Skip to main content

Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids

  • Chapter

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 11))

Abstract

The phylogenetic relationships of the “golden algae”, like all algae, were rarely addressed before the advent of electron microscopy because, based upon light microscopy, each group was so distinct that shared characters were not apparent. Electron microscopy has provided many new characters that have initiated phylogenetic discussions about the relationships among the “golden algae”. Consequently, new taxa have been described or old ones revised, many of which now include non-algal protists and fungi. The haptophytes were first placed in the class Chrysophyceae but ultrastructural data have provided evidence to classify them separately. Molecular studies have greatly enhanced phylogenetic analyses based on morphology and have led to the description of additional new taxa. We took available nucleotide sequence data for the nuclear-encoded SSU rRNA, fucoxanthin/ chlorophyll photosystem I/II, and actin genes and the plastid-encoded SSU rRNA, tufA, and rbcL genes and analysed these to evaluate phylogenetic relationships among the “golden algae”, viz., the Haptophyceae (= Prymnesiophyceae) and the heterokont chromophytes (also known as chromophytes, heterokont algae, autotrophic stramenopiles). Using molecular clock calculations, we estimated the average and earliest probable time of origin of these two groups and their plastids. The origin of the haptophyte host-cell lineages appears to be more ancient than the origin of its plastid, suggesting that an endosymbiotic origin of plastids occurred late in the evolutionary history of this group. The pigmented heterokonts (heterokont chromophytes) also arose later, following an endosymbiotic event that led to the transfer of photosynthetic capacity to their heterotrophic ancestors. Photosynthetic haptophytes and heterokont chromophytes both appear to have arisen at or shortly before the Permian-Triassic boundary. Our data support the hypothesis that the haptophyte and heterokont chromophyte plastids have independent origins (i.e., two separate secondary endosymbioses) even though their plastids are similar in structure and pigmentation. Present evidence is insufficient to evaluate conclusively the possible monophyletic relationship of the haptophyte and heterokont protist host cells, even though haptophytes lack tripartite flagellar hairs. The molecular data, albeit weak, consistently fail to present the heterokont chromophytes and haptophytes as monophyletic. Phylogenetic resolution among all classes of heterokont chromophytes remains elusive even though molecular evidence has established the phylogenetic alliance of some classes (e.g., Phaeophyceae and Xanthophyceae).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agardh, C. A., 1820: Species Algarum. 1. — Lund.

    Google Scholar 

  • Andersen, R. A., 1987: Synurophyceae classis nov., a new class of algae. — Amer. J. Bot. 74: 337–353.

    Google Scholar 

  • — 1991: The cytoskeleton of chromophyte alga. — Protoplasma 164: 143–159.

    Google Scholar 

  • Saunders, G. W., Paskind, M. P., Sexton, J. P., 1993: The ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. & sp. nov., and the description of a new algal class, the Pelagophyceae classis nov. — J. Phycol. 29: 701–715.

    Google Scholar 

  • Ariztia, E. V., Andersen, R. A., Sogin, M. L., 1991: A new phylogeny for chromophyte algae using 16S-like rRNA sequences from Mallomonas papillosa (Synurophyceae) and Tribonema aequale (Xanthophyceae). — J. Phycol. 27: 428–436.

    CAS  Google Scholar 

  • Bhattacharya, D., Medlin, L., 1995: The phylogeny of plastids: A review based on comparison of small subunit ribosomal RNA coding regions. — J. Phycol 31: 489–498.

    CAS  Google Scholar 

  • Ehlting, J., 1995: Actin coding regions: gene family evolution and use as a phylogenetic marker. — Arch. Protistenk. 145: 155–164.

    Google Scholar 

  • Medlin, L., Wainright, P. O., Ariztia, E. V., Bibeau, C., Stickel, S. K., Sogin, M. L., 1992: Algae containing chlorophylls a and c are paraphyletic: molecular evolutionary analysis of the Chromophyta. — Evolution 46: 1801–1817.

    Google Scholar 

  • Helmchen, T., Melkonian, M., 1995: Molecular evolutionary analyses of nuclearencoded small subunit ribosomal RNA identify an independent rhizopod lineage containing the Euglyphidae and the Chlorarachniophyta. — J. Eukaryote Microbiol. 42: 65–69.

