# A canonical form guide to symbolic summation

• P. Paule
• I. Nemes
Chapter
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)

## Abstract

Suppose one is interested in a procedure that computes for nonnegative integer input k the values S(k) and T(k) being defined as
$$S\left( k \right): = \sum\limits_{j = 0}^k {{{2{j^2} + 3j - 1} \over {{{\left( {j + 1} \right)}^2}{{\left( {j + 2} \right)}^2}\left( {j + 3} \right)}}}$$
and
$$T\left( k \right): = \int_0^k {{{2{x^2} + 3x - 1} \over {{{\left( {x + 1} \right)}^2}{{\left( {x + 2} \right)}^2}\left( {x + 3} \right)}}} {\rm{dx}}{\rm{.}}$$

## Keywords

Elementary Expression Term Algebra Symbolic Summation Hypergeometric Solution Generalize Hypergeometric Series
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

1. Abramov, S. A. (1989): Rational solutions of linear difference and differential equations with polynomial coefficients. USSR Comput. Math. Math. Phys. 29: 7–12.
2. Andrews, G. E. (1986): q-Series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra. American Mathematical Society, Providence (CBMS regional conference series, vol. 66).Google Scholar
3. Buchberger, B., Loos, R. (1983): Algebraic simplification. In: Buchberger, B., Collins, G., Loos, R. (eds.): Computer algebra, symbolic and algebraic computation, 2nd edn. Springer, Wien New York, pp. 11–43.Google Scholar
4. Egorychev, G. P. (1984): Integral representation and the computation of combinatorial sums. American Mathematical Society, Providence (Translations of mathematical monographs, vol. 59).Google Scholar
5. Flajolet, P., Salvy, B. (1996): Computer algebra libraries for combinatorial structures. J. Symb. Comput. 20: 653–672.
6. Gärtner, J. (1986): Summation in finite terms — presentation and implementation of M. Karr’s algorithm. Diploma thesis, Johannes Kepler University, Linz, Austria.Google Scholar
7. Gosper, R. W. Jr. (1978): Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. U.S.A. 75: 40–42.
8. Gould, H. W. (1972): Combinatorial identities, a standardized set of tables listing 500 binomial coefficient summations, revised edn. West Virginia University, Morgantown.
9. Graham, R. L., Knuth, D. E., Patashnik, O. (1994): Concrete mathematics: a foundation for computer science, 2nd edn. Addison-Wesley, Reading, MA.
10. Karr, M. (1981): Summation in finite terms. J. ACM. 28: 305–350.
11. Karr, M. (1985): Theory of summation in finite terms. J. Symb. Comput. 1: 303–315.
12. Knuth, D. E. (1973): The art of computer programming, vol. 1, fundamental algorithms, 2nd edn. Addison-Wesley, Reading, MA.Google Scholar
13. Koepf, W. (1992): Power series in computer algebra. J. Symb. Comput. 13: 581–603.
14. Koornwinder, T. H. (1993): On Zeilberger’s algorithm and its q-analogue. J. Comput. Appl. Math. 48: 91–111.
15. Lafon, J. C. (1983): Summation in finite terms. In: Buchberger, B., Collins, G., Loos, R. (eds.): Computer algebra, symbolic and algebraic computation, 2nd edn. Springer, Wien New York, pp. 71–77.Google Scholar
16. Nemes, L, Petkovšek, M. (1996): RComp: a Mathematica package for computing with recursive sequences. J. Symb. Comput. 20: 745–754.
17. Paule, P. (1993): Greatest factorial factorization and symbolic summation I. Tech. Rep. 93–02, RISC Linz, Johannes Kepler University, Linz, Austria.Google Scholar
18. Paule, P. (1994): Short and easy computer proofs of the Rogers-Ramanujan identities and of identities of similar type. Electron. J. Combinatorics 1: R10.
19. Paule, P. (1996): Proof of a conjecture of Knuth. J. Exp. Math. 5: 83–89.
20. Paule, P., Schorn, M. (1996): A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symb. Comput. 20: 673–698.
21. Paule, P., Strehl, V. (1995): Symbolic summation — some recent developments. In: Fleischer J., Grabmeier, J., Hehl, F., Kuechlin, W. (eds.): Computer algebra in science and engineering: algorithms, systems, and applications. World Scientific, Singapore, pp. 138–162.Google Scholar
22. Petkovšek, M. (1992): Hypergeometric solution of linear recurrences with polynomial coefficients. J. Symb. Comput. 14: 243–264.
23. Pirastu, R., Strehl, V. (1996): Rational summation and Gosper-Petkovšek representation. J. Symb. Comput. 20: 617–636.
24. Prodinger, H. (1994): Knuth’s old sum — survey. EATCS Bull. 54: 232–245.
25. Roy, R. (1988): Binomial identities and hypergeometric series. Am. Math. Monthly 94: 36–46.
26. Salvy, B., Zimmermann, P. (1994): GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Trans. Math. Software 20: 163–177.
27. Schorn, M. (1995): Contributions to symbolic summation. Diploma thesis, Johannes Kepler University, Linz, Austria.Google Scholar
28. Slater, L. J. (1966): Generalized hypergeometric series. Cambridge University Press, Cambridge.Google Scholar
29. Stanley, R. P. (1980): Differentiably finite power series. Eur. J. Comb. 1: 175–188.
30. Wilf, H. S. (1990): Generating functionology. Academic Press, San Diego.Google Scholar
31. Yen, L. (1993): Contributions to the proof theory of hypergeometric identities. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.Google Scholar
32. Zeilberger, D. (1990): A fast algorithm for proving terminating hypergeometric identities. Discrete Math. 32: 321–368.