Advertisement

Abstract

Insects form the largest class of the phylum Arthropoda. There are at least one million known species, so more than 50% of all existing organisms on earth are insects. It is even thought that at least another million insect species have not yet been discovered. Insect-like forms inhabited the terrestrial and freshwater ecosystems about 300 million years ago and their basic features have been so successful that they were able to exploit almost every available habitat except the true marine environment, which is occupied by their arthropod “cousins”, the Crustacea.

Keywords

High Performance Liquid Chromatography Juvenile Hormone Corticotropin Release Factor Ventral Nerve Cord Neurosecretory Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abernathy, R.L., RJ. Nachman, P.E.A. Teal, O. Yamashita, and J.H. Tumlison: Pheromonotropic Activity of Naturally Occurring Pyrokinin Insect Neuropeptides (FXPRLamide) in Helicoverpa zea. Peptides 16, 215 (1995).CrossRefGoogle Scholar
  2. 2.
    Adachi, T., S. Takiya, Y. Suzuki, M. Iwami, A. Kawakami, S.Y. Takahashi, H. Ishizaki, H. Nagasawa, and A. Suzuki: cDNA structure and expression of bombyxin, an insulin-like brain secretory peptide of the silkmoth Bombyx mori. J. Biol. Chem. 264, 7681 (1989).Google Scholar
  3. 3.
    Adachi-Yamada T., M. Iwami, H. Kataoka, A. Suzuki, and H. Ishizaki: Structure and Expression of the Gene for the Prothoracicotropic Hormone of the Silkmoth Bombyx mori. Eur. J. Biochem. 220, 633 (1994).CrossRefGoogle Scholar
  4. 4.
    Agui, N., W.E. Bollenbacher, N.A. Granger, and L.I. Gilbert: Corpus Allatum is Release Site for Insect Prothoracicotropic Hormone. Nature 285, 669 (1980).CrossRefGoogle Scholar
  5. 5.
    Agui, N., N.A. Granger, L.I. Gilbert, and W.E. Bollenbacher: Cellular Localiz-ation of the Insect Prothoracicotropic hormone: In vitro Assay of a Single Neurosecretory Cell. Proc. Natl. Acad. Sci. U.S.A. 76, 5694 (1979).CrossRefGoogle Scholar
  6. 6.
    Altstein, M., O. Ben-Aziz, and Y. Gazit: Pheromone Biosynthesis Activating Neuropeptide (PBAN) and Colour Polymorphism: an Immunochemical Study in Spodoptera littoralis. J. Insect Physiol. 40, 303 (1994).CrossRefGoogle Scholar
  7. 7.
    Arima, R., K. Takahara, T. Kadoshima, F. Numazaki, T. Ando, M. Uchiyama, H. Nagasawa, A. Kitamura, and A. Suzuki: Hormonal Regulation of Pheromone Biosynthesis in the Silkworm Moth, Bombyx mori. Appl. Ent. Zool. 26, 137 (1991).Google Scholar
  8. 8.
    Audsley, N., G.M. Coast, and D.A. Schooley: The Effects of Manduca sexta Diuretic Hormone on Fluid Transport by the Malpighian Tubules and Cryptonephric Complex of Manduca sexta. J. Exp. Biol. 178, 231 (1993).Google Scholar
  9. 9.
    Audsley, N., I. Kay, T.K. Hayes, and G.M. Coast: Cross Reactivity Studies of CRF-Related Peptides on Insect Malpighian Tubules. Comp. Biochem. Physiol. 110A, 87 (1995).CrossRefGoogle Scholar
  10. 10.
    Audsley, N., C. McIntosh, and J.E. Phillips: Isolation of a Neuropeptide from Locust Corpus Cardiacum which Influences Ileal Transport. J. Exp. Biol. 173, 261 (1992).Google Scholar
  11. 11.
    Audsley, N., C. McIntosh, J.E. Phillips, D.A. Schooley, and G.M. Coast: Neuropeptide Regulation of Ion and Fluid Reabsorption in the Insect Excretory System. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 74–80. Ottawa: National Research Council of Canada. 1994.Google Scholar
  12. 12.
    Bahr, U., M. Karas, and F. Hillenkamp: Analysis of Biopolymers by Metrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. In: Microcharacterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 149–166. Weinheim: VCH Verlagsgesellschaft. 1994.CrossRefGoogle Scholar
  13. 13.
