Advertisement

Deduction and abduction using a sequent calculus

  • G. Cioni
  • A. Colagrossi
  • A. Miola
Part of the Texts and Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

A sequent calculus for automated reasoning is a particular sequent calculus that constitutes a single uniform method to perform different types of logical inferences in first order theories.

Keywords

Transformation Rule Proof System Hilbert Schema Predicate Symbol Sequent Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, L., Colagrossi, A., Micarelli, A., Miola, A. (1992): Building the expert module for ITS in mathematics: a general reasoning apparatus. In: Nwana, H. S. (ed.): Mathematical intelligent learning environments. Intellectic Publishing, Oxford, pp. 35–51.Google Scholar
  2. Bibel, W. (1987): Automated theorem proving. F. Vieweg und Sohn, Wiesbaden.MATHGoogle Scholar
  3. Bonamico, S., Cioni, G. (1988): Embedding flexible control strategies into object oriented languages. In: Mora, T. (ed.): Applied algebra, algebraic algorithms and errorcorrecting codes. Springer, Berlin Heidelberg New York Tokyo, pp. 454–457 (Lecture notes in computer science, vol. 357).Google Scholar
  4. Bonamico, S., Cioni, G., Colagrossi, A. (1990): A gentzen based deduction method for mathematical problems solving. In: Balagurusamy, E., Sushila, B. (eds.): Computer systems and applications: recent trends. Tata McGraw-Hill, New Delhi, pp. 102–113.Google Scholar
  5. Ebbinghaus, H. D., Flum, J., Thomas, W. (1984): Mathematical logic. Springer, New York Berlin Heidelberg.MATHGoogle Scholar
  6. Gallier, J.H. (1986): Logic for computer science. Harper and Row, New York.MATHGoogle Scholar
  7. Girard, J., Taylor, P., Lafont, Y. (1989): Proofs and types. Cambridge University Press, Cambridge.MATHGoogle Scholar
  8. Hermes, H. (1973): Introduction to mathematical logic. Springer, Berlin.MATHGoogle Scholar
  9. Kowalski, R. (1979): Logic for problem solving. North-Holland, New York.MATHGoogle Scholar
  10. Limongelli, C., Temperini, M. (1992): Abstract specification of structures and methods in symbolic mathematical computation. Theor. Comput. Sci. 104: 89–107.MathSciNetMATHCrossRefGoogle Scholar
  11. Miola, A. (ed.) (1990): Design and implementation of symbolic computation systems. Springer, Berlin Heidelberg New York Tokyo (Lecture notes in computer science, vol. 429).MATHGoogle Scholar
  12. Miola, A. (1991): Symbolic computation and artificial intelligence. In: Jorrand, P., Kelemen, J. (eds.): Fundamentals of Artificial Intelligence Research, FAIR’91. Springer, Berlin Heidelberg New York Tokyo, pp. 244–255 (Lecture notes in computer science, vol. 535).Google Scholar
  13. Miola, A. (ed.) (1995): Design and implementation of symbolic computation systems. J. Symb. Comput. 19.Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • G. Cioni
  • A. Colagrossi
  • A. Miola

There are no affiliations available

Personalised recommendations