    Google Scholar 

  • Bjørnland, T., Liaaen-Jensen, S., 1989: Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and prospectives, pp. 37–60. — Syst. Ass. Spec. Vol. 38. — Oxford: Clarendon Press.

    Google Scholar 

  • Blackman, F. F., 1900: The primitive algae and the flagellata. An account of modern work bearing on the evolution of algae. — Ann. Bot. 14: 647–688.

    Google Scholar 

  • Bourrelly, P., 1957: Recherches sur les Chrysophycées: morphologie, phylogénie, systématique. — Rev. Algol. Mém. Hors-Séri. 1: 1–412.

    Google Scholar 

  • — 1968: Les Algues d’eau douce. 2. Algues jaunes & brunes. — Paris: Boubée.

    Google Scholar 

  • Caron, L., Douady, D., Quinet-Szely, De Goër, S., Berkaloff, C., 1996: Gene structure of a chlorophyll a/c binding protein from a brown alga: Presence of an intron and phylogenetic implications. — J. Molec. Evol. 43: 270–280.

    PubMed  CAS  Google Scholar 

  • Cavalier-Smith, T., 1975: The origin of nuclei and of eukaryotic cells. — Nature 256: 463–468.

    Google Scholar 

  • — 1982: The origins of plastids. — Biol. J. Linn. Soc. 17: 289–306.

    Google Scholar 

  • — 1986: The kingdom Chromista: Origin and systematics. — In Round F. E., Chapman D. J., (Eds): Progress in phycological research, 4, pp. 319–358. — Bristol: Biopress.

    Google Scholar 

  • — 1989: The kingdom Chromista. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophytic algae: problems and perspectives, pp. 381–407. — Oxford: Clarendon Press.

    Google Scholar 

  • — 1993: Kingdom Protozoa and its 18 phyla. — Microbiol. Rev. 57: 953–994.

    PubMed  CAS  Google Scholar 

  • Chao, E. E., 1996: 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of the heterokont algae (Ochrophyta). — Phycologia 35: 500–510.

    Google Scholar 

  • Allsopp, M. T. E. P., Chao, E. E., 1994: Chimeric conundra: Are nucleomorphs and chromists monophyletic or polyphyletic? — Proc. Natl. Acad. Sci. USA 91: 11368–11372.

    Google Scholar 

  • Chao, E. E., Allsopp, M. T. E. P., 1995: Ribosomal RNA evidence for chloroplast loss within Heterokonta: Pedinellid relationships and a revised classification of Ochristan algae. — Arch. Protistenk. 145: 209–220.

    Google Scholar 

  • Allsopp, M. T. E. P., Haueber, M. M., Gothe, G., Chao, E. E., Couch, J. A., Maier, U.-G., 1996: Chromobiote phylogeny: the enigmatic alga Reticulosphaera japonensis is an aberrant haptophyte, not a heterokont. — Eur. J. Phycol. 31: 255–264.

    Google Scholar 

  • Chadefaud, M., 1950: Les cellules nageuses des algues dans l’embranchment des Chromophycées. — Compt. Rend. Hebd. Séances Sci. 231: 788–790.

    Google Scholar 

  • Chesnick, J. M., Morden, C. W., Schmieg, A. M., 1996: Identity of the endosymbiont of Peridinium foliaceum (Pyrrhophyta): Analysis of the rbcLS Operon. — J. Phycol. 32: 850–857.

    CAS  Google Scholar 

  • Christensen, T., 1962: Alger. — In Böcher, T. W., Lange, M., Sørensen, T., (Ed.): Botanik, 2/2, pp. 1–178. — Copenhagen: Munksgaard.

    Google Scholar 

  • — 1989: The Chromophyta, past and present. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 1–12. — Oxford: Clarendon Press.

    Google Scholar 

  • Craigie, J. S., 1974: Storage Products. — In Stewart, W. D. P., (Ed.): Algal physiology and biochemistry, pp. 206–235. — Berkeley, CA: University of California Press.

    Google Scholar 

  • Delwiche, C. F., Palmer, J. D., 1996: Rampant horizontal transfer and duplication of Rubisco genes in Eubacteria and plastids. — Molec. Biol. Evol. 13: 873–882.

