Automated deduction by connection method in an object-oriented environment

  • G. Cioni
  • G. Patrizi
  • M. Temperini
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)


In this paper issues of a logic deduction tool to be integrated in an object-oriented programming (OOP) environment for the manipulation of mathematical objects are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bibel, W. (1987): Automated theorem proving. F. Vie weg und Sohn, Wiesbaden.zbMATHGoogle Scholar
  2. Eshghi, K., Kowalski, R. (1989): Abduction compared with negation by failure. In: Levi, G., Martelli, A. (eds.): Proceedings Sixth International Conference on Logic Programming, ICLP. MIT Press, Cambridge, MA, pp. 234–254.Google Scholar
  3. Fitch, J. (1985): Solving algebraic problems with Reduce. J. Symb. Comput. 1: 211–227.zbMATHCrossRefGoogle Scholar
  4. Jenks, R. D., Trager, B. (1981): A language for computational algebra. SIGPLAN Not. 16/11: 22–29.CrossRefGoogle Scholar
  5. Miola, A. (ed.) (1990): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, vol. 429).zbMATHGoogle Scholar
  6. Paterson, M., Wegman, M. (1978): Linear unification. J. Comput. Syst. Sci. 16: 158–167.MathSciNetzbMATHCrossRefGoogle Scholar
  7. Pelletier, F. (1986): Seventy-five problems for testing automatic theorem provers. J. Autom. Reason. 1: 191–216.MathSciNetCrossRefGoogle Scholar
  8. Wang, P., Pavelle, R. (1985): MACSYMA from F to G. J. Symb. Comput. 1: 69–100.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • G. Cioni
  • G. Patrizi
  • M. Temperini

There are no affiliations available

Personalised recommendations