    BAUMANN, E, G. GÄDE, and H. PENZLIN: Structure-Function Studies on Neurohormone D: Activity of Naturally-Occurring Hormone Analogues. J. Comp. Physiol. 160B, 423 (1990).Google Scholar
  14. 14.
    BAUMANN, E., and H. PENZLIN: Sequence Analysis of Neurohormone D, a Neuropeptide of an Insect, Periplaneta americana. Biomed. Biochim. Acta 43, K13 (1984).Google Scholar
  15. 15.
    BEENAKKERS, A.M.T.: The Influence of Corpus Allatum and Corpus Cardiacum on Lipid Metabolism in Locusta migratoria. Gen. Comp. Endocrinol. 13, 492 abstr. 12 (1969).Google Scholar
  16. 16.
    BELL, G.I., W.F. SWAIN, R. PICTET, B. CORDELL, H.M. GOODMAN, and W.J. RUTTER: Nucleotide Sequence of a cDNA Clone Encoding Human Preproinsulin. Nature 282, 525 (1979).CrossRefGoogle Scholar
  17. 17.
    Belles, X., J.-L. Maestro, M.-D. Piulachs, A.H. Johnsen, H. Duve, and A. Thorpe: Allatostatic Neuropeptides from the Cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae). Identification, Immunolocalization and Activity. Regul. Pept. 53, 237 (1994).CrossRefGoogle Scholar
  18. 18.
    Beyenbach, K.W.: Mechanism and Regulation of Electrolyte Transport in Malpighian Tubules. J. Insect Physiol. 41, 197 (1995).CrossRefGoogle Scholar
  19. 19.
    Blackburn, M.B., T.G. Kingan, W. Bodnar, J. Shabanowitz, D.F. Hunt, T. Kempe, R.M. Wagner, A.K. Raina, M.E. Schnee, and M.C. Ma: Isolation and Identification of a new Diuretic Peptide from the Tobacco Hornworm, Manduca sexta. Biochem. Biophys. Res. Comm. 181, 927 (1991).CrossRefGoogle Scholar
  20. 20.
    Blackburn, M.B. and M.C. Ma: Diuretic Activity of Mas-DP II, an Identified Neuropeptide from Manduca sexta: an in vivo and in vitro Examination in the Adult Moth. Archs. Insect Biochem. Physiol. 27, 3 (1994).CrossRefGoogle Scholar
  21. 21.
    Blackburn, M.B., R.M. Wagner, J.P. Kochansky, D.J. Harrison, P. Thomas-Laemont, and A.K. Raina: The Identification of two Myoinhibitory Peptides, with Sequence Similarities to the Galanins, Isolated from the Ventral Nerve Cord of Manduca sexta. Regul. Pept. 57, 213 (1995).CrossRefGoogle Scholar
  22. 22.
    Blackburn, M.B., R.M. Wagner, J. Shabanowitz, J.P. Kochansky, D.F. Hunt, and A.K. Raina: The Isolation and Identification of Three Diuretic Kinins from the Abdominal Ventral Nerve Cord of Adult Helicoverpa zea. J. Insect Physiol. 41, 723 (1995).CrossRefGoogle Scholar
  23. 23.
    Bogerd, J., F.P. Kooiman, M.A.P. Pijnenburg, L.H.P. Hekking, R.C.H.M. Oudejans, and DJ. Van der Horst: Molecular Cloning of Three Distinct cDNAs, Each Encoding a Different Adipokinetic Hormone Precursor, of the Migratory Locust, Locusta migratoria. Differential Expression of the Distinct Adipokinetic Hormone Precursor Genes During Flight Activity. J. Biol. Chem. 29, 23038 (1995).Google Scholar
  24. 24.
    Bollenbacher, W.E., E.J. Katahira, and M.A. O’Brien: Insect Prothoracicotropic Hormone: Evidence of Two Molecular Forms. Science 224, 1243 (1984).CrossRefGoogle Scholar
  25. 25.
    Borovsky, D.: Isolation and Characterization of Highly Purified Mosquito Oostatic Hormone. Arch. Insect Biochem. Physiol. 2, 333 (1985).CrossRefGoogle Scholar
  26. 26.
