Advertisement

An overview of the TASSO project

  • A. Miola
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

Symbolic and algebraic computation systems (Derive, Macsyma, Maple, Mathematica, Reduce, to name a few) have been made widely available since several years. These systems have supported the mathematical problem solving in several application areas of sciences and engineering with significant achievements (Buchberger et al. 1983; Pavelle 1985; Caviness 1986; Davenport et al. 1988; Miola 1990a, b, 1993b, a.

Keywords

Mathematical Object Sequent Calculus Abstract Specification Automate Deduction Abstract Data Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoy, S. (1990): Design strategies for rewrite rules. In: Kaplan, S., Okada, M. (eds.): Conditional and typed rewriting systems. Springer, Berlin Heidelberg New York Tokyo, pp. 333–341 (Lecture notes in computer science, vol. 516).Google Scholar
  2. Antoy, S., Forcheri, P., Molfino, M. T. (1990): Specification-based code generation. In: Shriver, B. D. (ed.): Proceedings 23rd Hawaii International Conference on System Sciences, vol. II, software. IEEE Computer Society Press, Los Alamitos, pp. 165–173.Google Scholar
  3. Bibel, W. (1987): Automated theorem proving. F. Vieweg und Sohn, Wiesbaden.MATHGoogle Scholar
  4. Bonamico, S., Cioni, G. (1988): Embedding flexible control strategies into object oriented languages. In: Mora, T. (ed.): Applied algebra, algebraic algorithms and errorcorrecting codes. Springer, Berlin Heidelberg New York Tokyo, pp. 454–457 (Lecture notes in computer science, vol. 357).Google Scholar
  5. Buchberger, B., Collins, G. E., Loos, R. (eds.) (1983): Computer algebra, symbolic and algebraic computation, 2nd edn. Springer, Wien New York.Google Scholar
  6. Caviness, B. (1986): Computer algebra: past and future. J. Symb. Comput. 2: 217–236.MathSciNetMATHCrossRefGoogle Scholar
  7. Cioni, G., Colagrossi, A., Miola, A. (1995): A sequent calculus for symbolic computation systems. J. Symb. Comput. 19: 175–199.MathSciNetMATHCrossRefGoogle Scholar
  8. Davenport, J. H., Siret, Y., Tournier, E. (1988): Computer algebra: systems and algorithms for algebraic computation. Academic Press, London.MATHGoogle Scholar
  9. Di Blasio, P., Temperini, M. (1993): Subtyping inheritance in languages for symbolic computation systems. In: Miola, A. (ed.): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo, pp. 107–121 (Lecture notes in computer science, vol. 722).CrossRefGoogle Scholar
  10. Di Blasio, P., Temperini, M. (1997): On subtyping in languages for symbolic computation systems. In: Miola, A., Temperini, M. (eds.): Advances in the design of symbolic computation systems. Springer, Wien New York, pp. 164–178 (this volume).CrossRefGoogle Scholar
  11. Di Blasio, P., Temperini, M., Terlizzi, P. (1997): Enhanced strict inheritance in TASSO-L. In: Miola, A., Temperini, M. (eds.): Advances in the design of symbolic computation systems. Springer, Wien New York, pp. 179–195 (this volume).CrossRefGoogle Scholar
  12. Di Blasio, P., Temperini, M. (1990): Towards a logic language: an object-oriented implementation of the connection method. In: Miola, A. (ed.): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo, pp. 61–70 (Lecture notes in computer science, vol. 429).Google Scholar
  13. Forcheri, P., Molfino, M. T. (1990): Educational software suitable for learning programming methodologies. In: Onate, E., Suarez, B., Owen, D. R. J., Schrefler, B., Kroplin, B., Kleiber, M. (eds.): Proceedings Conference on Computer Aided Training in Science and Technology, CATS’ 90. Centro International de Metodos Numericos en Ingeneria, Barcelona, pp. 161–164.Google Scholar
  14. Gallier, J. H. (1986): Logic for computer science. Harper and Row, New York.MATHGoogle Scholar
