Advertisement

Abstract

Pregnanes (1,2) are C21 steroidal compounds found in nature either in the free state or as glycosides. In pregnane glycosides the sugar moiety is linked to an alcoholic hydroxyl group of the pregnane aglycon, most frequently at C-3 (3), C-20 (4) or both (bisdesmosidic glycosides) (5), through an acetal linkage. However, in some cases, the sugar moiety is linked to hydroxyl functions at C-2 (6), C-4 (7) or C-21 (8). Pregnane glycosides containing one (9) to six (10) sugar units have been isolated from the extracts of different plant parts, i.e. roots, stems, seeds etc.

Keywords

High Performance Liquid Chromatography Cross Peak Glycosidic Linkage Anomeric Proton Terminal Sugar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reichstein, T.: Cardenolid-und Pregnanglykoside. Naturwissenschaften 54, 53 (1967).CrossRefGoogle Scholar
  2. 2.
    Deepak, D., A. Khare, and M.P. Khare: Plant Pregnanes. Phytochemistry 28, 3255 (1989).CrossRefGoogle Scholar
  3. 3.
    Chandra, R., D. Deepak, and A. Khare: Pregnane Glycosides from Hemidesmus indicus. Phytochemistry 35, 1545 (1994).CrossRefGoogle Scholar
  4. 4.
    Palter, R., W.F. Haddon, and R.E. Lundin: Structure of a Safflower Steroid Cellobioside. Phytochemistry 11, 2327 (1972).CrossRefGoogle Scholar
  5. 5.
    Abe, F., and T. Yamauchi: Pregnane and Pregnane Glycosides from Trachelospermum liukiuense. Chem. Pharm. Bull. 37, 33 (1989).CrossRefGoogle Scholar
  6. 6.
    Nakanishi, T., M. Kobayashi, H. Murata, and A. Inada: Phytochemical Studies on Meliaceous Plants. IV. Structure of a New Pregnane Glycoside, Toosendanoside, from Leaves of Melia toosendan Sieb. et. Zucc. Chem. Pharm. Bull. 36, 4148 (1988).CrossRefGoogle Scholar
  7. 7.
    Kashman, Y., D. Green, C. Garcia, and D.G. Arevalos: Verrucoside, a New Cytotoxic Pregnane Glycoside from a Gorgonian Eunicella verrucosa. J. Nat. Prod. 54, 1651 (1991).CrossRefGoogle Scholar
  8. 8.
    Abe, F., and T. Yamauchi:Two Pregnanes from Oleander Leaves. Phytochemistry 31, 2819 (1992).CrossRefGoogle Scholar
  9. 9.
    Prakash, K., D. Deepak, A. Khare, and M.P. Khare:A Pregnane Glycoside from Streblus asper. Phytochemistry 31, 1056 (1992).Google Scholar
  10. 10.
    Jijun, C., Z. Zhuangxin, and Z. Jun: Cynauricuosides A, B and C, Steroid Glycosides from the Root of Cynanchum auriculatum. Acta Bot. Yunn. 12, 197 (1990) [Chem. Abstr. 114, 98149 (1991)].Google Scholar
  11. 11.
    Wettstein, P.A.:Biosynthése des hormones Stéroides. Experientia 17, 329 (1961).CrossRefGoogle Scholar
  12. 12.
    Heftmann, E.: Recent Progress in the Biochemistry of Plant Steroids other than Sterols (Saponins, Glycoalkaloids, Pregnane Derivatives, Cardiac Glycosides, and Sex Hormones). Lipids 9, 626 (1975) [Chem. Abstr. 82, 40660 (1975)].CrossRefGoogle Scholar
  13. 13.
    Yamauchi, T.: Cardenolides, Pregnanes, and Iridoids, Characteristic of Apocynaceae Plants. Yakugaku Zasshi 105, 695 (1985) [Chem. Abstr. 103, 175350 (1985)].Google Scholar
  14. 14.
    Mitsuhashi, H.: Chemistry and Biological Activity of Polyhydroxypregnane Glucosides. Yaxoue Tangbao 20, 645 (1985) [Chem. Abstr. 104, 174414 (1986)].Google Scholar
  15. 15.
    Krishna, G., A. Khare, and M.P. Khare: Three Pregnane Glycosides from Dregea lanceolata. Indian J. Chem. 30B, 265 (1991).Google Scholar
  16. 16.
    Jin, Q.D., Q.L. Zhou, and Q.Z. Mu: Two New Pregnane Oligoglycosides from Dregea sinensis var. corrugata. J. Nat. Prod. 52, 1214 (1989).CrossRefGoogle Scholar
  17. 17.
    Yuan, J.-L., Z.-Z. Lu, G.-X. Chen, W.-P. Ding, B.-N. Zhou, C.A.J. Erdelmeier, M.O. Hamburger, H.H.S. Fong, and G.A. Cordell:The Pregnane Glycoside Marsdekoi-side A from Marsdenia koi. Phytochemistry 31, 1058 (1992).CrossRefGoogle Scholar
  18. 18.
    Hayashi, K., I. Iida, Y. Nakao, Y. Nakao, and Y. Kaneko: Four Pregnane Glycosides, Boucerosides AI, AII, BI and BII from Boucerosia aucheriana. Phytochemistry 27, 3919 (1988).CrossRefGoogle Scholar
  19. 19.
    Tanaka, T., S. Tsukamoto, and K. Hayashi: Pregnane Glycosides from Boucerosia aucheriana. Phytochemistry 29, 229 (1990).CrossRefGoogle Scholar
  20. 20.
    Marston, A., and K. Hostettmann: Modern Separation Methods. Nat. Prod. Rep. 8, 391 (1991).CrossRefGoogle Scholar
  21. 21.
    Abe, F., and T. Yamauchi:Pregnane Glycosides from Trachelospermum asiaticum. Chem. Pharm. Bull. 36, 621 (1988).CrossRefGoogle Scholar
  22. 22.
    Chen, Z.-S., J.-S. Lai, and Y.-H. Kuo: Cynanformosides A and B, Two New Pregnane Glycosides, from the Aerial Part of Cynanchum formosanum. Chem. Pharm. Bull. 39, 3034 (1991).CrossRefGoogle Scholar
  23. 23.
    Idaka, K., Y. Hirai, and J. Shoji: Studies on the Constituents of Palmae Plants, IV: The Constituents of the Leaves of Sabal causiarum BECC. Chem. Pharm. Bull. 36, 1783 (1988).CrossRefGoogle Scholar
  24. 24.
    Still, W.C., M. Kahn, and A. Mitra: Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 43, 2923 (1978).CrossRefGoogle Scholar
  25. 25.
    Cabrera, G., A.M. Seldes, and E.G. Gros: A Pregnane Glycoside from the Roots of Mandevilla pentlandiana. Phytochemistry 32, 171 (1993).CrossRefGoogle Scholar
  26. 26.
    Eisenbeiss, F., and H. Henke: Preparative High Performance Liquid Chromatography with Reversed-Phase Packed Glass Columns. J. High Res. Chromatogr. Chrom. Commun. 2, 733 (1979).CrossRefGoogle Scholar
  27. 27.
    Simpson, C.F.: Practical High Performance Liquid Chromatography. London: Heyden. 1978.Google Scholar
  28. 28.
    Verzele, M.: Preparative Liquid Chromatography. Anal. Chem. 62, 265A (1990).Google Scholar
  29. 29.
    Verzele, M., and C. Dewaele: Preparative High Performance Liquid Chromatography-A Practical Guideline. Belgium: RSL Europe, Eke. 1986.Google Scholar
  30. 30.
    Abe, F., T. Nagao, Y. Mori, T. Yamauchi, and Y. Saiki: Pregnanes and Pregnane Glycosides from the Roots of Apocynum venetum var. basikurumon (Apocynum I). Chem. Pharm. Bull. 35, 4087 (1987).CrossRefGoogle Scholar
  31. 31.
    Itokawa, H., J. Xu, and K. Takeya: Studies on Chemical Constituents of Antitumor Fraction from Periploca sepium ,V: Structures of New Pregnane Glycosides, Periploco-sides J, K, F and O. Chem. Pharm. Bull. 36, 4441 (1988).CrossRefGoogle Scholar
  32. 32.
    Ahmad, V.U., K. Usmanghani, and G.H. Rizwani: New Pregnane Glycosides from Caralluma tuberculata. J. Nat. Prod. 51, 1092 (1988).CrossRefGoogle Scholar
  33. 33.
    Neher, R., and A. Wettstein: Über Steroide. 107. Mitteilung: Farbreaktionen mit Steroiden, insbesondere Corticosteroiden, im Papierchromatogramm. Helv. Chim. Acta 34, 2278 (1951).CrossRefGoogle Scholar
  34. 34.
    Yamauchi, T., M. Hara, and K. Mihashi: Pregnenolone Glucosides of Nerium odorum. Phytochemistry 11, 3345 (1972).CrossRefGoogle Scholar
  35. 35.
    Voneuw, J.V., and T. Reichstein: Die Glykoside der Samen von Strophanthus nicholsonii Holm. Glykoside und Aglykone. Helv. Chim. Acta 31, 883 (1948).CrossRefGoogle Scholar
  36. 36.
    Heftmann, E., S.T. Ko, and R.D. Benett: Response of Steroids to Sulfuric Acid in Thin-Layer Chromatography. J. Chromatogr. 21, 490 (1966).CrossRefGoogle Scholar
  37. 37.
    Abisch, E., and T. Reichstein: Orientierende Chemische Untersuchung einiger Apocynaceen. Helv. Chim. Acta 43, 1844 (1960).CrossRefGoogle Scholar
  38. 38.
    Mann, F.G., and B.C. Saunders: Practical Organic Chemistry 4th edn., p. 367. New Delhi:Orient Longmann. 1990.Google Scholar
  39. 39.
    Konda, Y., Y. Toda, Y. Harigaya, H. Lou, X. Li, and M. Onda: Two New Glycosides, Hancoside and Neohancoside A, from Cynanchum hancockianum. J. Nat. Prod. 55, 1447 (1992).CrossRefGoogle Scholar
  40. 40.
    Tschesche, R., G. Grimmer, and F. Seehofer: Über pflanzliche Herzgifte, XXIV. Mitteilung: Die quantitative Trennung und Identifizierung von Herzgiftglykosiden aus Digitalis purpurea und lanata durch echte Verteilungschromatographie an Papier. Ber. d. Deutsch. Chem. Ges. 86, 1235 (1953).Google Scholar
  41. 41.
    Webb, J.M., and H.B. Levy: A Sensitive Method for the Determination of Deoxyribonucleic Acid in Tissues and Microorganisms. J. Biol. Chem. 213, 107 (1955).Google Scholar
  42. 42.