    PubMed  CAS  Google Scholar 

  • Kuhsel, M., Palmer, J. D., 1995: Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. — Molec. Phylogenet. Evol. 4: 110–128.

    PubMed  CAS  Google Scholar 

  • Dodge, J. D., 1975: The fine structure of algal cells. — New York: Academic Press.

    Google Scholar 

  • Ehrenberg, C. G., 1838: Die Infusionsthierchen als vollkommene Organismen. — Leipzig: Voss.

    Google Scholar 

  • Erwin, D. H., 1994: The Permo-Triassic extinction. — Nature 367: 231–236.

    Google Scholar 

  • Felsenstein, J., 1985: Confidence limits on phylogenies: an approach using the bootstrap. — Evolution 39: 783–791.

    Google Scholar 

  • Fritsch, F. E., 1945: The structure and reproduction of the algae. 2. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Fujiwara, S., Sawada, M. H., Someya, J., Minaka, N., Nishikawa, S., 1995: Molecular phylogenetic analysis of the rbcL in Prymnesiophyta. — J. Phycol. 30: 863–871.

    Google Scholar 

  • Gersonde, R., Harwood, D. M., 1990: Lower Cretaceous diatoms from ODP Leg 113 site 693 (Weddell Sea). I: Vegetative cells. — In Barker, P. F., Kennett, J. P., et al. (Eds): Proceedings of the Ocean Drilling Program, scientific results, 113, pp. 365–402. — College Station, TX: Ocean Drilling Program.

    Google Scholar 

  • Gibbs, S. P., 1978: The chloroplasts of Euglena may have evolved from symbiotic green algae. — Canad. J. Bot. 56: 2882–2889.

    Google Scholar 

  • — 1981: The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. — Ann. New York. Acad. Sci. 361: 193–208.

    CAS  Google Scholar 

  • — 1993: The origin of algal chloroplasts. — In Lewin, R. A., (Ed.): Origins of plastids, pp 107–121. — New York: Chapman and Hall.

    Google Scholar 

  • Green, B. R., Durnford, D. G., 1996: The chlorophyll-carotenoid proteins of oxygenic photosynthesis. — Annual. Rev. Pl. Physiol. Pl. Mol. Biol. 47: 685–714.

    CAS  Google Scholar 

  • Green, J. C., 1989: Relationships between the chromophyte algae: the evidence from studies of mitosis. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 189–206. — Oxford: Clarendon Press.

    Google Scholar 

  • Leadbeater, B. S. C., (Eds), 1994: The haptophyte algae. — Oxford: Clarendon Press.

    Google Scholar 

  • — — Diver, W. L., (Eds), 1989: The chromophyte algae: problems and perspectives. — Oxford: Clarendon Press.

    Google Scholar 

  • Gu, X., Li, W.-H., 1996: Bias-corrected paralinear and LogDet distances and tests of molecular clocks and phylogenies under nonstationary nucleotide frequencies. — Molec. Biol. Evol. 13: 1375–1383.

    PubMed  CAS  Google Scholar 

  • Harvey, W. H., 1836: Algae. — In Mackay, J. T., (Ed.): Flora Hibernica, pp. 157–254. — Dublin.

    Google Scholar 

  • Hibberd, D. J., 1976: The ultrastructure and taxonomy of the Chrysophyceae and Prymnesiophyceae (Haptophyceae): a survey with some new observations on the ultrastructure of the Chrysophyceae. — Bot. J. Linn. Soc. 72: 55–80.

    Google Scholar 

  • Leedale, G. F., 1971: A new algal class — the Eustigmatophyceae. — Taxon 20: 523–525.

    Google Scholar 

  • Hillis, D. M., Bull, J. J., 1993: An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. — Syst. Biol. 42: 182–192.

    Google Scholar 

  • Moritz, C., 1990: An overview of applications of molecular systematics. — In Hillis, D. M., Moritz, C., (Eds): Molecular systematics, pp. 502–515. — Sunderland, MA: Sinauer.

    Google Scholar 

  • — — Mable, B. K., 1996: Molecular systematics. — Sunderland, MA: Sinauer.