  15. Ingalls, D. (1978): The Smalltalk 76 programming system design and implementation. In: Proceedings Symposium on Principles of Programming Languages. Association for Computing Machinery, New York, pp. 9–16.Google Scholar
  16. Kowalski, R. (1979): Logic for problem solving. North-Holland, Amsterdam.MATHGoogle Scholar
  17. Kreczmar, A., Salwicki, A., Warpechowski, M. (1990): LOGLAN’ 88 — report on the programming language. Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, vol. 414).MATHGoogle Scholar
  18. Limongelli, C., Miola, A. (1990): Abstract specification of numeric and algebraic computation methods. In: Balagurusamy, E., Sushila, B. (eds.): Computer systems and applications, recent trends. Tata McGraw-Hill, New Delhi, pp. 27–35.Google Scholar
  19. Limongelli, C., Temperini, M. (1992): Abstract specification of structures and methods in symbolic mathematical computation. Theor. Comput. Sci. 104: 89–107.MathSciNetMATHCrossRefGoogle Scholar
  20. Limongelli, C., Mele, M. B., Regio, M., Temperini, M. (1990): Abstract specification of mathematical structures and methods. In: Miola, A. (ed.): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo, pp. 61–70 (Lecture notes in computer science, vol. 429).CrossRefGoogle Scholar
  21. Meyer, B. (1992): Eiffel: the language, 2nd edn. Prentice Hall, Englewood Cliffs.MATHGoogle Scholar
  22. Miola, A. (ed.) (1990a): Computing tools for scientific problems solving. Academic Press, London.Google Scholar
  23. Miola, A. (ed.) (1990b): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, vol. 429).MATHGoogle Scholar
  24. Miola, A. (ed.) (1993a): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, vol. 722).MATHGoogle Scholar
  25. Miola, A. (1993b): Symbolic computation systems. In: Kent, A., Williams, J. G. (eds.): Encyclopedia of computer science and technology. Marcel Dekker, New York, pp. 367–380.Google Scholar
  26. Miola, A., Mora, T. (1988): Constructive lifting in graded structures: a unified view of Buchberger and Hensel methods. J. Symb. Comput. 6: 305–322.MathSciNetMATHCrossRefGoogle Scholar
  27. Parisi Presicce, F., Pierantonio, A. (1991): An algebraic view of inheritance and subtyping in object-oriented programming. In: van Lamsweerde, A., Fugetta, A. (eds.): ESEC’ 91. Springer, Berlin Heidelberg New York Tokyo, pp. 364–379 (Lecture notes in computer science, vol. 550).CrossRefGoogle Scholar
  28. Pavelle, R. (1985): Applications of computer algebra. Kluwer, Boston.MATHCrossRefGoogle Scholar
  29. Regio, M., Temperini, M. (1990a): Implementation and manipulation of formal objects: an object-oriented view. In: Proceedings ACM Symposium on Personal and Small Computers, Arlington, VA USA, March 28–30, 1990. Association for Computing Machinery, New York.Google Scholar
  30. Regio, M., Temperini, M. (1990b): Object-oriented methodology for the specification and the treatment of mathematical objects. In: Balagurusamy, E., Sushila, B. (eds.): Computer systems and applications, recent trends. Tata McGraw-Hill, New Delhi, pp. 94–103.Google Scholar
  31. Stroustrup, B. (1986): An overview of C++. SIGPLAN Not. 21/11: 7–18.CrossRefGoogle Scholar
  32. Stroustrup, B. (1987): What is object-oriented programming. In: Bézivin, J., Hullot, J.-M., Cointe, P., Liebermann, H. (eds.): Proceedings European Conference on Object-Oriented Programming. Paris, France, June 1987, pp. 51–60.Google Scholar
  33. Wang, D. (1990): Some examples for testing an integrated system. Tech. Rep. 4/18, P. F. Sistemi Informatici e Calcolo Parallelo, Consiglio Nazionale delle Ricerche, Rome.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • A. Miola

There are no affiliations available

Personalised recommendations