    Borovsky, D.: Oostatic Hormone Inhibits Biosynthesis of Midgut Proteolytic Enzymes and Egg Development in Mosquitoes. Arch. Insect Biochem. Physiol. 7, 187 (1988).CrossRefGoogle Scholar
  27. 27.
    Borovsky, D., and D.A. Carlson: The Role of Mosquito Oostatic Hormone in the Regulation of Midgut Serine Proteases. In: Insect Neurochemistry and Neurophysiology 1989 (A.B. Borkovec and E.P. Masler, eds.) pp. 251–254. Clifton, N.J.: The Humana Press Inc. 1990.CrossRefGoogle Scholar
  28. 28.
    Borovsky, D., D.A. Carlson, P.R. Griffin, J. Shabanowitz, and D.F. Hunt: Mosquito Oostatic Factor: a Novel Decapeptide Modulating Trypsin-like Enzyme Biosynthesis in the Midgut. The FASEB Journal 4, 3015 (1990).Google Scholar
  29. 29.
    Borovsky, D., D.A. Carlson, P.R. Griffin, J. Shabanowitz, and D.F. Hunt: Mass Spectrometry and Characterization of Aedes aegypti Trypsin Modulating Oostatic Factor (TMOF) and its Analogs. Insect Biochem. Molec. Biol. 23, 703 (1993).CrossRefGoogle Scholar
  30. 30.
    Borovsky, D., D.A. Carlson and D.F. Hunt: Mosquito Oostatic Hormone. A Trypsin-modulating Oostatic Factor. In: Insect Neuropeptides: Chemistry, Biology, and Action. ACS Symposium Series No. 453 (J.J. Menn, T.J. Kelly, and E.P. Masler, (eds.), pp. 133–142. Washington, D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  31. 31.
    Borovsky, D., C.A. Powel, and D.A. Carlson: Development of Specific RIA and ELISA to Study Trypsin Modulating Oostatic Factor in Mosquitoes. Arch. Insect Biochem. Physiol. 21, 13 (1992).CrossRefGoogle Scholar
  32. 32.
    Bradfield, J.Y., and L.L. Keeley: Adipokinetic Hormone Gene Sequence from Manduca sexta. J. Biol. Chem. 264, 12791 (1989).Google Scholar
  33. 33.
    Breidbach, O., and H. Dircksen: Crustacean Cardioactive Peptide-immunoreactive Neurons in the Ventral Nerve Cord and the Brain of the Meal Beetle Tenebrio molitor During Postembryonic Development. Cell Tissue Res. 265, 129 (1991).CrossRefGoogle Scholar
  34. 34.
    Brown, B.E., and A.N. Starratt: Isolation of Proctolin, a Myotropic Peptide, from Periplaneta americana. J. Insect Physiol. 23, 1879 (1975).CrossRefGoogle Scholar
  35. 35.
    Brown, M.R., M.J. Klowden, J.W. Crim, L. Young, L.A. Shrouder, and A.O. Lea: Endogenous Regulation of Mosquito Host-seeking Behavior by a Neuropeptide. J. Insect Physiol. 40, 399 (1994).CrossRefGoogle Scholar
  36. 36.
    Butenandt, A., R. Beckmann, D. Stamm, and E. Hecker: Über den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z. Naturforsch. 14b, 283 (1959).Google Scholar
  37. 37.
    Bylemans, D., D. Borovsky, D.F. Hunt, J. Shabanowitz, L. Grauwels, and A. De Loof: Sequencing and Characterization of Trypsin Modulating Oostatic Factor (TMOF) from the Ovaries of the Grey Fleshfly, Neobellieria (Sarcophaga) bullata. Regul. Pept. 50, 61 (1994).CrossRefGoogle Scholar
  38. 38.
    Bylemans, D., P. Proost, B. Samyn, D. Borovsky, L. Grauwels, R. Huybrechts, J. van Damme, J. van Beeumen, and A. De Loof: Neb-colloostatin, a second Folliculostatin of the Grey Fleshfly Neobellieria bullata. Eur. J. Biochem. 228, 45 (1995).CrossRefGoogle Scholar
  39. 39.
    Cantera, R., B.S. Hansson, E. Hallberg, and D.R. Nässel: Postembryonic Development of Leucokinin I Immunoreactive Neurons Innervating a Neurohemal Organ in the Turnip Moth Agrotis segetum. Cell Tissue Res. 269, 65 (1992).CrossRefGoogle Scholar
  40. 40.