    Google Scholar 

  • Jeffrey, S. W., 1989: Chlorophyll c pigments and their distribution in the chromophyte algae. — In Green, J. C., Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae: problems and perspectives, pp. 13–36. — Oxford: Clarendon Press.

    Google Scholar 

  • Jordan, R., Green, J. C., 1994: A check-list of the extant Haptophyta of the world. — J. Mar. Biol. Assoc. U.K. 74: 149–174.

    Google Scholar 

  • Keeling, P. J., Doolittle, W. F., 1996: Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. — Molec. Biol. Evol. 13: 1297–1305.

    PubMed  CAS  Google Scholar 

  • Kimura, M., 1980: A simple method for estimating evolutionary rates of base substitution through comparative studies of sequence evolution. — J. Molec. Evol. 16: 111–120.

    PubMed  CAS  Google Scholar 

  • Klebs, G., 1893: Flagellatenstudien. II. — Z. Wiss. Zool. 55: 353–445.

    Google Scholar 

  • Klein, R. M., Cronquist, A., 1967: A consideration of the evolutionary and taxonomic significance of some biochemical, micromorphological, and physiological characters in the thallophytes. — Quart. Rev. Biol. 42: 105–296.

    PubMed  CAS  Google Scholar 

  • Knoll, A. H., 1992: The early evolution of eukaryotes: a geological perspective. — Science 256: 622–627.

    PubMed  CAS  Google Scholar 

  • Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P.; Wilson, R. J., Palmer, J. D., Roos, D. S., 1997: A plastid of probable green algal origin in apicomplexan parasites. — Science 275: 1485–1489.

    PubMed  Google Scholar 

  • Kooistra, W. H. C. E., Medlin, L. K., 1996: Evolution of the diatoms (Bacillariophyta): IV. A reconstruction of their age from small subunit rRNA coding regions and the fossil record. — Molec. Phylogenet. Evol. 6: 391–407.

    PubMed  CAS  Google Scholar 

  • Kowallik, K. V., 1992: Origin and evolution of plastids from chlorophyll-a + c-containing algae: suggested ancestral relationships to red and green algal plastids. — In Lewin, R. A., (Ed.): Origins of plastids, pp. 223–263. — New York: Chapman and Hall.

    Google Scholar 

  • Kumar, S., Tamura, K., Nei, M., 1993: MEGA: molecular evolutionary genetics analysis, version 1.0. — University Park, PA: Institute of Molecular Evolutionary Genetics, Pennsylvania State University.

    Google Scholar 

  • Kützing, F. T., 1834: Synopsis diatomearum oder Versuch einer systematischen Zusammenstellung der Diatomeen. — Halle.

    Google Scholar 

  • Lackey, J. B., 1939: Notes on plankton flagellates from the Scioto River. — Lloydia 2: 128–143.

    Google Scholar 

  • Lamouroux, J. V. R., 1813: Essai sur les genres de la famille des thalassiophytes non articulées. — Ann. Mus. Hist. Nat. 20: 21–47, 115–139, 267–293.

    Google Scholar 

  • LaRoche, J., Henry, D., Wyman, K., Sukenik, A., Falkowski, P., 1994: Cloning and nucleotide sequence of a cDNA encoding a major fucoxanthin-chlorophyll alc-containing protein from the chrysophyte Isochrysis galbana: implications for the evolution of the cab gene family. — Pl. Molec. Biol. 25: 355–368.

    CAS  Google Scholar 

  • Leipe, D. D., Wainright, M. L., Gunderson, J. H., Porter, D., Patterson, D. J., Valois, F., Himmerich, S., Sogin, M. L., 1994: The stramenopiles from a molecular perspective: 16S-like rRNA sequences from Labyrintuloides minuta and Cafeteria roenbergensis. — Phycologia 33: 369–377.

    Google Scholar 

  • Liaud, M.-F., Bandt, U., Scherzinger, M., Cerff, R., 1997: Evolutionary origin of cryptomonad microalgae: Two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. — J. Molec. Evol. 44: [Suppl 1]: S28–S37.

    PubMed  CAS  Google Scholar 

  • Linneaus, C., 1753: Species plantarum. — Stockholm.

