220Google Scholar
  185. 185.
    Katzman R, Hussey F (1970) A simple constant-infusion manometric test for measurement of CSF absorption. I. Rationale and method. Neurology 20: 534–544Google Scholar
  186. 186.
    Katzman R, Pappius HM (1973) Brain electrolytes and fluid metabolism. Williams and Wilkins, BaltimoreGoogle Scholar
  187. 187.
    Kayama T, Yoshimoto T, Fujimoto S, Sakurai Y (1991) Intratumoral oxygen pressure in malignant brain tumor. J Neurosurg 74: 55–59PubMedGoogle Scholar
  188. 188.
    Kesterson JW, Carlton WW (1971) Histopathologic and enzyme histochemical observations of the cuprizone-induced brain edema. Exp Molec Path 15: 82–96PubMedGoogle Scholar
  189. 189.
    Kita T, Kida O, Kato J, Nakamura S, Eto T, Minamino N, Kangawa K, Matsuo H, Tanaka K (1989) Natriuretic and hypotensive effects of brain natriuretic peptide (BNP) in spontaneously hypertensive rats. Life Sci 44: 1541–1545PubMedGoogle Scholar
  190. 190.
    Kiwit JCW, Schröders C, Wambach G (1988) Untersuchung des Plasma-ANP-Spiegels und seiner Beziehung zum Elektrolyt-und Wasserhaushalt bei neurochirurgischen Intensivpatienten. Z Kardiol 77: 119–123PubMedGoogle Scholar
  191. 191.
    Klatzo I, Piraux A, Laskowski EJ (1958) The relationship between edema, blood-brain barrier and tissue elements in a local brain injury. J Neuropath Exp Neurol 17:548–564PubMedGoogle Scholar
  192. 192.
    Klatzo I (1967) Neuropathological aspects of brain edema. J Neuropath Exp Neurol 26: 1–14PubMedGoogle Scholar
  193. 193.
    Klatzo I, Wisniewski H, Steinwall O, Streicher E (1967) Dynamics of cold-injury edema. In: Klatzo I, Seitelberger F (eds) Brain edema. Springer, Berlin Göttingen Heidelberg New York, pp 554–563Google Scholar
  194. 194.
    Klatzo I, Chui E, Fujiwara K, Spatz M (1980) Resolution of vasogenic brain edema. Adv Neurol 28: 359–373PubMedGoogle Scholar
  195. 195.
    Klein HC (1992) Over de preventie van ischemische hersenschade. Thesis. University of Groningen, GroningenGoogle Scholar
  196. 196.
    Korf J (1989) Lactography: a novel technique to monitor brain energy metabolism in physiology and pathology. Neurosci Res Comm 4: 129–138Google Scholar
  197. 197.
    Krisch B, Leonhardt H (1978a) The functional and structural border of the neurohemal region of the median eminence. Cell Tiss Res 192: 327–339Google Scholar
  198. 198.
    Krnjevic K, Puil E, Werman R (1978) Significance of 2,4-dinitrophenol action on spinal motoneurones. J Physiol (London) 275: 225–229Google Scholar
  199. 199.
    Lampert P, O’Brien JO, Garrett R (1973) Hexachlorophene encephalopathy. Acta Neuropathol 23: 326–333PubMedGoogle Scholar
  200. 200.
    Lang DA, Hadley DM, Teasdale GM, MacPherson P, Teasadale E (1991) Gadolinium DTPA enhanced magnetic resonance imaging in acute head injury. Acta Neurochir (Wien) 109: 5–11Google Scholar
  201. 201.
    Latzkovits L, Cserr HF, Park JT, Patlak CS, Pettigrew KD, Rimanoczy A (1993) Effects of arginine Vasopressine and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol 264: C603–C608PubMedGoogle Scholar
  202. 202.
    Law RO (1994) Regulation of mammalian brain cell volume. J Exp Zool 268: 90–96PubMedGoogle Scholar
  203. 203.
    Le Beux YJ, Willemot J (1978) Actin-like filaments in the endothelial cells of adult rat brain capillaries. Exp Neurol 58: 446–454PubMedGoogle Scholar
  204. 204.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161: 401–407PubMedGoogle Scholar
  205. 205.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168: 497–505PubMedGoogle Scholar
  206. 206.
    Lien YH, Zhou HZ, Job C, Barry JA, Gillies RJ (1992) In vivo 31P NMR study of early cellular responses to hyperosmotic shock in cultured glioma cells. Biochimie 74: 931–939PubMedGoogle Scholar
  207. 207.
    Lindvall M, Owman C (1984) Sympathetic nervous control of cerebrospinal fluid production in experimental obstructive hydrocephalus. Exp Neurol 84: 606–615PubMedGoogle Scholar
  208. 208.