    Maclenan, A.P., H.M. Randall, and D.W. Smith: Detection and Identification of Deoxysugars on Paper Chromatograms. Anal. Chem. 31, 2020 (1959).CrossRefGoogle Scholar
  43. 43.
    Krishna, G., G.V. Shinde, M.S. Shingare, A. Khare, and M.P. Khare: A Pregnane Ester Tetraglycoside from Dregea lanceolata. Phytochemistry 29, 2961 (1990).CrossRefGoogle Scholar
  44. 44.
    Nagata, W., C. Tamm, and T. Reichstein: Die Glykoside von Erysimum crepidifolium H.G.L Reichenbach. Glykoside und Aglykone, 169. Mitteilung. Helv. Chim. Acta 40, 41 (1957).CrossRefGoogle Scholar
  45. 45.
    Partridge, S.M.: Aniline Hydrogen Phthalate as a Spraying Reagent for Chromatography of Sugars. Nature 164, 443 (1949).CrossRefGoogle Scholar
  46. 46.
    Feigl, F.: Spot Tests in Organic Analysis,7th edn., p. 337. Amsterdam: Elsevier Publications. 1975.Google Scholar
  47. 47.
    Jaeggi, K.A., E. Weiss, W. Wehrli, and T. Reichstein : Die Glykoside der Wurzeln von Gongronema taylorii (Schltr. and Rendle) Bullock) Glykoside und Aglykone, 292. Mitteilung. Helv. Chim. Acta 50, 1201 (1967).CrossRefGoogle Scholar
  48. 48.
    Markham, K.R.: Techniques of Flavonoid Identification. London: Academic Press. 1982.Google Scholar
  49. 49.
    Mabry, T.J., K.R. Markham, and M.B. Thomas: The Systematic Identification of Flavonoids. New York: Springer 1970.CrossRefGoogle Scholar
  50. 50.
    Srivastav, S., D. Deepak, and A. Khare: Structural Studies of Trisaccharide of Leptaculatin. J. Carbohydr. Chem. 13, 75 (1994).CrossRefGoogle Scholar
  51. 51.
    Shibuya, H., R. Zhang, J.D. Park, N.I. Baek, Y. Takeda, M. Yoshikawa, and I. Kitagawa: Indonesian Medicinal Plants, V: Chemical Structures of Calotroposides C, D, E, F and G, Five Additional New Oxypregnane Oligoglycosides from the Root of Calotropis gigantea (Asclepiadaceae). Chem. Pharm. Bull. 40, 2647 (1992).CrossRefGoogle Scholar
  52. 52.
    Agrawal, P.K.: NMR Spectroscopy in the Structural Elucidation of Oligosaccharides and Glycosides. Phytochemistry, 31, 3307 (1992).CrossRefGoogle Scholar
  53. 53.
    Srivastav, S., D. Deepak, and A. Khare: Three Novel Pregnane Glycosides from Leptadenia reticulata Wight and Arn. Tetrahedron 50, 789 (1994).Google Scholar
  54. 54.
    Berger, S., P. Junior, and L. Kopanski: Structural Revision of Pregnane Ester Glycosides from Condurango Cortex and New Compounds. Phytochemistry 27, 1451 (1988).CrossRefGoogle Scholar
  55. 55.
    Abe, F., and T. Yamauchi: Pregnane Glycosides of Teikasides B and C Series, from Trachelospermum asiaticum. Chem. Pharm. Bull. 36, 4330 (1988).CrossRefGoogle Scholar
  56. 56.
    Allgeier, H.: Struktur der Pachybiose und Asclepobiose. Desoxyzucker, 44. Mitteilung. Helv. Chim. Acta 51, 311 (1968).CrossRefGoogle Scholar
  57. 57.
    Deepak, D., M.P. Khare, and A. Khare: A Pregnane Ester Diglycoside from Periploca calophylla. Phytochemistry 24, 3015 (1985).CrossRefGoogle Scholar
  58. 58.
    Zhang, Z.-X., J. Zhou, K. Hayashi, and K. Kaneko: Atratosides A, B, C and D, Steroid Glycosides from the Root of Cynanchum atratum. Phytochemistry 27, 2935 (1988).CrossRefGoogle Scholar
  59. 59.
    Sethi, A., D. Deepak, M.P. Khare, and A. Khare: A Novel Pregnane Glycoside from Periploca calophylla. J. Nat. Prod. 51, 787 (1988).CrossRefGoogle Scholar
  60. 60.
    Trivedi, R., A. Khare, and M.P. Khare: A Pregnane Ester Oligoglycoside from Oxystelma esculentum. Phytochemistry 28, 1211 (1989).CrossRefGoogle Scholar
  61. 61.
    Deepak, D., S. Srivastav, and A. Khare: Indicusin-A Pregnane Diester Triglycoside from Hemidesmus indicus R. Br. Nat. Prod. Letts. 6, 81 (1995).CrossRefGoogle Scholar
  62. 62.
    Trivedi, R., A. Khare, and M.P. Khare: A Pregnane Triglycoside from Oxystelma esculentum. Phytochemistry 29, 3967 (1990).CrossRefGoogle Scholar
  63. 63.
    Prakash, K., A. Sethi, D. Deepak, A. Khare, and M.P. Khare: Two Pregnane Glycosides from Hemidesmus indicus. Phytochemistry 30, 297 (1991).CrossRefGoogle Scholar
  64. 64.
    Qiduan, J., Z. Qianlan, and M. Quanzhang: Structure of Dregeoside A from Dregea sinensis var. corrugata. Acta Bot. Yunn. 10, 466 (1988) [Chem. Abstr. 111, 54152 (1989)].Google Scholar
  65. 65.
    Luo, S.-Q., L.-Z. Lin, G.A. Cordell, L. Xue, and M.E. Johnson: Polyoxypregnanes from Marsdenia tenacissima. Phytochemistry 34, 1615 (1993).CrossRefGoogle Scholar
  66. 66.
    Summons, R.E., J. Ellis, and E. Gellert: Steroidal Alkaloids of Marsdenia rostrata. Phytochemistry 11, 3335 (1972).CrossRefGoogle Scholar
  67. 67.
    Singhal, S., M.P. Khare, and A. Khare: Tenasogenin, A Pregnane Ester from Marsdenia tenacissima. Phytochemistry 19, 2431 (1990).CrossRefGoogle Scholar
  68. 68.
    Bose, A.K., and P.R. Srinivasan: Trichloroacetylisocyanate as an in situ Derivatizing Reagent for 13C NMR Spectroscopy of Alcohols, Phenols and Amines. Tetrahedron 31, 3025 (1975).CrossRefGoogle Scholar
  69. 69.
    Itokawa, H., J. Xu, and K. Takeya: Studies on Chemical Constituents of Antitumor Fraction from Periploca sepium ,IV: Structures of New Pregnane Glycosides. Periplocosides D, E, L, and M. Chem. Pharm. Bull. 36, 2084 (1988).CrossRefGoogle Scholar
  70. 70.
    Tsukamoto, S., K. Hayashi, and K. Kaneko: Studies on the Constituents of Asclepiadaceae Plants, Part 67: Further Studies on Glycosides with a Novel Sugar Chain Containing a Pair of Optically Isomeric Sugars, D-and L-Cymarose, from Cynanchum africanum. J. Chem. Soc., Perkin Trans I, 2625 (1988).Google Scholar
  71. 71.
    Bock, K., C. Pedersen, and H. Pedersen: Carbon-13 Nuclear Magnetic Resonance Data for Oligosaccharides. Adv. Carbohydr. Chem. Biochem. 42, 193 (1984).CrossRefGoogle Scholar
  72. 72.
    Bradbury, J.H., and G.A. Jenkins: Determination of the Structures of Trisaccharides by Carbon-13 NMR Spectroscopy. Carbohydr. Res. 126, 125 (1984).CrossRefGoogle Scholar
  73. 73.
    Agrawal, P.K., D.C. Jain, R.K. Gupta, and R.S. Thakur: Carbon-13 NMR Spectroscopy of Steroidal Sapogenins and Steroidal Saponins. Phytochemistry 24, 2479 (1985).CrossRefGoogle Scholar
  74. 74.
    Agrawal, P.K., and R.P. Rastogi:13C NMR Spectroscopy of Flavonoids. Hetero-cycles 16, 2181 (1981).Google Scholar
  75. 75.
    Perlin, A.S., and B. Casu.: In:The Polysaccharides (G.O. Aspinall, ed.), Vol. I, p. 133. New York: Academic Press. 1982.Google Scholar
  76. 76.
    Mitsuhashi, H., and K. Hayashi: Chemistry and Biological Activity of Polyoxypregnane Glycosides. Shoyakugaku Zasshi 39, 1 (1985) [Chem. Abstr. 103, 109804 (1985)].Google Scholar
  77. 77.
    Kitagawa, I., R. Zhang, J.D. Park, N.I. Baek, Y. Takeda, M. Yoshikawa, and H. Shibuya: Indonesian Medicinal Plants, I: Chemical Structures of Calotroposides A and B, Two New Oxypregnane-Oligoglycosides from the Root of Calotropis gigantea (Asclepiadaceae). Chem. Pharm. Bull. 40, 2007 (1992).CrossRefGoogle Scholar
  78. 78.
    Zürcher, R.F.: Protonenresonanzspektroskopie und Steroid Struktur II. Die Lage der C-18-und C-19-Methylsignale in Abhängigkeit von den Substituenten am Steroidgerüst. Helv. Chim. Acta 46, 2054 (1963).CrossRefGoogle Scholar
  79. 79.
    Sugama, K., K. Hayashi, H. Mitsuhashi, and K. Kaneko: Studies on the Constituents of Asclepiadaceae Plants, LXVI: The Structures of Three New Glycosides, Cynapano-sides A, B, and C, from the Chinese Drug “Xu-Change Qing”, Cynanchum paniculatum Kitagawa. Chem. Pharm. Bull. 34, 4500 (1986).CrossRefGoogle Scholar
  80. 80.
    Qiduan, J., Z. Qianlan, and M. Quanzhang: A Pregnane Triglycoside Ester from Dregea sinensis var. corrugata. Phytochemistry 28, 1273 (1989).CrossRefGoogle Scholar
  81. 81.
    Terui, Y., K. Tori, and N. Tsuji: Esterification Shifts in Carbon-13 NMR Spectra of Alcohols. Tetrahedron Letters, 621 (1976).Google Scholar
  82. 82.
    Dorman, D.E., D. Bauer, and J.D. Roberts: Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Chemical and Carbon-13 Proton Couplings in Some Esters and Ethers. J. Org. Chem. 40, 3729 (1975).CrossRefGoogle Scholar
  83. 83.