    Google Scholar 

  • Lockhart, P. J., Howe, C. J., Bryant, D. A., Beanland, M. D., Penny, D., 1994: Substitutional bias confounds inference of cyanelle origins from sequence data. — J. Molec. Evol. 34: 153–162.

    Google Scholar 

  • Lohmann, H., 1913: Über Coccolithophoriden. — Verh. Deutsch. Zool Ges. 23: 143–164.

    Google Scholar 

  • Loiseaux de Goër, S., 1994: Plastid lineages. — Progr. Phycol. Res. 10: 137–177.

    Google Scholar 

  • Luther, A., 1899: Über Chlorosaccus eine neue Gattung der Süsswasseralgen. — Beih. Kongl. Svenska Vetensk. — Akad. Handl. 24 (III, 13): 1–22.

    Google Scholar 

  • McFadden, G. I., Gilson, P R., Waller, R. F., 1995: Molecular phylogeny of chlorarachniophytes based on plastid rRNA and rbcL sequences. — Arch. Protistenk. 145: 231–239.

    Google Scholar 

  • Margulis, L., 1981: Symbiosis in cell evolution. — San Francisco: Freeman.

    Google Scholar 

  • Medlin, L. K., Cooper, A., Hill, C., Wrieden-Prigge, S., Wellbrock, U., 1995: Phylogenetic position of the Chromista plastids from 16S rDNA coding regions. — Curr. Genet. 28: 560–565.

    PubMed  CAS  Google Scholar 

  • Barker, G. L. A., Campbell, L., Green, J. C., Hayes, P. K., Marie, D., Wrieden, S., Vaulot, D., 1996a: Genetic characterization of Emiliania huxleyi (Haptophyta). — J. Mar. Syst. 9: 13–31.

    Google Scholar 

  • Gersonde, R., Kooistra, W. H. C. F., Wellbrock, U., 1996b: Evolution of the diatoms (Bacillariophyta): II. Nuclear-encoded small-subunit rRNA sequence comparisons confirm a paraphyletic origin for the centric diatoms. — Molec. Biol. Evol. 13: 67–75.

    PubMed  CAS  Google Scholar 

  • — — — Sims, P. A., Wellbrock, U., 1996C: Evolution of the diatoms (Bacillariophyta): III. The age of the Thalassiosirales. — Beih. Nova Hedwigia 11: 221–234.

    Google Scholar 

  • — — — — — 1997: Is the origin of diatoms related to the end-Permian mass extinction. — In Jahn, R., Meyer, B., Preisig, N. R. (Eds): Nova Hedwigia Festschrift für U. GEISSLER pp. 1–13. — Stuttgart: J. Cramer.

    Google Scholar 

  • Mereschkowsky, C., 1905: Über Natur und Ursprung der Chromotaphoren im Pflanzenreiche. — Biol. Centralbl. 25: 593–604.

    Google Scholar 

  • Müller, O. M. F., 1786: Animacula infusoria fluviatilia et marina. — Copenhagen: Moller.

    Google Scholar 

  • Moestrup, Ø., 1992: Taxonomy and phylogeny of the Heterokontophyta. — In Stabenau, H., (Ed.): Phylogenetic changes in peroxisomes of algae, phylogeny, of plant peroxisomes, pp. 383–399. — Oldenburg: University of Oldenburg.

    Google Scholar 

  • Palmer, J. D., 1993: A genetic rainbow of plastids. — Nature 364: 762–763.

    Google Scholar 

  • Parke, M., Manton, I., Clarke, B., 1955: Studies on marine flagellates. II. Three new species of Chrysochromulina. — J. Mar. Biol. Assoc. U.K. 34: 579–609.

    Google Scholar 

  • — — — 1956: Studies on marine flagellates. III. Three further species of Chrysochromulina. — J. Mar. Biol. Assoc. U.K. 35: 387–414.

    Google Scholar 

  • — — — 1958: Studies on the marine flagellates. IV. Morphology and microanatomy of a new species of Chrysochromulina. — J. Mar. Biol. Assoc. U.K. 37: 209–228.

    Google Scholar 

  • Pascher, A., 1910: Chrysomonaden aus dem Hirschberger Großteiche. Untersuchungen über die Flora des Hirschberger Großteiches. I. Teil. — Monogr. Abh. Int. Rev. Gesamten Hydrobiol. Hydrogr. 1: 1–66.