    Lindvall M, Gustafson A, Hedner P, Owman C (1985) Stimulation of cyclic adenosine 3’,5’-monophosphate formation in rabbit choroid plexus by betareceptor agonist and vasoactive intestinal Polypeptide. Neurosci Lett 54: 153–157PubMedGoogle Scholar
  209. 209.
    Lindvall-Axelsson M, Mathew C, Nilsson C, Owman C (1988) Effect of 5-hydroxytryptamine on the rate of cerebrospinal fluid production in rabbit. Exp Neurol 99: 362–368PubMedGoogle Scholar
  210. 210.
    Lohle PNM, Verhagen ITHJ, Teelken AW, Blaauw EH, Go KG (1992) The pathogenesis of cerebral gliomatous cysts. Neurosurgery 30: 180–185PubMedGoogle Scholar
  211. 211.
    Long DM (1970) Capillary ultrastructure and the blood-brain barrier in human malignant brain tumors. J Neurosurg 32: 127–144PubMedGoogle Scholar
  212. 212.
    Lorenzo AV, Page LK, Watters GV (1970) Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93: 679–692PubMedGoogle Scholar
  213. 213.
    Lorenzo AV, Bresnan MJ, Barlow CF (1974) Cerebrospinal fluid absorption deficit in normal pressure hydrocephalus. Arch Neurol 30: 387–393PubMedGoogle Scholar
  214. 214.
    Lorenzo AV (1974) Amino acid transport mechanisms of the cerebrospinal fluid. Fed Proc 33: 2079–2085PubMedGoogle Scholar
  215. 215.
    Lorenzo AV, Winston KR, Welch K, Adler JR, Granholm L (1983) Evidence of prolactin receptors in the choroid plexus and a possible role in water balance in neonatal brain. Z Kinderchir 38[Suppl II]: 68–70PubMedGoogle Scholar
  216. 216.
    Lorenzo AV, Taratuska A, Halperin JA (1989) Suppression of cerebrospinal fluid (CSF) production by a Na+/K+ pump inhibitor extracted from human cerebrospinal fluid. Z Kinderchir 44[Suppl I]: 24–26PubMedGoogle Scholar
  217. 217.
    Love JA, Fridén H, Ekstedt J (1984) Effect of corticosteroids at the level of the arachnoid villi. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 589–595Google Scholar
  218. 218.
    Lowe DA (1978) Morphological changes in the cat cerebral cortex produced by superfusion of ouabain. Brain Res 148: 347–363PubMedGoogle Scholar
  219. 219.
    Lundbaek JA, Tonnesen T, Laursen H, Hansen AJ (1990) Brain interstitial composition during acute hyponatremia. Acta Neurochir (Wien) [Suppl] 51: 17–18Google Scholar
  220. 220.
    Luse SA, Harris B (1960) Electronmicroscopy of the brain in experimental edema. J Neurosurg 17: 439–446PubMedGoogle Scholar
  221. 221.
    Mac Dermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321: 519–522Google Scholar
  222. 222.
    Macknight ADC, Leaf A (1978) Regulation of cellular volume. In: Andreoli TE, Hoffman&F, Fanestil DD (eds) Physiology of membrane disorders. Plenum, New York, pp 315–334Google Scholar
  223. 223.
    Madara JL, Moore R, Carlson S (1987) Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol 253: C854–C861PubMedGoogle Scholar
  224. 224.
    Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232: 1004–1007PubMedGoogle Scholar
  225. 225.
    Manery JF, Hastings AB (1939) The distribution of electrolytes in mammalian tissues. J Biol Chem 127: 657–676Google Scholar
  226. 226.
    Maren TH, Broder LE (1970) The role of carbonic anhydrase in anion secretion into cerebrospinal fluid. J Pharmacol Exp Ther 172: 192–202Google Scholar
  227. 227.
    Marmarou A, Tanaka K, Shulman K (1982) An improved gravimetric measure of cerebral edema. J Neurosurg 56: 246–253PubMedGoogle Scholar
  228. 228.
    Marmarou A, Nakamura T, Tanaka K, Hochwald GM (1984) The time course and distribution of water in the resolution phase of infusion edema. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 37–44Google Scholar
  229. 229.
    Marmarou A, Maset AL, Ward JD, Choi S, Brooks D, Lutz HA, Moulton RJ, Muizelaar JP, De Salles A, Young HF (1987) Contribution of CSF and vascular factors to elevation of ICP in severely head-injured patients. J Neurosurg 66: 883–890PubMedGoogle Scholar
  230. 230.
    Martins A, Ramirez A, Doyle TF (1975) Comparison of radioiodinated serum albumin and blue dextran as indicators to measure rate of formation of cerebrospinal fluid. Exp Neurol 47: 249–256PubMedGoogle Scholar
  231. 231.