    Cantera, R., and D.R. Nässel: Segmental Peptidergic Innervation of Abdominal Targets in Larval and Adult Dipteran Insects Revealed with an Antiserum Against Leucokinin I. Cell Tissue Res. 269, 459 (1992).CrossRefGoogle Scholar
  41. 41.
    Cantera, R., J.A. Veenstra, and D.R. Nässel: Postembryonic Development of Corazonin-containing Neurons and Neurosecretory Cells in the Blowfly, Phormia terraenovae. J. Comp. Neurol. 350, 559 (1994).CrossRefGoogle Scholar
  42. 42.
    Carlisle, J., and B.G. Loughton: The Inhibition of Protein Synthesis in Locusta migratoria by Adipokinetic Hormone. J. Insect Physiol. 32, 573 (1986).CrossRefGoogle Scholar
  43. 43.
    Champagne, D.E., and J.M.C. Ribeiro: Sialokinin I and II: Vasodilatory Tachykinins from the Yellow Fever Mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 91, 138 (1994).CrossRefGoogle Scholar
  44. 44.
    Chen, R., K.A. Lewis, M.H. Perrin, and W.W. Vale: Expression Cloning of a Human Corticotropin-releasing-factor Receptor. Proc. Natl. Acad. Sci. U.S.A. 90, 8967 (1993).CrossRefGoogle Scholar
  45. 45.
    Cheung, C.C., P.K. Loi, A.W. Sylwester, T.D. Lee, and N.J. Tublitz: Primary Structure of a Cardioactive Neuropeptide from the Tobacco Hawkmoth, Manduca sexta. FEBS Lett. 313, 165 (1992).CrossRefGoogle Scholar
  46. 46.
    Chin, A.C., E.R. Reynolds, and R.H. Scheller: Organization and Expression of the Drosophila FMRFamide-related Prohormone Gene. DNA Cell Biol. 9, 263 (1990).CrossRefGoogle Scholar
  47. 47.
    Chung, J.S., G.J. Goldsworthy, and G.M. Coast: Haemolymph and Tissue Titres of Achetakinins in the House Cricket Acheta domesticus: Effect of Starvation and Dehydration. J. exp. Biol. 193, 307 (1994).Google Scholar
  48. 48.
    Chung, J.S., C.H. Wheeler, G.J. Goldsworthy, and G.M. Coast: Properties of Achetakinin Bindings Sites on Malpighian Tubule Membranes from the House Cricket, Acheta domesticus. Peptides 16, 375 (1995).CrossRefGoogle Scholar
  49. 49.
    Clottens, F., G. Gäde, R. Huybrechts, and A. De Loof: Immunohistochemical Localisation of the Hypertrehalosaemic Hormone II (Cam-HrTH-II) and Related Peptides in the Nervous System of Carausius morosus and Sarcophaga bullata. Cell Tissue Res. 258, 631 (1989).CrossRefGoogle Scholar
  50. 50.
    Clottens, F.L., G.M. Holman, G.M. Coast, N.F. Totty, T.K. Hayes, I. Kay, A.I. Mallet, M.S. Wright. J.-S. Chung, O. Truong, and D.L. Bull: Isolation and Characterization of a Diuretic Peptide Common to the House Fly and Stable Fly. Peptides 15, 971 (1994).CrossRefGoogle Scholar
  51. 51.
    Clottens, F.L., S.M. Meola, G.M. Coast, T.K. Hayes, M.S. Wright, R.J. Nachman, and G.M. Holman: Characterization of an Antiserum against an Achetakinin-I analog and its use for the Localization of Culekinin Depolarizing Peptide-II in the Mosquito, Culex salinurius. Regul. Pept. 49, 145 (1993).CrossRefGoogle Scholar
  52. 52.
    Coast, G.M., J.-S. Chung, G.J. Goldsworthy, M. Patel, T.K. Hayes, and I. Kay: Corticotropin Releasing Factor Related Diuretic Peptides in Insects. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 67–73. Ottawa: National Research Council of Canada. 1994.Google Scholar
  53. 53.