    Google Scholar 

  • — 1913: Chrysomonadinae. — In Pascher, A., (Ed.): Süsswasser-Flora Deutschlands, Österreichs und der Schweiz, 2, pp. 7–15.

    Google Scholar 

  • Patterson, D. J., 1989: Stramenopiles: chromophytes from a protistan perspective. — In Leadbeater, B. S. C., Diver, W. L., (Eds): The chromophyte algae, pp. 357–379. — Oxford: Clarendon Press.

    Google Scholar 

  • Pérasso, R., Baroin, A., Qu, L. H., Bachellerie, J. P., Adoutte, A., 1989: Origin of the algae. — Nature 339: 142–144.

    PubMed  Google Scholar 

  • Pickett-Heaps, J., Schmid, A-M. M., Edgar, L. A., 1990: The cell biology of diatom valve formation. — In Round, F. E., Chapman, D. J., (Eds): Progress in phycological research, pp., 1–168. — Bristol: Biopress.

    Google Scholar 

  • Potter, D., LaJeunesse, T. C., Saunders, G. W., Andersen, R. A., 1996: Convergent evolution masks extensive biodiversity among marine coccoid picoplankton. — Biodiversity conservation. 6: 99–107.

    Google Scholar 

  • Saunders, G. W., Andersen, R. A., 1997: Phylogenetic relationships of the Raphidophyceae and Xanthophyceae as inferred from nucleotide sequences of the 18S ribosomal RNA gene. — Amer. J. Bot. 84: 966–972.

    CAS  Google Scholar 

  • Rabenhorst, L., 1853: Süsswasser-Diatomeen (Bacillarien), für Freunde der Mikroskopie bearbeitet. — Leipzig.

    Google Scholar 

  • Raven, P. H., 1970: A multiple origin for plastids and mitochondria. — Science 169: 641–646.

    PubMed  CAS  Google Scholar 

  • Rensing, S. A., Obrdlik, P., Rober-Kleber, N., Müller, S. B., Hofmann, C. J. B., Maier, U.-G., 1996: Molecular phylogeny of the stress-70 protein family with certain emphasis on algal relationships. — In: 1st European Phycological Congress, Abstracts, p. 16.

    Google Scholar 

  • Round, E E., Crawford, R. M., Mann, D. G., 1990: The diatoms: Biology and morphology of the genera. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Rowan, K. S., 1989: Photosynthetic pigments of algae. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Saitou, N., Nei, M., 1987: The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Molec. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Saunders, G. W., Druehl, D., 1992: Nucleotide sequences of the small-subunit ribosomal RNA genes from selected Laminariales (Phaeophyta): implications for kelp evolution. — J. Phycol. 28: 544–549.

    CAS  Google Scholar 

  • Potter, D., Paskind, M. P., Andersen, R. A., 1995: Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. — Proc. Natl. Acad. Sci. USA 92: 244–248.

    PubMed  CAS  Google Scholar 

  • Hill, D. R. A., Tyler, P. A., 1997a: Phylogenetic affinities of Chrysonephele palustris (Chrysophyceae) based on inferred nuclear small-subunit ribosomal RNA sequence. — J. Phycol. 33: 132–134.

    Google Scholar 

  • Potter, D., Andersen, R. A., 1997b: Phylogenetic affinities of the Sarcinochrysidales and Chrysomeridales (Heterokonta) based on analyses of molecular and combined data. — J. Phycol. 33: 310–318.

    CAS  Google Scholar 

  • Scamper, A. F. W., 1883: Über die Entwicklung der Chlorophyllkörner und Farbkörper. — Bot. Zeitung (Berlin) 41: 105–112.

    Google Scholar 

  • Silva, P. C., 1980: Names of classes and families of living algae. — Regnum Veg. 103: 1–156.

    Google Scholar 

  • Sleigh, M. A., 1989: Protozoa and other protists. — London: Arnold.

    Google Scholar 

  • Stackhouse, J., 1809: Tentamen marino-cryptogamicum, ordinem novum, in genera et species distributum, in Classe XXIVta Linnaei sistens. — Mém. Soc. Imp. Naturalistes Moscou 2: 50–97.