    Masserman JH (1934) Cerebrospinal hydrodynamics. IV. Clinical experimental studies. Arch Neurol Psychiat (Chicago) 32: 226–234Google Scholar
  232. 232.
    Mauser HW, Van Nieuwenhuisen O, Veiga-Pires JA (1984) Is contrast enhanced CT indicated in acute head injury? Neuroradiology 26: 31–32PubMedGoogle Scholar
  233. 233.
    Mayman CI (1972) Inhibitory effect of dexamethasone on sodium-potassium activated adenosine triphosphatase of choroid plexus in cat and rabbit. Fed Proc 31:591Google Scholar
  234. 234.
    Meinig G, Reulen HJ, Hadjidimos A, Siemon C, Bartko D, Schürmann K (1972) Induction of filtration edema by extreme reduction of cerebrovascular resistance associated with hypertension. Eur Neurol 8: 97–103PubMedGoogle Scholar
  235. 235.
    Messert B, Wannamaker BB, Dudley AW (1972) Reevaluation of the size of the lateral ventricles of the brain. Neurology 22: 941–951PubMedGoogle Scholar
  236. 236.
    Milhorat TH, Hammock MK, Fenstermacher JD, Rall DP, Levin VA (1971) Cerebrospinal fluid production by the choroid plexus and brain. Science 173: 330–332PubMedGoogle Scholar
  237. 237.
    Milhorat TH, Hammock MK, Chien T, Davis DA (1976) Normal rate of cerebrospinal fluid formation five years after bilateral choroid plexectomy. J Neurosurg 44: 735–739PubMedGoogle Scholar
  238. 238.
    Miner LC, Reed DJ (1972) Composition of fluid obtained from choroid plexus tissue isolated in a chamber in situ. J Physiol (London) 227: 127–139Google Scholar
  239. 239.
    Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990) Early detection of regional cerebral ischemia in cats: comparison of diffusion-and T2-weighted MRI and spectroscopy. Magn Reson Med 14: 330–346PubMedGoogle Scholar
  240. 240.
    Nakamura S, Camins MB, Hochwald GM (1983) Pressure-absorption responses to the infusion of fluid into the spinal cord central canal of kaolinhydrocephalic cats. J Neurosurg 58: 198–203PubMedGoogle Scholar
  241. 241.
    Narayan RK, Greenberg RP, Miller DJ, Enas GG, Choi SC, Kishore PRS, Selhorst JB, Lutz HA, Becker DP (1981) Improved confidence of outcome prediction in sever head injury. A comparative analysis of the clinical examination, multimodality evoked potentials, CT scanning, and intracranial pressure. J Neurosurg 54: 751–762PubMedGoogle Scholar
  242. 242.
    Nelson SR, Lowry OH, Passonneau JV (1966) Changes in energy reserves in mouse brain associated with compressive head injury. In: Caveness WF, Walker AE (eds) Head injury. Conference Proceedings. Lippincott, Philadelphia, pp 444–447Google Scholar
  243. 243.
    Nelson SR, Mantz ML, Maxwell JA (1971) Use of specific gravity in the measurement of cerebral edema. J Appl Physiol 30: 268–271PubMedGoogle Scholar
  244. 244.
    Nicholson C, Rice ME (1988) Use of ion-selective microelectrodes and voltammetric microsensors to study brain cell microenvironment. In: Boulton AA, Baker GB, Walz W (eds) Neuromethods 9. The neural microenvironment. Humana, Clifton, pp 247–361Google Scholar
  245. 245.
    Nilsson C, Lindvall-Axelsson M, Owman C (1991) Simultaneous and continuous measurement of choroid plexus flow and cerebrospinal fluid production: effects of vasoactive intestinal Polypeptide. J Cereb Blood Flow Metab 11:861–867PubMedGoogle Scholar
  246. 246.
    Nilsson C, Stahlberg F, Thomsen C, Henriksen O, Herning M, Owman C (1992) Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol 262: R20–R24PubMedGoogle Scholar
  247. 247.
    Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, Kangawa K, Matsuo H, Raftery MA, Hirose T, Inayama S, Hayashide H, Miyata T, Numa S (1984) Primary structure of electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312: 121–127PubMedGoogle Scholar
  248. 248.
    Oldendorf WH, Davson H (1967) Brain extracellular space and the sink action of cerebrospinal fluid. Arch Neurol 17: 196–205PubMedGoogle Scholar
  249. 249.
    Oppelt WW, Maren TH, Owens ES, Rail DP (1963) Effects of acid-base alterations on cerebrospinal fluid production. Proc Soc Expl Biol Med 144: 86–89Google Scholar
  250. 250.
    Organ LW, Tasker RR, Moody F (1968) Brain tumor localization using an electrical impedance technique. J Neurosurg 28: 35–44PubMedGoogle Scholar
  251. 251.
    Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J Neurophysiol 29: 788–806PubMedGoogle Scholar
  252. 252.
    Ott D, Hennig J, Ernst T (1993) Human brain tumors: assessment with in vivo proton MR spectroscopy. Radiology 186: 745–752PubMedGoogle Scholar
  253. 253.
    Padan E, Schuldiner S (1993) Na+/H+ antiporters, molecular devices that couple the Na+ and H+ circulation in cells. J Bioenerget Biomembr 25: 647–669Google Scholar
  254. 254.
    Pappius HM (1965) The distribution of water in brain tissue swollen in vitro and in vivo. Biology of neuroglia. Progr Brain Res 15: 135–154Google Scholar
  255. 255.
    Pappius HM, Oh JH, Dossetor JB (1967) The effects of rapid hemodialysis on brain tissues and cerebrospinal fluid of dogs. Can J Physiol (London) Pharmacol 45: 129–147Google Scholar
  256. 256.
    Partin JS, Mc Adams AJ, Partin JC, Schubert WK, Mc Laurin RL (1978) Brain ultrastructure in Reye’s disease. II Acute injury and recovery processes in three children. J Neuropath Exp Neurol 37: 796–819PubMedGoogle Scholar
  257. 257.
    Pasantes-Morales H, Alavez S, Sanchez Olea R, Moran J (1993) Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem Res 18: 445–452PubMedGoogle Scholar
  258. 258.
    Patberg WR, Go KG, Teelken AW (1977) Isolation of edema fluid in cold-induced cerebral edema for the study of colloid-osmotic pressure, lactate dehydrogenase activity, and electrolytes. Exp Neurol 54: 141–147PubMedGoogle Scholar
  259. 259.
    Penning L, Front D (1975) Brain scintigraphy, a neuroradiological approach. Excerpta Medica, AmsterdamGoogle Scholar
  260. 260.
    Persson L, Boethius J, Gronowitz JS, Kallander C, Lindgren L (1985) Thymidine kinase in brain-tumor cyst. J Neurosurg 63: 568–572PubMedGoogle Scholar
  261. 261.
    Phillips PA, Kelly LM, Abrahams JM, Grzonka Z, Paxinos G, Mendelsohn FA, Johnston CI (1988) Vasopressin receptors in rat brain and kidney: studies using a radio-iodinated V1 receptor antagonist. J Hypertens [Suppl] 6: 550–553Google Scholar
  262. 262.
    Pollay M, Stevens A, Estrada E, Kaplan R (1972) Extracorporeal perfusion of choroid plexus. J Appl Physiol 32: 612–617PubMedGoogle Scholar
  263. 263.
    Popp R, Hoyer J, Meyer J, Galla HJ, Gogelein H (1992) Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol (London) 454: 435–449Google Scholar
  264. 264.
    Potts DG, Gomez DG (1974) Arachnoid villi and granulations. In: Lundberg N et al (eds) Intracranial pressure II. Springer, Berlin Heidelberg New York, pp 42–45Google Scholar
  265. 265.
    Raichle ME, Eichling JO, Straatman MG, Welch MJ, Larson KB, Ter Pogossian MM (1976) Blood-brain barrier permeability of 11C-labeled alcohols and 11O-labeled water. Am J Physiol 230: 543–552PubMedGoogle Scholar
  266. 266.
    Raichle ME, Grubb RL (1978) Regulation of brain water permeability by centrally-released Vasopressin. Brain Res 143: 191–194PubMedGoogle Scholar
  267. 267.
    Rall DP (1968) Transport through the ependymal lining. Progr Brain Res 29: 159–172Google Scholar
  268. 268.
    Rapoport SI: Blood-brain barrier in physiology and medicine. Raven, New YorkGoogle Scholar
  269. 269.
    Rascol MM, Izard JY (1969) Ultrastructure des granulations de Pacchioni de la méninge humaine chez l’adulte. J Microsc 8: 1017–1030Google Scholar
  270. 270.
    Reed DJ (1969) The effect of furosemide on cerebrospinal fluid flow in rabbits. Arch Int Pharmacodyn Ther 178: 324–330PubMedGoogle Scholar
  271. 271.
    Renkin EM (1959) Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 197: 1205–1210PubMedGoogle Scholar
  272. 272.
    Reulen HJ, Baethmann A (1967) Das Dinitrophenol-ödem. Klin Wschr 45: 149–154PubMedGoogle Scholar
  273. 273.
    Reulen HJ, Hase U, Fenske A, Samii M, Schümann K (1970a) Extrazellulärraum und Ionenverteilung in grauer und weißer Substanz des Hundehirns. Acta Neurochir (Wien) 22: 305–325Google Scholar
  274. 274.
    Reulen HJ, Steude U, Brendel W, Hilber C, Prusiner S (1970b) Energetische Störung des Kationentransports als Ursache des intrazellulären Hirnödems. Acta Neurochir (Wien) 22: 129–166Google Scholar
  275. 275.
    Reulen HJ, Graham R, Spatz M, Klatzo I (1977) Role of pressure gradients and bulk flow in dynamics of vasogenic brain edema. J Neurosurg 46: 24–35PubMedGoogle Scholar
  276. 276.
    Ripellino JA, Margolis RU, Margolis RK (1989) Immunoelectron microscopic localization of hyaluronic acid-binding region and link with protein epitopes in brain. J Cell Biol 108: 1899–1907PubMedGoogle Scholar
  277. 277.
    Rizzuto N, Gonatas NK (1974) Ultrastructural study of effect of methionine sulfoximine on developing and adult rat cerebral cortex. J Neuropath Exp Neurol 33: 237–250PubMedGoogle Scholar
  278. 278.
    Robinson BW (1962) Localization of intracerebral electrodes. Exp Neurol 6: 201–223PubMedGoogle Scholar
  279. 279.
    Rosenberg CA, Kyner WT, Estrada E (1980) Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol 238: F42–F49PubMedGoogle Scholar
  280. 280.
    Ross CA, Mac Cumber MW, Glatt CE, Snyder SH (1989) Brain phospholipase C isozymes: differential mRNA localizations by in situ hybridization. Proc Nat Acad Sci USA 86: 2923–2927PubMedGoogle Scholar
  281. 281.
    Rubin RC, Henderson ES, Ommaya AK, Walker MD, Rall DP (1966) The production of cerebrospinal fluid in man and its modification by acetazolamide. J Neurosurg 25: 430–436PubMedGoogle Scholar
  282. 282.
    Rymer MM, Fishman RA (1973) Protective adaptation of brain to water intoxication. Arch Neurol 28: 49–54PubMedGoogle Scholar
  283. 283.
    Saavedra JM, Israel A, Kurihara M, Fuchs E (1986) Decreased number and affinity of rat atrial natriuretic peptide (6-32) binding sites in the subfornical organ of spontaneously hypertensive rats. Circ Res 58: 389–392PubMedGoogle Scholar
  284. 284.
    Saavedra JM (1988) Alteration in atrial natriuretic peptide receptors in rat brain nuclei during hypertension and dehydration. Can J Physiol Pharmacol 66: 288–294PubMedGoogle Scholar
  285. 285.
    Safar P, Bleyaert A, Nemoto EM, Moossy J, Snyder JV (1978) Resuscitation after global brain ischemia-anoxia. Care Med 6: 215–217Google Scholar
  286. 286.
    Saper CB, Standaert DG, Currie MG, Schwartz D, Geller DM, Needleham P (1985) Atriopeptin-immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science 227: 1047–1049PubMedGoogle Scholar
  287. 287.
    Schousboe A, Svenneby G, Hertz L (1977) Uptake and metabolism of glutamate in astrocytes cultured from dissociated mouse brain hemispheres. J Neurochem 29: 999–1005PubMedGoogle Scholar
  288. 288.
    Schousboe A, Pasantes-Morales H (1992) Role of taurine in neural cell volume regulation. Can J Physiol Pharmacol 70 [Suppl]: S356–361Google Scholar
  289. 289.
    Schutta HS, Kassell NF, Langfitt TW (1968) Brain swelling produced by injury and aggravated by arterial hypertension. A light and electronmicroscopic study. Brain 91: 281–294PubMedGoogle Scholar
  290. 290.
    Schwartz WB, Bennett W, Curelop S, Bartter FC (1957) A syndrome of renal sodium loss and hyponatremia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med 23: 529–542PubMedGoogle Scholar
  291. 291.
    Sevick RI, Kanda F, Mintorovitch J, Arieff AI, Kucharczyk J, Tsuruda JS, Norman D, Mosely ME (1992) Cytotoxic brain edema: assessment with diffusion weighted MR imaging. Radiology 185: 687–690PubMedGoogle Scholar
  292. 292.
    Shapira Y, Setton D, Artru AA, Shohami E (1993) Blood-brain barrier permeability, cerebral edema, and neurologic function after closed head injury in rats. Anesth Analg 77: 141–148PubMedGoogle Scholar
  293. 293.
    Shulman K, Yarnell P, Ransohoff J (1964) Dural sinus pressure in normal and hydrocephalic dogs. Arch Neural 10: 575–580Google Scholar
  294. 294.
    Simpson JB, Routtenberg A (1973) Subfornical organ: site of drinking elicitation by angiotensin. Science 181: 1172–1175PubMedGoogle Scholar
  295. 295.
    Skeggs LT, Lentz KE, Gould AM, Hochstrasser H, Kahn JR (1967) Biochemistry and kinetics of the renin angiotensin system. Fed Proc 26: 42–47PubMedGoogle Scholar
  296. 296.
    Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23: 394–401PubMedGoogle Scholar
  297. 297.
    Snodgrass SR, Lorenzo AV (1972) Temperature and cerebrospinal fluid production rate. Am J Physiol 222: 1524–1527PubMedGoogle Scholar
  298. 298.
    Snyder GL, Girault JA, Chen JY, Czernik AJ, Kebabian JW, Nathanson JA, Greengard P (1992) Phosphorylation of DARPP-32 and protein Phosphatase inhibitor-1 in rat choroid plexus: regulation by factors other than dopamine. J Neurosci 12:3071–3083PubMedGoogle Scholar
  299. 299.
    Sood SC, Gulati SC, Kumar M, Kak VK (1980) Cerebral metabolism following brain injury. II. Lactic acid changes. Acta Neurochir (Wien) 53: 47–51Google Scholar
  300. 300.
    Spector R (1977) Vitamin homeostasis in the central nervous system. N Engl J Med 296: 1393–1398PubMedGoogle Scholar
  301. 301.
    Spector R (1980b) Thymidine transport in the central nervous system. J Neurochem 35: 1092–1098PubMedGoogle Scholar
  302. 302.
    Speth RC, Harik SI (1985) Angiotensin II receptor binding sites in brain microvessels. Proc Natl Acad Sci USA 82: 6340–6343PubMedGoogle Scholar
  303. 303.
    Staub F, Baethmann A, Peters J, Kempski O (1990) Effects of lactacidosis on volume and viability of glial cells. Acta Neurochir (Wien) [Suppl] 51: 3–6Google Scholar
  304. 304.
    Starkman SP, Brown TC, Linell EA (1958) Cerebral arachnoid cysts. J Neuropath Exp Neurol 17: 484–500PubMedGoogle Scholar
  305. 305.
    Steardo L, Nathanson JA (1987) Brain barrier tissues: end organs for atriopeptins. Science 235: 470–473PubMedGoogle Scholar
  306. 306.
    Stewart-Wallace AM (1939) A biochemical study of cerebral tissue and of the changes in cerebral oedema. Brain 62: 426–438Google Scholar
  307. 307.
    Strecker EP, Kelley JET, Merz T, James AE (1974) Transventricular albumin absorption in communicating hydrocephalus. Semiquantitative analysis of periventricular extracellular space utilizing autoradiography. Arch Psychiatr Nervenkr 218: 369–377PubMedGoogle Scholar
  308. 308.
    Streicher E, Wisniewski H, Klatzo I (1965) Resistance of immature brain to experimental cerebral edema. Neurology 15: 833–836PubMedGoogle Scholar
  309. 309.
    Stricker EM, Verbalis JG (1988) Hormones and behavior: the biology of thrist and sodium appetite. Am Scientist 76: 261–267Google Scholar
  310. 310.
    Studygroup on Brain Edema in Stroke (1977) brain edema in stroke. Report of Joint Committee for Stroke Resources. Stroke 8: 512–540Google Scholar
  311. 311.
    Sykova E, Jendelova P, Svoboda J, Chvatal A (1992) Extracellular K+, pH and volume changes in spinal cord of adult rats and during postnatal development. Can J Physiol Pharmacol 70 [Suppl]: S301–309Google Scholar
  312. 312.
    Symon L, Dorsch NWC (1975) Use of long-term intracranial pressure measurement to assess hydrocephalic patients prior to shunt surgery. J Neurosurg 42: 258–273PubMedGoogle Scholar
  313. 313.
    Szegedy L (1966) The influence of hemodialysis treatment on the injuries of the central nervous system in uremia. Acta Neurol Scand 42: 105–117Google Scholar
  314. 314.
    Szentágothai J (1970) Glomerular synapses, complex synaptic arrangements, and their operational significance. In: Evolution of brain and behavior. The neurosciences. Second Study Program. Rockefeller University Press, New York, pp 427–443Google Scholar
  315. 315.
    Szymas J, Morkowski S, Tokarz F (1986) Determination of the glial acidic protein in human cerebrospinal fluid and in cyst fluid of brain tumors. Acta Neurochir (Wien) 83: 144–150Google Scholar
  316. 316.
    Takagi H, Shapiro K, Marmarou A, Wisoff H (1981) Microgravimetric analysis of human brain tissue. J Neurosurg 54: 797–801PubMedGoogle Scholar
  317. 317.
    Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328: 313–318PubMedGoogle Scholar
  318. 318.
    Taveras JM, Ransohoff J (1953) Leptomeningeal cysts of the brain following trauma with erosion of the skull. A study of seven cases treated by surgery. J Neurosurg 10: 233–241PubMedGoogle Scholar
  319. 319.
    Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237: 770–775PubMedGoogle Scholar
  320. 320.