    Agrawal, P.K., H.-J. Schneider, M.S. Malik, and S.N. Rastogi: Stereochemical and Carbon-13 NMR Investigations, 32:Carbon-13 NMR Shifts and Conformations of Substituted Indans. Org. Magn. Reson. 21, 146 (1983).CrossRefGoogle Scholar
  84. 84.
    Jijun, C., Z. Zhuangxin, and Z. Jun: The Chemical Constituents of Cynanchum forrestii. Acta Bot. Yunn. 11, 471 (1989) [Chem. Abstr. 113, 94734 (1990)].Google Scholar
  85. 85.
    Tsukamoto, S., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LX: Further Studies on Glycosides with a Novel Sugar Chain Containing a Pair of Optically Isomeric Sugars, D-and L-Cymarose, from Cynanchum wilfordi. Chem. Pharm. Bull. 33, 2294 (1985).CrossRefGoogle Scholar
  86. 86.
    Lin, L.-J., L.-Z. Lin, R.R. Gil, G.A. Cordell, M. Ramesh, B. Srilatha, B. Reddy, and A.V.N.P. Rao: Pregnane Glycosides from Caralluma umbellata. Phytochemistry 35, 1549 (1994).CrossRefGoogle Scholar
  87. 87.
    Agrawal, P.K., and M.C. Bansal: Studies in Organic Chemistry-Carbon-13 NMR of Flavonoids (P.K. Agrawal, ed.), Vol. 39, p. 42. Amsterdam: Elsevier Publications. 1989.Google Scholar
  88. 88.
    Baumann, H., B. Erbing, P.E. Jansson, and L. Kenne: NMR and Conformational Studies of some 3–0-, 4–0-, and 3, 4-Di-O-glycopyranosyl-substituted Methyl-α-D-galactopyranosides. J. Chem. Soc., Perkin Trans I, 2153 (1989).Google Scholar
  89. 89.
    Baumann, H., B. Erbing, P.E. Jansson, and L. Kenne: Synthesis, NMR and Conformational Studies of some 3, 4-Di-O-glycopyranosyl-substituted Methyl-α-D-galactopyranosides. J. Chem. Soc., Perkin Trans I, 2011 (1989).Google Scholar
  90. 90.
    Jansson, P.E., L. Kenne, and H. Ottosson: Synthesis of and Nuclear Magnetic Resonance and Conformational Studies on some 1, 2-Linked Disaccharide Methyl Glycosides Containing D-Mannose and L-Rhamnose. J. Chem. Soc., Perkin Trans I, 2011 (1990).CrossRefGoogle Scholar
  91. 91.
    Baumann, H., P.E. Jansson, and L. Kenne: Synthesis and Nuclear Magnetic Resonance Studies of Some L-Fucosyl-containing Disaccharides. J. Chem. Soc., Perkin Trans I, 2229 (1991).CrossRefGoogle Scholar
  92. 92.
    Kochetkov, N.K., O.S. Chizhov, and A.S. Shashkov: Dependence of Carbon-13 Chemical Shifts on the Spatial Interaction of Protons, and its Application in Structural and Conformational Studies of Oligo-and Polysaccharides. Carbohydr. Res. 133, 173 (1984).CrossRefGoogle Scholar
  93. 93.
    Bock, K., A. Bringnole, and B.W. Siguskjold: Conformational Dependence of 13C Nuclear Magnetic Resonance Chemical Shifts in Oligosaccharides. J. Chem. Soc., Perkin Trans II, 1711 (1986).Google Scholar
  94. 94.
    Shashkov, A.S., G.M. Lipkind, Y.A. Knirel, and N.K. Kochetkov: Stereochemical Factors Determining the Effects of Glycosylation on the 13C Chemical Shifts in Carbohydrates. Magn. Reson. Chem. 26, 735 (1988).CrossRefGoogle Scholar
  95. 95.
    Rowen, D.D., and R.H. Newman: Noroleanane Saponins from Celmisia petriei. Phytochemistry 23, 639 (1984).CrossRefGoogle Scholar
  96. 96.
    Guinaudeau, H., O. Seligmann, H. Wagner, and A. Neszmelyi: Faralatroside and Faratroside, Two Flavonol Triglycosides from Colubrina faralaotra. Phytochemistry 20, 1113 (1981).CrossRefGoogle Scholar
  97. 97.
    Okada, Y., S. Shibata, T. Ikekawa, M.J. Javellana, and O. Kamo: Entada Saponin-III, A Saponin isolated from the Bark of Entada phaseoloides. Phytochemistry 26, 2789 (1987).CrossRefGoogle Scholar
  98. 98.
    Miyamoto, T., K. Togawa, R. Higuchi, T. Komori, and T. Sasaki: Six Newly Identified Biologically Active Triterpenoid Glycoside Sulfates from the Sea Cucumber Cucumaria echinata. Liebigs Ann. Chem. 453 (1990).Google Scholar
  99. 99.
    Bock, K., and C. Pedersen: A Study of 13CH Coupling Constants in Hexopyranoses. J. Chem. Soc., Perkin Trans II, 293(1974).Google Scholar
  100. 100.
    Vold, R.L., J.S. Waugh, M.P. Klein, and D.E. Phelps: Measurements of Spin Relaxation in Complex Systems. J. Chem. Phys. 48, 3831 (1968).CrossRefGoogle Scholar
  101. 101.
    Allerhand, A, D. Doddrell, V. Glushko, D.W. Cochran, E. Wenkert, P.J. Lawson, and F.R.N. Gurd: Conformation and Segmental Motion of Native and Denatured Ribonuclease A in Solution. Application of Natural Abundance Carbon-13 Partially Relaxed Fourier Transform Nuclear Magnetic Resonance. J. Am. Chem. Soc. 93, 544 (1971).CrossRefGoogle Scholar
  102. 102.
    Doddrell, D, and A. Allerhand: Segmental Motion in Liquid 1-Decanol. Application of Natural Abundance Carbon-13 Partially Relaxed Fourier Transform Nuclear Magnetic Resonance. J. Am. Chem. Soc. 93, 1558 (1971).CrossRefGoogle Scholar
  103. 103.
    Allerhand, A., and D. Doddrell: Strategies in the Application of Partially Relaxed Fourier Transform Nuclear Magnetic Resonance Spectroscopy in Assignments of Carbon-13 Resonances of Complex Molecules. Stachyose. J. Am. Chem. Soc. 93, 2777 (1971).CrossRefGoogle Scholar
  104. 104.
    Agrawal, P.K., and M.C. Bansal: Studies in Organic Chemistry-Carbon 13 NMR of Flavonoids (P.K. Agrawal, ed.), Vol. 39, p. 290. Amsterdam: Elsevier Publications. 1989.Google Scholar
  105. 105.
    Uzawa, J., and S. Takeuchi: Application of Selective Carbon-13-Proton Nuclear Overhauser Effects with Low-Power-Proton Irradiation in Carbon-13 NMR Spectroscopy. Org. Magn. Reson. 11, 502 (1978).CrossRefGoogle Scholar
  106. 106.
    Uzawa, J., and M. Uramoto: Assignment of Indirect Carbon-13-Proton Couplings in the Carbon-13 NMR Spectra of Some Purine and Pyrimidine Nucleosides and their Analogs by Long-range Selective Proton Decoupling. Org. Magn. Reson. 12, 612 (1979).CrossRefGoogle Scholar
  107. 107.
    Tsukamoto, S., K. Hayashi, K. Kaneko, H. Mitsuhashi, F.O. Snyckers, and T.G. Fourie: Studies on the Constituents of Asclepiadaceae Plants, LXIV: The Structure Elucidation of Cynafogenin. Chem. Pharm. Bull. 34, 1337 (1986).CrossRefGoogle Scholar
  108. 108.
    Komura, H., K. Mizukawa, and H. Minakata: Ceroalbolinic Acid, a Common Body Pigment of Three Ceroplastes Scale Insects in Japan. Confirmation of Structure. Bull. Chem. Soc. Jpn. 55, 3053 (1982) [Chem. Abstr. 97, 213037 (1982)].CrossRefGoogle Scholar
  109. 109.
    Ohmoto, T., K. Yamaguchi, and K. Ikeda: Constituents of Hibiscus moscheutos L.I. Chem. Pharm. Bull. 36, 578 (1988).CrossRefGoogle Scholar
  110. 110.
    Stothers, J.B.: Carbon-13 NMR Spectroscopy, p. 38. New York: Academic Press. 1972.Google Scholar
  111. 111.
    Rabenstein, D.L., and T.T. Nakashima: Spin-Echo Fourier-Transform Nuclear Magnetic Resonance Spectroscopy. Analyt. Chem 51, 1465a (1979).CrossRefGoogle Scholar
  112. 112.
    Patt, S.L., and J.N. Shoolery: Attached Proton Test for Carbon-13 NMR. J. Magn. Reson. 46, 535 (1982).CrossRefGoogle Scholar
  113. 113.
    Wasylyk, J.M., G.E. Martin, A.J. Weinheimer, and M. Alam: Isolation and Identification of a New Pregnane Glycoside from the Gorgonian Pseudoplexaura wagenaari. J. Nat. Prod. 52, 391 (1989).CrossRefGoogle Scholar
  114. 114.
    Aquino, R., C. Pizza, N. De Tommasi, and F. De Simone: New Polyoxypregnane Ester Derivatives from Leptadenia hastata. J. Nat. Prod. 58, 672 (1995).CrossRefGoogle Scholar
  115. 115.
    Doddrell, D.M., W. Brooks, J. Field, and R.M. Lyndenbell: Generation of Heteronuclear Carbon-13/Proton Chemical Shift Correlations Using Soft Pulses. J. Magn. Reson. 59, 384 (1984).CrossRefGoogle Scholar
  116. 116.
    Doddrell, D.M., D.T. Pegg, and M.R. Bendall: Distortionless Enhancement of NMR Signals By Polarization Transfer. J. Magn. Reson. 48, 323 (1982).CrossRefGoogle Scholar
  117. 117.
    Burum, D.P., and R.R. Ernst: Net Polarization Transfer via a J-Ordered State for Signal Enhancement of Low-Sensitivity Nuclei. J. Magn. Reson. 39, 163 (1980).CrossRefGoogle Scholar
  118. 118.
    Doddrell, D.M., and D.T. Pegg: Assignment of Proton-Decoupled Carbon-13 Spectra of Complex Molecules by Using Polarization Transfer Spectroscopy. A Superior Method to Off-Resonance Decoupling. J. Am. Chem. Soc. 102, 6388 (1980).CrossRefGoogle Scholar
  119. 119.
    Morris, G.A., and R. Freeman: Enhancement of Nuclear Magnetic Resonance Signals by Polarization Transfer. J. Am. Chem. Soc. 101, 760 (1979).CrossRefGoogle Scholar
  120. 120.
    Bax, A.: Structure Determination and Spectral Assignment by Pulsed Polarization Transfer via Long-range Proton-Carbon-13 Couplings. J. Magn. Reson. 57, 314 (1984).CrossRefGoogle Scholar
  121. 121.
    Cordell, G.A., and A.D. Kinghorn: One-Dimensional Proton-Carbon Correlations for the Structure Determination of Natural Products. Tetrahedron 47, 3521 (1991).CrossRefGoogle Scholar
  122. 122.
    Bax, A., W. Egan and P. Kovac: New NMR Techniques for Structure Determination and Resonance Assignments of Complex Carbohydrates. J. Carbohydr. Chem. 3, 593 (1984).CrossRefGoogle Scholar
  123. 123.
    Capek, P., D. Uhrin, J. Rasik, A. Kardosova, R. Toman, and V. Mihalov: Polysaccharides from the Roots of the Marsh mallow (Althaea officinalis var. rhobusta): Dianhydrides of Oligosaccharides of the Aldose type. Carbohydr. Res. 182, 160 (1988).CrossRefGoogle Scholar
  124. 124.
    Rasoanaivo, P., N. Kaneda, A.D. Kinghorn, and N.R. Farnsworth: Folotsoside A, a New Pregnane Glycoside from Folotsia sarcostemmoides. J. Nat. Prod. 54, 1672 (1991).CrossRefGoogle Scholar
  125. 125.
    Tschesche, R., P. Welzel, and G. Snatzke: Digitanolglykoside, XII: Die Konstitution von Kondurangogenin A, dem Aglykon eines Esterglykosides der Konduran-gorinde. Tetrahedron 21, 1777 (1965).CrossRefGoogle Scholar
  126. 126.
    Tschesche, R., P. Welzel, and H.W. Fehlhaber: Digitanolglykoside, XIII: Massen-spektrometrische Untersuchungen am Kondurangogenin A. Tetrahedron 21, 1797 (1965).CrossRefGoogle Scholar
  127. 127.
    Tschesche, R., H. Kohl, and P. Welzel: Digitanolglykoside, XVI: Die Struktur der Kondurangogenine A und C. Tetrahedron 23, 1461 (1967).CrossRefGoogle Scholar
  128. 128.
    Tschesche, R., and H. Kohl: Digitanolglykoside, XIX: Die Struktur der Konduran-goglykoside A, A1 und C, C1. Tetrahedron 24, 4359 (1968).CrossRefGoogle Scholar
  129. 129.
    Hayashi, K., K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Koide, T. Aiba, T. Narita, and D. Mizuno: Antitumor Active Glycosides from Condurango Cortex. Chem. Pharm. Bull. 28, 1954 (1980).CrossRefGoogle Scholar
  130. 130.
    Hayashi, K., K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Koide, T. Aiba, T. Narita, and D. Mizuno: Further Investigation of Antitumor Condurangog-lycosides with C-18 Oxygenated Aglycone. Chem. Pharm. Bull. 29, 2725 (1981).CrossRefGoogle Scholar
  131. 131.
    Jeener, J.: Ampere International Summer School. Basko Polje, Yugoslavia. 1971.Google Scholar
  132. 132.
    Aue, W.P., E. Bartholdi, and R.R. Ernst: Two-Dimensional Spectroscopy. Application to Nuclear Magnetic Resonance. J. Chem. Phys. 64, 2229 (1976).CrossRefGoogle Scholar
  133. 133.
    Morris, G.A.: Modern NMR Techniques for Structure Elucidation. Magn. Reson. Chem. 24, 371 (1986).CrossRefGoogle Scholar
  134. 134.
    Kessler, H., M. Gehrke, and C. Griesinger: Two-Dimensional NMR Spectroscopy: Background and Overview of the Experiments. Angew. Chem. Int. Ed. 27, 490 (1988).CrossRefGoogle Scholar
  135. 135.
    Ernst, R.R., G. Bodenhausen, and A. Wokaun: Principle of Nuclear Magnetic Resonance in One and Two Dimensions. London:Oxford University Press (Clarendon). 1987.Google Scholar
  136. 136.
    Bax, A., and D.G. Davies: Advanced Magnetic Resonance Techniques in Systems of High Molecular Complexity (N. Nicolai, and G. Valensin, eds.), p. 21. Stuttgart: Birkhäuser. 1986.CrossRefGoogle Scholar
  137. 137.
    Vleggaar, R., F.R. Vanheerden, L.A.P. Anderson, and G.L. Erasmus: Toxic Constituents of the Asclepiadaceae. Structure Elucidation of Sarcovimiside A-C, Pregnane Glycosides of Sarcostemma viminale. J. Chem. Soc., Perkin Trans I, 483 (1993).CrossRefGoogle Scholar
  138. 138.
    Piantini, U., O.W. Sorensen, and R.R. Ernst: Multiple Quantum Filters for Elucidating NMR Coupling Networks. J. Am. Chem. Soc. 104, 6800 (1982).CrossRefGoogle Scholar
  139. 139.
    Rance, M., O.W. Sorensen, G. Bodenhausen, G. Wagner, R.R. Ernst, and K. Wuthrich: Improved Spectral Resolution in COSY 1H NMR Spectra of Proteins via Double Quantum Filtering. Biochem. Biophys. Res. Commun. 117, 479 (1983).CrossRefGoogle Scholar
  140. 140.
    Müller, N., R.R. Ernst, and K. Wuthrich: Multiple Quantum-Filtered Two-Dimensional Correlated NMR Spectroscopy of Proteins. J. Am. Chem. Soc. 108, 6482 (1986).CrossRefGoogle Scholar
  141. 141.
    Edwards, M.W., and A. Bax: Complete Proton and Carbon-13 NMR Assignments of the Alkaloid Gephyrotoxin through the Use of Homonuclear Hartmann-Hahn and Two-Dimensional NMR Spectroscopy. J. Am. Chem. Soc. 108, 918 (1986).CrossRefGoogle Scholar
  142. 142.
    Shaka, A.J., and R. Freeman: Simplification of NMR Spectra by Filtration Through Multiple-Quantum Coherence. J. Magn. Reson. 51, 169 (1983).CrossRefGoogle Scholar
  143. 143.
    Eich, G., G. Bodenhausen, and R.R. Ernst: Exploring Nuclear Spin Systems by Relayed Magnetization Transfer. J. Am. Chem. Soc. 104, 3731 (1982).CrossRefGoogle Scholar
  144. 144.
    Bax, A., and G. Drobny: Optimization of Two-Dimensional Homonuclear Relayed Coherence Transfer NMR Spectroscopy. J. Magn. Reson. 61, 306 (1985).CrossRefGoogle Scholar
  145. 145.
    Hughes, D.W.: Application of Relayed Coherence Transfer Two-Dimensional Nuclear Magnetic Resonance Spectroscopy to the Assignment of 1H Chemical Shifts in Steroids. Magn. Reson. Chem. 26, 214 (1988).CrossRefGoogle Scholar
  146. 146.
    Bolton, P.H.: Assignments and Structural Information via Relayed Coherence Transfer Spectroscopy. J. Magn. Reson. 48, 336 (1982).CrossRefGoogle Scholar
  147. 147.
    Macura, S., and R.R. Ernst: Elucidation of Cross Relaxation in Liquids by Two-dimensional NMR Spectroscopy. Mol. Phys. 41, 95 (1980).CrossRefGoogle Scholar
  148. 148.
    Kumar, A., R.R. Ernst, and K. Wuthrich: A Two Dimensional Nuclear Overhauser Enhancement (2D NOE) Experiment for the Elucidation of Complete Proton-Proton Cross Relaxation Networks in Biological Macromolecules. Biochem. Biophys. Res. Commun. 95, 1 (1980).CrossRefGoogle Scholar
  149. 149.
    Davis, D., and A. Bax: Assignment of Complex 1H NMR Spectra via Two-Dimensional Homonuclear Hartmann-Hahn Spectroscopy. J. Am. Chem. Soc. 107, 2820 (1985).CrossRefGoogle Scholar
  150. 150.
    Braunschweiler, L., and R.R. Ernst: Coherence Transfer by Isotropic Mixing: Application to Proton Correlation Spectroscopy. J. Magn. Reson. 53, 521 (1983).CrossRefGoogle Scholar
  151. 151.
    Bax, A., and D.G. Davis: MLEV-17-based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy. J. Magn. Reson. 65, 355 (1985).CrossRefGoogle Scholar
  152. 152.
    Inagaki, F., I. Shimada, D. Kohada, A. Suzuki, and A. Bax: Relayed HOHAHA, a Useful Method for Extracting Subspectra of Individual Components of Sugar Chains. J. Magn. Reson. 81, 186 (1989).CrossRefGoogle Scholar
  153. 153.
    Aue, W.P., J. Karhan, and R.R. Ernst: Homonuclear Broad Band Decoupling and Two Dimensional J-Resolved NMR Spectroscopy. J. Chem. Phys. 65, 4226 (1976).CrossRefGoogle Scholar
  154. 154.
    Hall, L.D., S. Sukumar, and G.R. Sullivan: Two-Dimensional J-Spectroscopy: Proton NMR Spectra of Mono-and Disaccharides. J. Chem. Soc., Chem. Comm., 292 (1979).Google Scholar
  155. 155.
    Bernstein, M.A., and L.D. Hall: De Novo Sequencing of Oligosaccharides by Proton NMR Spectroscopy. J. Am. Chem. Soc. 104, 5553 (1982).CrossRefGoogle Scholar
  156. 156.
    Dabrowski, J.: Methods in Stereochemical Analysis: Two-Dimensional NMR Spectroscopy for Chemists and Biochemists (R.M. Carlson, and W.R. Caroasmum, eds.). Florida: Verlag Chemie (Deerfield Beach). 1987.Google Scholar
  157. 157.
    Bax, A., and G.A. Morris: An Improved Method for Heteronuclear Chemical Shift Correlation by Two-Dimensional NMR. J. Magn. Reson. 42, 501 (1981).CrossRefGoogle Scholar
  158. 158.
    Hall, L.D., G.A. Morris, and S. Sukumar: Resolution and Assignment of the 270-MHz Proton Spectrum of Cellobiose by Homo-and Heteronuclear Two-Dimensional NMR. J. Am. Chem. Soc. 102, 1745 (1980).CrossRefGoogle Scholar
  159. 159.
    Kessler, H., W. Bermel, C. Griesinger, and C. Kolar: The Elucidation of the Constitution of Glycopeptides by the NMR Spectroscopic COLOC Technique. Angew. Chem. Int. Ed. 25, 342 (1986).CrossRefGoogle Scholar
  160. 160.
    Morris, G.A., and L.D. Hall: Experimental Chemical Shift Correlation Maps from Heteronuclear Two-Dimensional NMR Spectroscopy, 1: Carbon-13 and Proton Chemical Shifts of Raffinose and Its Subunits. J. Am. Chem. Soc. 103, 4703 (1981).CrossRefGoogle Scholar
  161. 161.
    Patt, S.L.: 2-Dimensional NMR in Carbohydrate Structural Analysis. J. Carbohydr. Chem. 3, 493 (1984).CrossRefGoogle Scholar
  162. 162.
    Itokawa, H., J. Xu, K. Takeya, K. Watanabe, and J. Shoji: Studies on Chemical Constituents of Antitumor Fractions from Periploca sepium ,II: Structures of New Pregnane Glycosides, Periplocosides A, B and C. Chem. Pharm. Bull. 36, 982 (1988).CrossRefGoogle Scholar
  163. 163.
    Martin, G.E., and A.S. Zektzer: Long-Range Two-Dimensional Heteronuclear Chemical Shift Correlation. Magn. Reson. Chem. 26, 631 (1988).CrossRefGoogle Scholar
  164. 164.
    Kessler, H., C. Griesinger, J. Zarbock, and H.R. Loosti: Assignment of Carbonyl Carbons and Sequence Analysis in Peptides by Heteronuclear Shift Correlation via Small Coupling Constants with Broad-band Decoupling in t1 (COLOC). J. Magn. Reson. 57, 331 (1984).CrossRefGoogle Scholar
  165. 165.
    Bax, A., and R. Freeman: Investigation of Complex Networks of Spin-Spin Coupling by Two-Dimensional NMR. J. Magn. Reson. 44, 542 (1981).CrossRefGoogle Scholar
  166. 166.
    Summers, M.F., L.G. Marzilli, and A. Bax: Complete 1H and 13C Assignments of Coenzyme Bl2 through the use of New Two-Dimensional NMR Experiments. J. Am. Chem. Soc. 108, 4285 (1986).CrossRefGoogle Scholar
  167. 167.
    Griesinger, C., and R.R. Ernst: Frequency Offset Effects and their Elimination in NMR Rotating -Frame Cross Relaxation Spectroscopy. J. Magn. Reson. 75, 261 (1987).CrossRefGoogle Scholar
  168. 168.
    Bax, A., A. Aszalos, Z. Dinya, and K. Sudo: Structure Elucidation of the Antibiotic Desertomycin through the Use of New Two-Dimensional NMR Techniques. J. Am. Chem. Soc. 108, 8056 (1986).CrossRefGoogle Scholar
  169. 169.
    Deepak, D., S. Srivastav, A. Sethi, and A. Khare: Mass Spectral Studies of Pregnane Glycosides. Phytochemical Analysis (Communicated).Google Scholar
  170. 170.
    Khare, M.P., and A. Khare: Mass Spectrometry in the Structure Studies of Oligosaccharides. J. Carbohydr. Chem. 6, 523 (1987).CrossRefGoogle Scholar
  171. 171.
    Howe, I., and M. Jarmann: New Techniques for the Mass Spectrometry of Natural Products. Prog. Chem. Org. Nat. Prod. 47, 107 (1985).Google Scholar
  172. 172.
    Brown, P., F. Bruschweiler, G.R. Pettit, and T. Reichstein: Field Ionization Mass Spectrometry-III: Cardenolides. Org. Mass Spectrom. 5, 573 (1971).CrossRefGoogle Scholar
  173. 173.
    Oberai, K., M.P. Khare, and A. Khare: A Pregnane Ester Triglycoside from Sarcostemma brevistigma. Phytochemistry 24, 3011 (1985).CrossRefGoogle Scholar
  174. 174.
    Oberai, K., M.P. Khare, and A. Khare: A Pregnane Ester Diglycoside from Hemidesmus indicus. Phytochemistry 24, 2395 (1985).CrossRefGoogle Scholar
  175. 175.
    Tiwari, K.N., A. Khare, and M.P. Khare: Structure of Orthenthose. Carbohydr. Res. 123, 231 (1983).CrossRefGoogle Scholar
  176. 176.
    Bosso, C., F. Taravel, J. Ulrich, and M. Vignon: Utilisation du 13C en Spectrometrie de Masse: Etude de la Fragmentation de Disaccharides. Org. Mass Spectrom. 13, 477 (1978).CrossRefGoogle Scholar
  177. 177.
    Tiwari, K.N., N.K. Khare, A. Khare, and M.P. Khare: Structure of Digoxose. Carbohydr. Res. 129, 179 (1984).CrossRefGoogle Scholar
  178. 178.
    Khare, D.P., S.S. Tiwari, A. Khare, and M.P. Khare: Structure of Brevobiose. Carbohydr. Res. 79, 279 (1980).CrossRefGoogle Scholar
  179. 179.
    Fukuoka, M., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XXIX: Mass Spectra of C/D cis Pregnane Derivatives. Chem. Pharm. Bull. 19, 1469 (1971).CrossRefGoogle Scholar
  180. 180.
    Budzikiewicz, H., C. Djerassi, and H. Williams: Structure Elucidation of Natural Products by Mass Spectrometry, Vol. II: Steroids, Terpenoids, Sugars, and Miscellaneous Classes. London: Holden-Day, Inc. 1964.Google Scholar
  181. 181.
    Khare, N.K., R. Kumar, M.P. Khare, and A. Khare: Sarcogenin, A Pregnane Derivative from Pergularia pallida and Sarcostemma brevistigma. Phytochemistry 25, 491 (1986).CrossRefGoogle Scholar
  182. 182.
    Khare, N.K., R. Kumar, M.P. Khare, and A. Khare: A Novel Pregnane Derivative from Sarcostemma brevistigma. J. Nat. Prod. 50, 600 (1987).CrossRefGoogle Scholar
  183. 183.
    Mu, Q., and Q. Zhou: Studies on Constituents of Cynanchum otophyllum Schneid Roots. Acta Bot. Yunn. 5, 99 (1983) [Chem. Abstr. 99, 10735 (1983)].Google Scholar
  184. 184.
    Kaur, K.J., M.P. Khare, and A. Khare: A Novel Polyhydroxy Pregnane Ester from Orthenthera viminea. Phytochemistry 27, 1809 (1988).CrossRefGoogle Scholar
  185. 185.
    Tiwari, K.N., A. Khare, and M.P. Khare: Orgogenin, a Pregnane Derivative from Orthenthera viminea. Phytochemistry 24, 2391 (1985).CrossRefGoogle Scholar
  186. 186.
    Wood, G.W.: Some Recent Applications of Field Ionization/Field Desorption Mass Spectrometry to Organic Chemistry. Tetrahedron 38, 1125 (1982).CrossRefGoogle Scholar
  187. 187.
    Itokawa, H., J. Xu, and K. Takeya: Pregnane Glycosides from an Antitumor Fraction of Periploca sepium. Phytochemistry 27, 1173 (1988).CrossRefGoogle Scholar
  188. 188.
    Nagai, U., and H. Iga: Optical Rotatory Dispersion of Nitrobenzene Derivatives-I o-Nitrobenzoates of Secondary Alcohols. Tetrahedron 26, 725 (1970).CrossRefGoogle Scholar
  189. 189.
    Hayashi, K., and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants. XXXIV. Chemistry of Sarcostin. Chem. Pharm. Bull. 23, 1845 (1975).CrossRefGoogle Scholar
  190. 190.
    Mitsuhashi, H., T. Nomura, and M. Fukuoka: Studies on the Constituents of Asclepiadaceae Plants, XIII: Epimerization at C-17 and Optical Rotatory Dispersion Study of C/D cis Pregnane 20-One Derivatives. Steroids 4, 483 (1964).CrossRefGoogle Scholar
  191. 191.
    Rangaswami, S., and T. Reichstein: Konstitution von Odorosid A und Odorosid B. Die Glykoside von Nerium odorum Sol., 2. Mitteilung. Glykoside und Aglykone, 45. Mitteilung. Helv. Chim. Acta 32, 939 (1949).CrossRefGoogle Scholar
  192. 192.
    Deepak, D., M.P. Khare, and A. Khare: A New Pregnane Glycoside from Periploca calophylla. Indian J. Chem. 25B, 44 (1986).Google Scholar
  193. 193.
    Srivastava, S., M.P. Khare, and A. Khare: Cardenolide Diglycosides from Oxystelma esculentum. Phytochemistry 32, 1019 (1993).CrossRefGoogle Scholar
  194. 194.
    Kiliani, H.: Über Digitalinum Verum. Ber. Deutsch Chem. Ges. 63, 2866 (1930).CrossRefGoogle Scholar
  195. 195.
    Krishna, G., G.V. Shinde, M.S. Shingare, A. Khare, and M.P. Khare: Two Pregnane Ester Triglycosides from Dregea lanceolata. J. Nat. Prod. 53, 1399 (1990).CrossRefGoogle Scholar
  196. 196.
    Kaur, K.J., M.P. Khare, and A. Khare: A Pregnane Ester and its Glycoside from Orthenthera viminea. Phytochemistry 24, 3007 (1985).CrossRefGoogle Scholar
  197. 197.
    Trivedi, R., A. Khare, and M.P. Khare: A Pregnane Ester Tetraglycoside from Oxystelma esculentum. Phytochemistry 27, 2297 (1988).CrossRefGoogle Scholar
  198. 198.
    Oliver, J.E., W.R. Lusby, R.M. Waters, and M.J. Thompson: Structures of the Pregnenediol Tri-and Di-Glucosides from Eggs of the Tobacco Hornworm, Manduca sexta. J. Nat. Prod. 51, 103 (1988).CrossRefGoogle Scholar
  199. 199.
    Tsukamoto, S., K. Hayashi, K. Kaneko, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LXV: The Optical Resolution of D-and L-Cymaroses. Chem. Pharm. Bull. 34, 3130 (1986).CrossRefGoogle Scholar
  200. 200.
    Mannich, C., and G. Siewert: Über g-Strophanthin (Ouabain) und g-Strophanthidin. Ber. Deutsch Chem. Ges. 75, 737 (1942).CrossRefGoogle Scholar
  201. 201.
    Hakomori, S.: A Rapid Permethylation of Glycolipid and Polysaccharide Catalysed by Methyl Sulfinyl Carbanion in Dimethyl Sulfoxide. J. Biochem. 55, 205 (1964).Google Scholar
  202. 202.
    Tursunova, R.N., V.A. Maslennikova, and N.K. Abubakirov: Pregnane Glycosides of Cynanchum sibiricum ,III: Structure of Sibricosides D and E. Khim. Prirod. Soedin. 11, 171 (1975) [Chem. Abstr. 83, 114803 (1975)].Google Scholar
  203. 203.