    Google Scholar 

  • Starmach, K., 1985: Chrysophyceae und Haptophyceae. — In Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., (Eds): Süsswasserflora von Mitteleuropa 1. — Stuttgart: G. Fischer.

    Google Scholar 

  • Stein, F. von, 1878: Der Organismus der Infusionsthiere. 3. — Leipzig.

    Google Scholar 

  • Stewart, K. D., Mattox, K., 1970: Phylogeny of phytoflagellates. — In Cox, E. R., (Ed.): Phytoflagellates, pp. 433–462. — New York: Elsevier/North-Holland.

    Google Scholar 

  • Swofford, D. L., 1993: PAUP, Phylogenetic analysis using parsimony, version 3.1, program and documentation. — Champaign, IL: Illinois Natural History Survey, University of Illinois.

    Google Scholar 

  • Taggart, R. E., Parker, L. R., 1976: A new fossil alga from the Silurian of Michigan. — Amer. J. Bot. 63: 1390–1392.

    Google Scholar 

  • Takezaki, N., Rzhetsky, A., Nei, M., 1995: Phylogenetic test of the molecular clock and linearized trees. — Molec. Biol. Evol. 12: 823–833.

    PubMed  CAS  Google Scholar 

  • Taylor, F. J. R., 1976: Flagellate phylogeny: a study in conflicts. — J. Protozool. 23: 28–40.

    Google Scholar 

  • Valentin, K., Cattolico, R. R., Zetzche, K., 1992: Phylogenetic origin of the plastids. — In Lewin, R. A., (Ed.): Origins of plastids, pp. 193–221. — New York: Chapman and Hall.

    Google Scholar 

  • Van den Hoek, C., 1978: Algen: Einführung in die Phykologie. — Stuttgart: Thieme.

    Google Scholar 

  • Van der Auwera, G., De Wachter, R., 1996: Large-subunit rRNA sequence of the chytridiomycete Blastocladiella emersonii, and implication for the evolution of zoosporic fungi. — J. Molec. Evol. 43: 476–483.

    PubMed  Google Scholar 

  • Vesk, M., Jeffrey, S. W., 1987: Ultrastructure and pigments of two strains of the picoplanktonic alga Pelagococcus subviridis (Chrysophyceae). — J. Phycol. 23: 322–336.

    CAS  Google Scholar 

  • Vlk, W., 1938: Über den Bau der Geissei. — Arch. Protistenk. 90: 448–488.

    Google Scholar 

  • Vögel, H., Fischer, S., Valentin, K., 1996: A model for the evolution of the plastid sec apparatus inferred from secY gene phylogeny. — Pl. Molec. Biol. 32: 685–692.

    Google Scholar 

  • Wainright, P. O., Hickle, G., Sogin, M. L., Stickel, S. K., 1993: Monophyletic origins of the Metazoa: an evolutionary link with the fungi. — Science 260: 340–342.

    PubMed  CAS  Google Scholar 

  • Wang, M. C., Bartnicia Garcia, S., 1974: Mycolaminarins: Storage (1→3) — β-D-glucans from the cytoplasm of the fungus Phytophthora palmivora. — Carbohydrate Res. 37: 331–338.

    CAS  Google Scholar 

  • Williams, D. M., 1991: Phylogenetic relationships among the Chromista: a review and preliminary analysis. — Cladistics 7: 141–156.

    Google Scholar 

  • Wray, G. A., Levington, J. S., Shapiro, L. H., 1996: Molecular evidence for deep Precambrian divergences among metazoan phyla. — Science 274: 568–573.

    CAS  Google Scholar 

  • Wu, C.-I., Li, W.-H., 1985: Evidence for higher rates of nucleotide substitution in rodents than in man. — Proc. Natl. Acad. Sci. USA 8: 1741–1745.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Medlin, L.K., Kooistra, W.H.C.F., Potter, D., Saunders, G.W., Andersen, R.A. (1997). Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids. In: Bhattacharya, D. (eds) Origins of Algae and their Plastids. Plant Systematics and Evolution, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6542-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6542-3_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83035-2

  • Online ISBN: 978-3-7091-6542-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics