The uniform representation of mathematical objects by truncated power series

  • C. Limongelli
  • M. Temperini
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)


Systems for symbolic mathematics are based on the availability of powerful methods and techniques, which have been developed for numeric computation, symbolic and algebraic computation and automated deduction. But those different computing paradigms really work independently in such systems. Each of them represents an individual computing environment, while they are not integrated to support a uniform environment for computation. The problem of the integration of numeric and symbolic computation is still open (Caviness 1986, Limongelli and Miola 1990, Mascari and Miola 1986).


Algebraic Structure Mathematical Object Symbolic Computation Diophantine Equation Abstract Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caviness, B. (1986): Computer algebra: past and future. J. Symb. Comput. 2: 217–236.MathSciNetMATHCrossRefGoogle Scholar
  2. Char, B. W., Fee, G. J., Geddes, K. O., Gonnet, G. H., Monagan, B. W., Watt, S. M. (1986): A tutorial introduction to Maple. J. Symb. Comput. 2: 171–178.CrossRefGoogle Scholar
  3. Colagrossi, A., Limongelli, C., Miola, A. (1997): p-adic arithmetic: a tool for error free computations. In: Miola, A., Temperini, M. (eds.): Advances in the design of symbolic computation systems. Springer, Wien New York, pp. 53–67 (this volume).Google Scholar
  4. Gregory, R., Krishnamurthy, E. (1984): Methods and applications of error-free computation. Springer, New York Berlin Heidelberg.MATHCrossRefGoogle Scholar
  5. Hensel, K. (1908): Theorie der algebraischen Zahlen. Teubner, Leipzig.MATHGoogle Scholar
  6. Lauer, M. (1983): Computing by homomorphic images. In: Buchberger, B., Collins, G. E., Loos, R. (eds.): Computer algebra, symbolic and algebraic computation, 2nd edn. Springer, Wien New York, pp. 139–168.Google Scholar
  7. Limongelli, C., Miola, A. (1990): Abstract specification of numeric and algebraic computation methods. In: Balagurusamy, E., Sushila, B. (eds.): Computer systems and applications, recent trends. Tata McGraw-Hill, New Delhi, pp. 27–35.Google Scholar
  8. Limongelli, C., Temperini, M. (1992): Abstract specification of structures and methods in symbolic mathematical computation. Theor. Comput. Sci. 104: 89–107.MathSciNetMATHCrossRefGoogle Scholar
  9. Limongelli, C., Mele, M. B., Regio, M., Temperini, M. (1990): Abstract specification of mathematical structures and methods. In: Miola, A. (ed.): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo, pp. 61–70 (Lecture notes in computer science, vol. 429).CrossRefGoogle Scholar
  10. Limongelli, C., Miola, A., Temperini, M. (1992): Design and implementation of symbolic computation systems. In: Gaffney, P. W., Houstis, E. N. (eds.): Proceedings IFIP TC2/WG2.5 Working Conference on Programming Environments for High Level Scientific Problem Solving, Karlsruhe, Germany, Sept. 23–27, 1991. North-Holland, Amsterdam, pp. 217–226.Google Scholar
  11. Lipson, J. D. (1976): Newton’s method: a great algebraic algorithm. In: Proceedings ACM Symposium on Symbolic and Algebraic Computation, Symsac’ 76. Association for Computing Machinery, New York, pp. 260–270.CrossRefGoogle Scholar
  12. Mascari, G., Miola, A. (1986): On the integration on numeric and algebraic computations. In: Beth, T., Clausen, M. (eds.): Applied algebra, algebraic algorithms and error-correcting codes. Springer, Berlin Heidelberg New York Tokyo, pp. 77–87 (Lecture notes in computer science, vol. 307).Google Scholar
  13. Wirsing, M., Broy, M. (1989): A modular framework for specification and implementation. In: Diaz, J., Orejas, F. (eds.): TAPSOFT’ 89, vol. 1. Springer, Berlin Heidelberg New York Tokyo, pp. 345–359 (Lecture notes in computer science, vol. 351).Google Scholar
  14. Yun, D. Y. Y. (1974): The Hensel lemma in algebraic manipulation. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • C. Limongelli
  • M. Temperini

There are no affiliations available

Personalised recommendations