    Fujimoto, H., K. Suzuki, H. Hagiwara, and M. Yamazaki: New Toxic Metabolites from a Mushroom, Hebeloma vinosophyllum ,I: Structures of Hebevinosides I, II, III, IV and V. Chem. Pharm. Bull. 34, 88 (1986).Google Scholar
  204. 204.
    Kennard, O., S.K. Fawcett, D.G. Watson, K.A. Kerr, K. Stöckel, W. Stöcklin, and T. Reichstein: Hirundigenin and Anhydrohirundigenin, Two Natural 15-Oxasteroids of Plant Origin. Chemical and X-Ray Investigation. Tetrahedron Letters, 3799 (1968).Google Scholar
  205. 205.
    Eppenberger, U., H. Kaufmann, W. Stöcklin, and T. Reichstein: Die Glykoside der Samen von Stapelia gigantea N.E. Br. Glykoside und Aglykone, 275. Mitteilung. Helv. Chim. Acta 49, 1492 (1966).CrossRefGoogle Scholar
  206. 206.
    Eppenberger, U., W. Vetter, and T. Reichstein: Stapelogenin, Vermutliche Struktur. Glykoside und Aglykone, 276. Mitteilung. Helv. Chim. Acta 49, 1505 (1966).CrossRefGoogle Scholar
  207. 207.
    Zhang, Z.-X., J. Zhou, K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LVIII:The Structures of Five Glycosides, Cynatratoside-A, -B, -C, -D, and -E, from the Chinese Drug “Pai-Wei”, Cynanchum atratum Bunge. Chem. Pharm. Bull. 33, 1507 (1985).CrossRefGoogle Scholar
  208. 208.
    Zhang, Z.-H., J. Zhou, K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LXI:The Structure of Cynatratoside-F from the Chinese Drug “Pai-Wei”, Dried Root of Cynanchum atratum Bunge. Chem. Pharm. Bull. 33, 4188 (1985).CrossRefGoogle Scholar
  209. 209.
    Nakagawa, T., K. Hayashi, K. Wada, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LII:The Structures of Five Glycosides, Glaucoside-A, -B, -C, -D, and -E, from the Chinese Drug “Pai-Ch’ ien” Cynanchum glaucescens. Hand-Mazz. Tetrahedron 39, 607 (1983).Google Scholar
  210. 210.
    Nakagawa, T., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LIV:The Structures of Glaucosides-F and -G from the Chinese Drug “Pai-Ch’ ien”, Cynanchum glaucescens. Hand-Mazz. Chem. Pharm. Bull. 31, 879 (1983).CrossRefGoogle Scholar
  211. 211.
    Nakagawa, T., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LV:The Structures of Three New Glycosides, Glaucoside-H, -I, and -J from the Chinese Drug “Pai-Ch’ ien”, Cynanchum glaucescens. Hand-Mazz. Chem. Pharm. Bull. 31, 2244 (1983).CrossRefGoogle Scholar
  212. 212.
    Nakagawa, T., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LIII:The Structures of Glaucogenin-A, -B, and -C Mono-D-thevetoside from the Chinese Drug “Pai-Ch’ ien”, Cynanchum glaucescens. Hand-Mazz. Chem. Pharm. Bull. 31, 870 (1983).CrossRefGoogle Scholar
  213. 213.
    Lee, M.D., T.S. Dunne, M.M. Siegel, C.C. Chang, G.O. Morton, and D.B. Borders: Calichemicins, a Novel Family of Antitumor Antibiotics, 1: Chemistry and Partial Structure of Calichemicin. J. Am. Chem. Soc. 109, 3464 (1987).CrossRefGoogle Scholar
  214. 214.
    Bundle, D.R.: Topics in Current Chemistry, Vol. 154. p. 1. Berlin: Springer-Verlag. 1990.Google Scholar
  215. 215.
    Yoshimura, S.-I, H. Narita, K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LVI: Isolation of New Antitumor Active Glycosides from Dregea volubilis (L) Benth. Chem. Pharm. Bull. 31, 3971 (1983).CrossRefGoogle Scholar
  216. 216.
    Nohara, T., H. Yabuta, M. Suenobu, R. Hida, K. Miyahara, and T. Kawasaki: Steroid Glycosides in Paris polyphylla Sm. Chem. Pharm. Bull. 21, 1240 (1973).CrossRefGoogle Scholar
  217. 217.
    Kaur, K.J., M.P. Khare, and A. Khare: A Novel Pregnane Ester Tetraglycoside from Orthenthera vimineae. J. Nat. Prod. 48, 928 (1985).CrossRefGoogle Scholar
  218. 218.
    Janot, M.M., Q. Khuong-Huu, C. Monneret, I. Kabore, J. Hildesheim, S.D. Gero, and R. Goutarel: Alcaloides Stéroidiques-C1 Les Holantosines A et B, Nouveaux Amino-Glycosteroides isolés des Feuilles de L’ Holarrhena antidysenterica (Roxb.) Wall (Apocynacees). Tetrahedron 26, 1695 (1969).CrossRefGoogle Scholar
  219. 219.
    Sauer, H.H., E. Weiss, and T. Reichstein: Die Struktur der Drevogenine, 2. Mitteilung. Struktur von Drevogenin P. Glykoside und Aglykone, 279. Mitteilung. Helv. Chim. Acta 49, 1632 (1966).CrossRefGoogle Scholar
  220. 220.
    Sauer, H.H., E. Weiss, and T. Reichstein: Die Struktur der Drevogenine, 3. Mitteilung. Struktur von Drevogenin A, B und D. Glykoside und Aglykone, 279. Mitteilung. Helv. Chim. Acta 49, 1655 (1966).CrossRefGoogle Scholar
  221. 221.
    Abisch, E., C. Tamm, and T. Reichstein: Die Glykoside der Wurzeln von P achycarpus lineolatus (Decne) Bullock (oder P. Schweinfurthii (N.E. Br) Bullock. Glykoside und Aglykone, 201. Mitteilung. Helv. Chim. Acta 42, 1014 (1959).CrossRefGoogle Scholar
  222. 222.
    Sawlewicz, L., E. Weiss, and T. Reichstein: Die Cardenolideund Pregnan-Glykoside der Wurzeln von Asclepias lilacina Weimarck, I. Isolierungen. Glykoside und Aglykone, 290. Mitteilung. Helv. Chim. Acta 50, 504 (1967).CrossRefGoogle Scholar
  223. 223.
    Sawlewicz, L., E. Weiss, and T. Reichstein: Die Pregnanderivative der Wurzeln von Asclepias lilacina Weimarck, II: Strukturbestimmungen. Glykoside und Aglykone, 291. Mitteilung. Helv. Chim. Acta 50, 530 (1967).CrossRefGoogle Scholar
  224. 224.
    Allgeier, H.: Struktur der Drebyssobiose, Lilacinobiose und Viminose. De-soxyzucker, 45. Mitteilung. Helv. Chim. Acta 51, 668 (1968).CrossRefGoogle Scholar
  225. 225.
    Nakagawa, T., K. Hayashi, K. Wada, and H. Mitsuhashi: A New Disaccharide, Glaucobiose from Chinese Drug “Pai-Ch’ ien”: A Comparison of 13C NMR with its Diastereomeric Isomer, Strophanthobiose. Tetrahedron Letters 23, 5431 (1982).Google Scholar
  226. 226.
    Kawanishi, S., S. Sakuma, H. Okino, and J. Shoji: Constituents of Chinese Crude Drug “Wujiapi”, IV: On the Structure of a New Acetylbiose from Steroidal Glycosides of “Bei-Wujiapi”. Chem. Pharm. Bull. 20, 93 (1972).CrossRefGoogle Scholar
  227. 227.
    Zhang, Z., and J. Zhou: Structure of Wallicoside. Acta Chim. Snica 41, 1058 (1983) [Chem. Abstr. 100, 99896 (1984)].Google Scholar
  228. 228.
    Oshima, Y., T. Hirota, and H. Hikino: Periplosides A, B and C, Steroidal Glycosides of Periploca sepium Root-Barks. Heterocycles 26, 2093 (1987).CrossRefGoogle Scholar
  229. 229.
    Singh, B., and R.P. Rastogi: Cardenolides-Glycosides and Genins. Phytochemistry 9, 315 (1970).CrossRefGoogle Scholar
  230. 230.
    Deepak, D., S. Srivastava, N.K. Khare, and A. Khare: Cardiac Glycosides. Prog. Chem. Org. Nat. Prod.Google Scholar
  231. 231.
    Abbott, B.J., J. Leiter, J. L. Hartwell, M.E. Caldwell, and S.A. Schepartz: Cancer Chemotherapy Screening Data, XIV: Screening Data from the Cancer Chemotherapy National Service Center Screening Laboratories. XXXIII. Plant Extracts. Cancer Research 26, 587 (1966).Google Scholar
  232. 232.
    Mitsuhashi, H., D. Mizuno, K. Hayashi, S. Abe, M. Takase, and T. Narita: Condurangoglycosides, their Use as Antitumor Agents and Composition Containing them. Chem. Abstr. 98, 149582 (1983); Condurangoglycoside E01. Chem. Abstr. 98, 132306 (1983).Google Scholar
  233. 233.
    Ahsan, A.M., D.M. Piatak, and P.D. Sorensen: Isolation and Structure of Amplexo-side A.A New Glycoside from Asclepias amplexicaulis. Experientia 29, 788 (1973).CrossRefGoogle Scholar
  234. 234.
    Hayashi, K., A. Nakao, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XXVI: Isolation of a New Glycoside from Dregea volubilis (L) Benth. Chem. Pharm. Bull. 17, 2629 (1969).CrossRefGoogle Scholar
  235. 235.
    Yoshimura, S.-I., H. Narita, K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, LIX: The Structures of Five New Glycosides from Dregea volubilis (L) Benth. Chem. Pharm. Bull. 33, 2287 (1985).CrossRefGoogle Scholar
  236. 236.
    Duh, C.Y., J.M. Pezzuto, A.D. Kinghorn, S.L. Leung, and N.R. Farnsworth: Plant Anticancer Agents, XLIV: Cytotoxic Constituents from Stizophyllum riparium J. Nat. Prod. 50, 63 (1987).CrossRefGoogle Scholar
  237. 237.
    Schun, Y., and G.A. Cordell: Cytotoxic Steroids of Gelsemium sempervirens. J. Nat. Prod. 50, 195 (1987).CrossRefGoogle Scholar
  238. 238.