    The European Studygroup on Nimodipine in Severe Head Injury (1994) A multicentral trial of the efficacy of nimodipine on outcome after severe head injury. J Neurosurg 80: 797–804Google Scholar
  321. 321.
    Thibault LE, Meaney DF, Anderson BJ, Marmarou A (1992) Biomechanical aspects of a fluid percussion model of brain injury. J Neurotrauma 9: 311–322PubMedGoogle Scholar
  322. 322.
    Torack RM, Alcala H, Gado M (1976) Water, specific gravity and histology as determinants of diagnostic computerized cranial tomogtaphy (CCT). In: Pappius M, Feindel W (eds) Dynamics of brain edema. Springer, Berlin Heidelberg New York, pp 271–277Google Scholar
  323. 323.
    Tornheim PA, McLaurin RL (1984) Effects of mechanical impact to the skull on tissue density of the cerebral cortex. In: Go KG, Baethmann A (eds) Recent progress in the study and therapy of brain edema. Plenum, New York, pp 81–92Google Scholar
  324. 324.
    Torvik A, Bhatia R, Murthy VS (1978) Transitory block of the arachnoid granulations following subarachnoid haemorrhage. Acta Neurochir (Wien) 41: 137–146Google Scholar
  325. 325.
    Tosteson DC, Hoffman JF (1960) Regulation of cell volume by active cation transport in high and low potassium sheep red cells. J Gen Physiol 44: 169–194PubMedGoogle Scholar
  326. 326.
    Towfighi J, Gonatas NK (1973) Effect of intracerebral injection of ouabain in adult and developing rats. Lab Invest 28: 170–180PubMedGoogle Scholar
  327. 327.
    Townsend JB, Ziedonis DM, Bryan RM, Brennan RW, Page RB (1984) Choroid plexus blood flow: evidence for dopaminergic influence. Brain Res 290: 165–169PubMedGoogle Scholar
  328. 328.
    Trachtenberg MC, Pollen DA (1970) Neuroglia: biophysical properties and physiologic function. Science 167: 1248–1252PubMedGoogle Scholar
  329. 329.
    Trachtman H, Futterweit S, Hammer E, Siegel TW, Oates P (1991) The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states. Life Sci 49: 677–688PubMedGoogle Scholar
  330. 330.
    Trachtman H (1992) Cell volume regulation: a review of cerebral adaptative mechanisms and implications for clinical treatment of osmolal disturbances. Pediatr Nephral 6: 104–112Google Scholar
  331. 331.
    Trachtman H, Futterweit S, Del Pizzo R (1992) Taurine and osmoregulation. IV. cerebral taurine transport is increased in rats with hypernatremic dehydration. Pediatr Res 32: 118–124PubMedGoogle Scholar
  332. 332.
    Tripathi RC (1977) The functional morphology of the outflow systems of ocular and cerebrospinal fluid. Exp Eye Res 25: 65–116PubMedGoogle Scholar
  333. 333.
    Tschirgi RD, Frost RW, Taylor JL (1954) Inhibition of cerebrospinal fluid formation by a carbonic anhydrase inhibitor 2-acetylamino-l,3,4-thiadazole-5-sulfonamide (Diamox). Proc Soc Exp Biol Med 87: 373–376PubMedGoogle Scholar
  334. 334.
    Turski PA, Perman WH, Houston L, Winkler SS (1988) Clinical and experimental sodium magnetic resonance imaging. Radiol Clin North Am 26: 861–8Google Scholar
  335. 335.
    Unterberg AW, Andersen BJ, Clarke GD, Marmarou A (1988) Cerebral energy metabolism following fluid-percussion brain injury in cats. J Neurosurg 68: 594–600PubMedGoogle Scholar
  336. 336.
    Upton ML, Weiler RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63: 867–875PubMedGoogle Scholar
  337. 337.
    Van Bree JBMM, De Boer AG, Danhof M, Ginsei LA, Breimer DD (1988) Characterization of an “in vitro” blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J Pharmacol Exp Ther 247: 1233–1239PubMedGoogle Scholar
  338. 338.
    Van Gelder NM (1983) Metabolic interactions between neurons and astroglia: glutamin synthetase, carbonic anhydrase, and water balance. In: Jasper HH, Van Gelder NM (eds) Basic mechanisms of neuronal hyper-excitability. Liss, New York, pp 5–29Google Scholar
  339. 339.
    Van Gelderen P, de Vleeschouwer MHM, DesPres D, Pekar J, Van Zijl PCM, Moonen CTW (1994) Water diffusion and acute stroke. Magn Reson Med 31: 154–163PubMedGoogle Scholar
  340. 340.
    Van Harreveld A (1966) Brain tissue electrolytes. Butterworths, LondonGoogle Scholar
  341. 341.