    Mu, Q., J. Lu, and Q. Zhou: Two New Antiepilepsy Compounds-Otophyllosides A and B. Sci. Sin. Ser. B. 29, 295 (1986) [Chem. Abstr. 106, 81545 (1987)].Google Scholar
  239. 239.
    Yuan, J.-L., W.-P. Ding, J.-P. Shi, Z.-Z. Lu, B.-N. Zhou, C.A.J. Erdelmeier, G.A. Cordell, H.H.S. Fong, and N.R. Farnsworth: Studies on the Antifertility Components from Marsdenia koi. J. Tong-Ji Med. Univ. 11, 165 (1991) [Chem. Abstr. 117, 83593 (1992)].CrossRefGoogle Scholar
  240. 240.
    Umehara, K., M. Endoh, T. Miyase, M. Kuroyanagi, and A. Ueno: Studies on Differentiation Inducers, IV: Pregnane Derivatives from Condurango Cortex. Chem. Pharm. Bull. 42, 611 (1994).CrossRefGoogle Scholar
  241. 241.
    Cannon, J.R., E.L. Ghisalberti, and V. Lojanapiwatna: The Alkaloids of Holarrhena curtisii King and Gamble. J. Sci. Soc. Thailand 6, 81 (1980) [Chem. Abstr. 93, 217922 (1980)].CrossRefGoogle Scholar
  242. 242.
    Samikov, K., R. Shakirov, D.U. Abdullaeva, and S.Y. Yunusov: Alkaloids of Korolkowia sewertzovii. Structure of Sevkorine. Khim. Prirod. Soedin 269 (1976). [Chem. Abstr. 85, 108928 (1976)].Google Scholar
  243. 243.
    Medina, J.D., and R. Bracho: Constituents of the Bark of Malouetia glandulifera. Planta Med. 29, 367 (1976).CrossRefGoogle Scholar
  244. 244.
    Abe, F., and T. Yamauchi: Teikaside A, a Pregnane Glycoside of Trachelospermum asiaticum. Chem. Pharm. Bull. 29, 416 (1981).CrossRefGoogle Scholar
  245. 245.
    Warashina, T., and T. Noro: Steroidal Glycosides from Asclepias fruticosa. L. Chem. Pharm. Bull. 42, 322 (1994).CrossRefGoogle Scholar
  246. 246.
    Warashina, T., and T. Noro:Steroidal Glycosides and Cardenolide Glycosides from Asclepias fruticosa. Phytochemistry 37, 217 (1994).CrossRefGoogle Scholar
  247. 247.
    Abe, F., Y. Mori, H. Okabe, and T. Yamauchi: Steroidal Constituents from the Roots and Stems of Asclepias fruticosa. Chem. Pharm. Bull. 42, 1777 (1994).CrossRefGoogle Scholar
  248. 248.
    Tsukamoto, S., K. Hayashi, H. Mitsuhashi, F.O. Snyckers, and T.G. Fourie: Studies on the Constituents of Asclepiadaceae Plants, LXII: The Structures of Two Glycosides, Cynafoside-A and B, with a Novel Sugar Chain Containing a Pair of Optically Isomeric Sugars, D-and L-Cymaroses, from Cynanchwn africanum R.Br. Chem. Pharm. Bull. 33, 4807 (1985).CrossRefGoogle Scholar
  249. 249.
    Wada, K., K. Hayashi, H. Mitsuhashi, and H. Bando: Studies on the Constituents of Asclepiadaceae Plants, L: Two New Oligoglycosides, Cynanchoside C2 and Cynan-choside C1, from Cynanchum caudatum Max. Chem. Pharm. Bull. 30, 3500 (1982).CrossRefGoogle Scholar
  250. 250.
    Wada, K., K. Hayashi, H. Mitsuhashi, and H. Bando: Cynanchoside C2, a New Steroidal Oligoglycoside from Cynanchum caudatum Max.: Application of 13C-NMR Spectroscopy to the Structural Elucidation of Plant Glycosides. Chem. Pharm. Bull. 27, 2252 (1979).CrossRefGoogle Scholar
  251. 251.
    Warashina, T., and T. Noro: Steroidal Glycosides from Cynanchum caudatum. Phytochemistry, 39, 199 (1995).CrossRefGoogle Scholar
  252. 252.
    Warashina, T., and T. Noro: Steroidal Glycosides from the Root of Cynanchum caudatum. M. Chem. Pharm. Bull. 43, 977 (1995).CrossRefGoogle Scholar
  253. 253.
    Nakagawa, T., K. Hayashi, and H. Mitsuhashi: The Structures of Glaucogenin-A, Glaucogenin-B, and Glaucogenin-C Mono D-Thevetoside from Chinese Drug “Pai-Ch’ ien” Cynanchum glaucescens Hand-Mazz. Tetrahedron Letters 23, 757 (1982).CrossRefGoogle Scholar
  254. 254.
    Tursunova, R.N., V.A. Maslennikova, and N.K. Abubakirov: Pregnane Glycosides of Cynanchum maximoviczii. Khim. Prirod. Soedin 11, 522 (1975) [Chem. Abstr. 83, 203757 (1975)].Google Scholar
  255. 255.
    Tsukamoto, S., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plant, LVII: The Structures of Six Glycosides, Wilfoside C1N, C2N, C3N, C1G, C2G, and C3G, with Novel Sugar Chain Containing a Pair of Optically Isomeric Sugars. Tetrahedron 41, 927 (1985).CrossRefGoogle Scholar
  256. 256.
    Bhatnagar, A.S., W. Stöcklin, and T. Reichstein: Die Pregnanderivate der Samen von Dregea abyssinica (Hochst) K. Schum. (Asclepiadaceae), II: Strukturbestimmungen. Helv. Chim. Acta 51, 133 (1968).CrossRefGoogle Scholar
  257. 25.
    J. Zhang, Z., J. Chen, and J. Zhou: Gymnemaroside A and B from Gymnema yunnanense. Acta Bot. Yunn. 13, 75 (1991) [Chem. Abstr. 115, 68474 (1991)].Google Scholar
  258. 258.
    Deepak, D., S. Srivastava, and A. Khare: Three Novel Pregnane Glycosides from Hemidesmus indicus R. Br. Phytochemistry (in Press).Google Scholar
  259. 259.
    Kapur, B.M., H. Allgeier, and T. Reichstein: Die Glykoside der Wurzeln von Kanalia laniflora (Forssk.) R. Br., 2. Mitteilung: Struktur von Kalanosid-H und Kalanosid-K. Helv. Chim. Acta 50, 2171 (1967).CrossRefGoogle Scholar
  260. 260.
    Ito, K., J. Lai, and K. Usuda: Studies on the Constituents of Marsdenia formosana Musamune, III: Isolation and Structural Elucidation of Some New Steroidal Glycosides. Chem. Pharm. Bull. 26, 3189 (1978).CrossRefGoogle Scholar
  261. 261.
    Lai, J.: Studies on the Components of Steroidal Glycoside of Marsdenia formosana Musamune. Proc. Natl. Sci. Counc. Repub. China Part B. 6, 51 (1981) [Chem. Abstr. 96, 139660 (1982)].Google Scholar
  262. 262.
    Chen, J., Z. Zhang, J. Zhou, D. Wang, L. Zhou, and G. Tao: A Novel C21 Steroidal Glycoside from Marsdenia incisa. Acta Bot. Yunn. 13, 231 (1991) [Chem. Abstr. 115, 275751 (1991)].Google Scholar
  263. 263.
    Ruan, J., X. -Q. Xu, G. Chen, W.-P. Ding, and B.-N. Zhou: Chemical Constituents of Kocondorvine (Marsdenia koi). Zhougcaoyao 23, 6 (1992) [Chem. Abstr. 117, 147165 (1992)].Google Scholar
  264. 264.
    Ruan, J., J. Wang, and W.-P. Ding: Structure Determination of Marsdekoiside E. Zhongguo Yaoxue Zazhi 28, 213 (1993) [Chem. Abstr. 119, 91260 (1993)].Google Scholar
  265. 265.
    Zhang, Y., J. Yuan, and W.-P. Ding: Structural Elucidation of Marsdeoreophiside A. Zhongcaoyao 24, 171 (1993) [Chem. Abstr. 119, 199529 (1993)].Google Scholar
  266. 266.
    Miyakawa, S., K. Yamaura, K. Hayashi, K. Kaneko, and H. Mitsuhashi: Five Glycosides from the Chinese Drug “Tong-Guang-San”: The Stems of Marsdenia tenacissima. Phytochemistry 25, 2861 (1986).CrossRefGoogle Scholar
  267. 267.
    Shen, Y., Q. Zhou, Q. Mu, Y. Hu, and X. Shen: Chemical Constituents of Hemsley metaplexis [Metaplexis hemsleyana) I. Zhongcaoyao 23, 622 (1992) [Chem. Abstr. 118, 260783 (1993)].Google Scholar
  268. 268.
    Kaur, K. J., M.P. Khare, and A. Khare: A Pregnane Ester Glycoside from Orthenthera viminea. Indian J. Chem. 24B, 1053 (1985).Google Scholar
  269. 269.
    Trivedi, R., A. Khare, and M.P. Khare: A Pregnane Ester Tetraglycoside from Oxystelma esculentum. Phytochemistry 27, 2297 (1988).CrossRefGoogle Scholar
  270. 270.
    Khare, N.K., M.P. Khare, and A. Khare: Two Pregnane Ester Glycosides from Pergularia pallida. Phytochemistry 23, 2931 (1984).CrossRefGoogle Scholar
  271. 271.
    Srivastava, O.P., A. Khare, and M.P. Khare: Structure of Calocin. J. Nat. Prod. 45, 211 (1982).CrossRefGoogle Scholar
  272. 272.
    Deepak, D., M.P. Khare, and A. Khare: A Pregnane Ester Glycoside from Periploca calophylla. Phytochemistry 24, 1037 (1985).CrossRefGoogle Scholar
  273. 273.
    Sakuma, S., H. Ishizone, R. Kasai, S. Kawanishi, and J. Shoji: On the Structure of Glycoside G and K of Bei-Wujiapi. Chem. Pharm. Bull. 17, 2183 (1969).CrossRefGoogle Scholar
  274. 274.
    Sakuma, S., H. Ishizone, R. Kasai, S. Kawanishi, and J. Shoji: Constituents of Chinese Crude Drug “Wujiapi”, III: On the Structure of Glycoside G and K of Bei-Wujiapi. Chem. Pharm. Bull. 19, 52 (1971).CrossRefGoogle Scholar
  275. 275.
    Kawanishi, S., S. Sakuma, and J. Shoji: Constituents of Chinese Crude Drug “Wujiapi”, V: On the Structure of Glycoside H1 of Bei-Wujiapi. Chem. Pharm. Bull. 20, 469 (1972).CrossRefGoogle Scholar
  276. 276.
    Ishizone, H., S. Sakuma, S. Kawanishi, and J. Shoji: Constituents of Chinese Crude Drug “Wujiapi”, VII: On the Structure of Glycoside E of Bei-Wujiapi. Chem. Pharm. Bull. 20, 2402 (1972).CrossRefGoogle Scholar
  277. 277.
    Sakuma, S., S. Kawanishi, and J. Shoji: Constituents of the Chinese Crude Drug “Wujiapi”, IX: Structure of Glycoside H2, a Potentiator of NGF-mediated Nerve Fibre Outgrowth. Chem. Pharm. Bull. 28, 163 (1980).CrossRefGoogle Scholar
  278. 278.
    Oberai, K., M.P. Khare, and A. Khare: A Pregnane Ester Diglycoside from Sarcos-temma brevistigma. Phytochemistry 24, 1341 (1985).CrossRefGoogle Scholar
  279. 279.
    Inada, A., K. Mari, and T. Nakanishi: Phytochemical Studies on Meliaceous Plants, III: Structures of Two New Pregnane Steroids, Toosendansterols A and B, from Leaves of Melia toosendan Sieb et Zucc. Chem. Pharm. Bull. 36, 609 (1988).CrossRefGoogle Scholar
  280. 280.
    Adam, G., H.T. Huong, and N.H. Khoi: Isolation of 3β-Hydroxy-5-pregnane-16-one from Solanum hainanense. Phytochemistry 17, 1802 (1978).CrossRefGoogle Scholar
  281. 281.
    Chiplunkar, Y.G., B.A. Nagasampagi, S.S. Tavale, and V.G. Puranik: Villosterol, 3β, 5β-Dihydro-20-Pregnane-6-one, Steroid from Turraea villosa. Phytochemistry 33, 901 (1993).CrossRefGoogle Scholar
  282. 282.
    Xu, J., K. Takeya, and H. Itokawa: Pregnanes and Cardenolides from Periploca sepium. Phytochemistry 29, 344 (1990).CrossRefGoogle Scholar
  283. 283.
    Jin, Q.D., and Q.Z. Mu: C21 Steroids from Dregea sinensis var. corrugata. Yaoxue Xuebao 24, 587 (1989) [Chem. Abstr. 112, 115727 (1990)].Google Scholar
  284. 284.
    Seto, H., K. Hayashi, and H. Mitsuhashi: Constituents of Asclepiadaceae Plants, XXXV: Component of Marsdenia tomentosa Decne. Structure of Tomentin and Dehydrotomentin. Chem. Pharm. Bull. 23, 2397 (1975).CrossRefGoogle Scholar
  285. 285.
    Seto, H., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XLIII: Component of Marsdenia tomentosa Decne. Structure of Tomentomin. Chem. Pharm. Bull. 25, 876 (1977).CrossRefGoogle Scholar
  286. 286.
    Seto, H., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XXXVI: Component of Marsdenia tomentosa Decne. Structure of Tomentomin, Tomentodin and Dehydrotomentosin and Difference in the Reactivity between Utendin and Tomentogenin Diesters on Mild Alkaline Hydrolysis. Chem. Pharm. Bull. 24, 443 (1976).CrossRefGoogle Scholar
  287. 287.
    Seto, H., K. Hayashi, and H. Mitsuhashi: Constituents of Asclepiadaceae Plants, XXXIII: Component of Marsdenia tomentosa Decne. Structure of Tomentosin. Chem. Pharm. Bull. 23, 1552 (1975).CrossRefGoogle Scholar
  288. 288.
    Seto, H., K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XLII: Component of Marsdenia tomentosa Decne. Structure of 12β-O-Acetyltomentogenin and Hypothetical Biogenetic Pathway of Polyoxypregnanes in M. tomentosa. Chem. Pharm. Bull. 25, 611 (1977).CrossRefGoogle Scholar
  289. 289.
    Schaub, F., H. Kaufmann, W. Stöcklin, and T. Reichstein: Die Pregnanglykoside der oberirdischen Teile von Sarcostemma viminale (L) R. Br. Helv. Chim. Acta 51, 738 (1968).CrossRefGoogle Scholar
  290. 290.
    Hayashi, K., K. Sugama, Z. Zhang, S. Tsukamoto, H. Nakaya, K. Sasaki, T. Nakagawa, and H. Mitsuhashi: On the Pregnane Glycosides from the Plants belonging to the Genus Cynanchum (Asclepiadaceae). Tennen Yuki Kogobutsu Toronkai Koen Yoshishu 28, 216 (1986) [Chem. Abstr. 106, 135258 (1987)].Google Scholar
  291. 291.
    Jin, Q.D., and Q. Mu: The Constituent of C21 Steroids from Dregea sinensis var. corrugata. Acta Bot. Yunn. 9, 227 (1987) [Chem. Abstr. 111, 171179 (1989)].Google Scholar
  292. 292.
    Jin, Q.D., and Q. Mu: Structure of Dresgenin from Dregea sinensis var. corrugata. Zhiwu Xuebao 31, 874 (1989) [Chem. Abstr. 113, 94756 (1990)].Google Scholar
  293. 293.
    Chen, J., S. Qin, Z. Zhang, and J. Zhou: The Chemical Constituents of Gymnema yunnanense. Acta Bot. Yunn. 11, 203 (1989) [Chem. Abstr. 112, 52246 (1990)].Google Scholar
  294. 294.
    Yamagishi, T., K. Hayashi, and H. Mitsuhashi: The Structure and Internal Acyl Migration of Gagaminin. Chem. Pharm. Bull. 20, 2289 (1972).CrossRefGoogle Scholar
  295. 295.
    Sasaki, T., K. Hayashi, and H. Mitsuhashi: On the Structure of Kidjolanin and the Position of the Ester linkage of Penupogenin. Chem. Pharm. Bull. 20, 628 (1972).CrossRefGoogle Scholar
  296. 296.
    Mitsuhashi, H., and Y. Shimizu: The Isolation and Structure of Penupogenin. Chem. Pharm. Bull. 8, 565 (1960).CrossRefGoogle Scholar
  297. 297.
    Seto, H., T. Sasaki, K. Hayashi, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XXXIX: Component of Marsdenia tomentosa Decne: Structure of Deacetyldehydrotomentodin, 20-O-Acetylpenupogenin, Deacetylkidjoladinin and Kidjoladinin. Chem. Pharm. Bull. 24, 2185 (1976).CrossRefGoogle Scholar
  298. 298.
    Shimizu, Y., Y. Sato, and H. Mitsuhashi: Isolation and Structures of New Pregnane Derivatives from Adonis amurensis et Radd. Chem. Pharm. Bull. 17, 2391 (1969).CrossRefGoogle Scholar
  299. 299.
    Mitsuhashi, H., and Y. Shimizu: Structure of Cynanchogenin and Sarcostin. Steroids 2, 373 (1963).CrossRefGoogle Scholar
  300. 300.
    Hayashi, K., and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants, XXXII: Aglycones from Cynanchum wilfordi Hemsley. Chem. Pharm. Bull. 23, 139 (1975).CrossRefGoogle Scholar
  301. 301.
    Maslennikova, V.A., R.N. Tursunova, and N.K. Abubakirov: Structure of Sibirigenin. Khim. Prirod. Soedin 6, 322 (1970) [Chem. Abstr. 73, 77477 (1970)].Google Scholar
  302. 302.
    Yamagishi, T., and H. Mitsuhashi: Structure of Ikemagenin and Isoikemagenin. Chem. Pharm. Bull. 20, 2070 (1972).CrossRefGoogle Scholar
  303. 303.
    Bando, H., and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants. XLIV. Components of Cynanchum caudatum Max. Structure of 20-O-Cinnamoylsar-costin, 12-O-Cinnamoylikemagenol and 20-O-Cinnamoylikemagenol. Chem. Pharm. Bull. 26, 2128 (1978).CrossRefGoogle Scholar
  304. 304.
    Yamagishi, T., and H. Mitsuhashi: The Structure of Caudatin. Chem. Pharm. Bull. 20, 625 (1972).CrossRefGoogle Scholar
  305. 305.
    Bando, H., T. Amiya, E. Sato, and H. Mitsuhashi: Studies on the Constituents of Asclepiadaceae Plants. XLVIII. 5α, 6α-Epoxycaudatin, a New Polyoxypregnane Derivative from Cynanchum caudatum Max. Chem. Pharm. Bull. 28, 2258 (1980).CrossRefGoogle Scholar
  306. 306.
    Singhal, S., G. Mittal, M.P. Khare, and A. Khare: Constituents of Marsdenia tenacissima: Structure of a New Genin Drevogenin Q. Indian J. Chem. Sect. B. 19B, 178 (1980).Google Scholar
  307. 307.
    Yamagishi, T., K. Hayashi, H. Mitsuhashi, M. Imanari, and K. Matsushita: Carbon-13 Nuclear Magnetic Resonance Spectroscopy of C/D cis-Polyoxypregnanes, III: Structure of 12β-O-Cinnamoyl-20-O-Acetylsarcostin. Tetrahedron Letters, 4735 (1973).Google Scholar
  308. 308.
    Steyn, P.S., F.R. Vanheerden, R. Vleggaar, G.L. Erasmus, and L.A.P. Anderson: Toxic Constituents of the Asclepiadaceae. Structure Elucidation of the Cynafosides, Toxic Pregnane Glycosides of Cynanchum africanum R.Br.S.Afr. J. Chem. 42, 29 (1989) [Chem. Abstr. 111, 130746 (1989)].Google Scholar
  309. 309.
    Yang, R., T. Yang, and J. Zhou: Structures of Tenacigenin A, B and C. Memory of Professor Tsai Xitau. Yun Nan Zhi Wu Yan Jiu 3, 271 (1981) [Chem. Abstr. 96, 65666 (1982)].Google Scholar
  310. 310.
    Singhal, S., M.P. Khare, and A. Khare: Cissogenin, a Pregnane Genin from Marsdenia tenacissima. Phytochemistry 19, 2427 (1980).CrossRefGoogle Scholar
  311. 311.
    Luo, S.-Q., L.-Z. Lin, G.A. Cordell, L. Xue, and M.E. Johnson: Assignment of the 1H and 13C NMR Spectra of the C21 Steroids 12-β-O-Acetyltenacigenin A and Tenacigenin A by Two-Dimensional NMR Techniques and Computer Modeling. Magn. Reson. Chem. 31, 215 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • D. Deepak
    • 1
  • S. Srivastav
    • 1
  • A. Khare
    • 1
  1. 1.Department of ChemistryLucknow UniversityLucknowIndia

Personalised recommendations