    Verhagen A, Go KG, Visser GM, Blankenstein MA, Vaalburg W (1994) Presence of progesterone receptors in arachnoid granulations and in the lining of arachnoid cysts. Its relevance to expression of progesterone receptors in meningiomas. Br J NeurosurgGoogle Scholar
  342. 342.
    Verney EB (1947) Antidiuretic hormone and the factors which determine its release. Proc Roy Soc (London) B135: 25–201Google Scholar
  343. 343.
    Vigne P, Champigny G, Marsault R, Barbry P, Frélin C, Lazdunski M (1989) A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. J Biol Chem 264: 7663–7668PubMedGoogle Scholar
  344. 344.
    Wald A, Hochwald GM (1977) An animal model for the production of intracranial pressure plateau waves. Ann Neurol 1: 486–488PubMedGoogle Scholar
  345. 345.
    Wasterlain CG, Torack RM (1968) Cerebral edema in water intoxication. Arch Neurol 19: 79–87PubMedGoogle Scholar
  346. 346.
    Weed LH (1914) Studies on cerebrospinal fluid, vol II. The theory of drainage of cerebrospinal fluid, with an analysis of the methods of investigation. J Med Res 31: 21–49PubMedGoogle Scholar
  347. 347.
    Weinberger MH (1988) Hypertension: the sodium connection. Clin Physiol Biochem 6: 130–135PubMedGoogle Scholar
  348. 348.
    Weiss MH, Wertman N (1978) Modulation of CSF production by alterations in cerebral perfusion pressure. Arch Neurol 35: 527–529PubMedGoogle Scholar
  349. 349.
    Welch K, Friedman V (1960) The cerebrospinal fluid valves. Brain 83: 454–469PubMedGoogle Scholar
  350. 350.
    Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaceus and Macacus irus. Anat Rec 145: 43–48PubMedGoogle Scholar
  351. 351.
    Weiler RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92: 819–828Google Scholar
  352. 352.
    Westergaard E (1975) Enhanced vesicular transport of exogenous peroxidase across cerebral vessels, induced by serotonin. Acta Neuropathol 32: 27–42PubMedGoogle Scholar
  353. 353.
    Westergaard E, Go KG, Klatzo I, Spatz M (1976) Increased permeability of cerebral vessels to horse radish peroxidase induced by ischemia in Mongolian gerbils. Acta Neuropathol 35: 307–325PubMedGoogle Scholar
  354. 354.
    Wijdicks EFM, Vermeulen M, Van Brummelen P, Den Boer NC, Van Gijn J (1987) Digoxin-like immunoreactive substance in patients with aneurysmal subarachnoid haemorrhage. B M J 294: 729–732Google Scholar
  355. 355.
    Winkelman NW, Fay T (1930) The Pacchionian system. Histologic amd pathologic changes with particular reference to the idiopathic and symptomatic convulsive states. Arch Neurol Psychiat 23: 44–64Google Scholar
  356. 356.
    Wolff SD, Balaban RS (1989) Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 10: 135–144PubMedGoogle Scholar
  357. 357.
    Wolfenden R (1983) Waterlogged molecules. Science 222: 1087–1093PubMedGoogle Scholar
  358. 358.
    Wolpow ER, Schaumburg HH (1972) Structure of the human arachnoid granulation. J Neurosurg 37: 724–727PubMedGoogle Scholar
  359. 359.
    Woollam DHM, Milien JW (1958) Observations on the production and circulation of the cerebrospinal fluid. In: Wolstenholme GEW, O’Connor CM (eds) Ciba Foundation Symposium on Production, Circulation and Absorption of the Cerebrospinal Fluid. Little and Brown, Boston, pp 124–146Google Scholar
  360. 360.
    Wright EM (1972) Mechanisms of ion transport across the choroid plexus. J Physiol (London) 226: 545–571Google Scholar
  361. 361.
    Yakovlev PI, Wadsworth RC (1946) Schizencephalies. A study of the congenital clefts in the cerebral mantle. I. Clefts with fused lips. J Neuropathol Exp Neurol 5: 116–129PubMedGoogle Scholar
  362. 362.
    Yannet H (1939) Changes in the brain resulting from depletion of extracellular electrolytes. Am J Physiol 128: 683–689Google Scholar
  363. 363.
    Zlokovic BV, Segal MB, Davson H, Lipovac MN, Hyman S, Mc Comb JG (1990) Circulating neuroactive peptides and the blood-brain barrier and blood-cerebrospinal fluid barriers. Endocrin Exp 24: 9–17Google Scholar
  364. 364.
    Zucker RS, Lando L (1986) Mechanism of transmitter release: voltage hypothesis and calcium hypothesis. Science 231: 574–578PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • K. G. Go
    • 1
  1. 1.Department of NeurosurgeryUniversity of GroningenGroningen(The Netherlands)

Personalised recommendations