    Coast, G.M., T.K. Hayes, I. Kay, and J.-S. Chung: Effect of Manduca sexta Diuretic Hormone and Related Peptides on Isolated Malpighian Tubules of the House Cricket Acheta domesticus (L.). J. Exp. Biol. 162, 331 (1992).Google Scholar
  54. 54.
    Coast, G.M., G.M. Holman, and R.J. Nachman: The Diuretic Activity of a Series of Cephalomyotropic Neuropeptides, the Achetakinins, on Isolated Malpighian Tubules of the House Cricket, Acheta domesticus. J. Insect Physiol. 36, 481 (1990).CrossRefGoogle Scholar
  55. 55.
    Coast, G.M., I. Kay, and C.H. Wheeler: Diuretic Peptides in the House Cricket, Acheta domesticus (L.): a Possible Dual Control of Malpighian Tubules. In: Molecular Comparative Physiology (K.W. Beyenbach, ed.), Vol. 12, pp. 38–66. Basel: Karger. 1993.Google Scholar
  56. 56.
    Coast, G.M., R.C. Rayne, T.K. Hayes, A.I. Mallet, K.S.J. Thompson, and J.P. Bacon: A Comparison of the Effects of two Putative Diuretic Hormones from Locusta migratoria on Isolated Locust Malpighian Tubules. J. Exp. Biol. 175, 1 (1993).Google Scholar
  57. 57.
    Cook, B.J., G.M. Holman, R.M. Wagner, and R.J. Nachman: Pharmacological Actions of a New Class of Neuropeptides, the Leucokinins I-IV, on the Visceral Muscles of Leucophaea maderae. Comp. Biochem. Physiol. 93C, 257 (1989).Google Scholar
  58. 58.
    Cook B.J., G.M. Holman, R.M. Wagner, and R.J. Nachman: Comparative Pharmacological Actions of Leucokinins V-VIII on the Visceral Muscles of Leucophaea maderae. Comp. Biochem. Physiol. 95C, 19 (1990).Google Scholar
  59. 59.
    Couillaud, F., A. Girardie, and J. Girardie: Identification of Gonadotropic and Antigonadotropic Factors from the Nervous Part of the Corpora Cardiaca in the African Locust. Invert. Reprod. Develop. 16, 17 (1989).CrossRefGoogle Scholar
  60. 60.
    Curto, E.V., M.A. Jarpe, J.E. Blalock, D. Borovsky, and N.R. Krishna: Solution Structure of Trypsin Modulating Oostatic Factor is a Left-handed Helix. Biochem. Biophys. Res. Comm. 193, 688 (1993).CrossRefGoogle Scholar
  61. 61.
    Cusinato, O., C.H. Wheeler, and G.J. Goldsworthy: The Identity and Physiological Actions of an Adipokinetic Hormone in Acheta domesticus. J. Insect Physiol. 37, 461 (1991).CrossRefGoogle Scholar
  62. 62.
    Cusson, M., G.D. Prestwich, B. Stay, and S.S. Tobe: Photoaffinity Labeling of Allatostatin Receptor Proteins in the Corpora Allata of the Cockroach, Diploptera punctata. Biochem. Biophys. Res. Comm. 181, 736 (1991).CrossRefGoogle Scholar
  63. 63.
    Davey, K.G.: The Mode of Action of the Corpus Cardiacum on the Hindgut in Periplaneta americana. J. Exp. Biol. 39, 319 (1962).Google Scholar
  64. 64.
    Davis, M.-T.B., V.N. Vakharia, J. Henry, T.G. Kempe, and A.K. Raina: Molecular Cloning of the Pheromone Biosynthesis-activating Neuropeptide in Helicoverpa zea. Proc. Natl. Acad. Sci. U.S.A. 89, 142 (1992).CrossRefGoogle Scholar
  65. 65.
    Davis, N.T., S.G. Velleman, T.G. Kingan, and H. Keshishian: Identification and Distribution of a Proctolin-like Neuropeptide in the Nervous System of the Gypsy Moth, Lymantria dispar ,and in Other Lepidoptera. J. Comp. Neurol. 283, 71 (1989).CrossRefGoogle Scholar
  66. 66.
    Delbecque, J.-P., K. Weidner, and K.H. Hoffmann: Alternative Sites for Ecdysteroid Production in Insects. Inv. Reprod. Dev. 18, 29 (1990).CrossRefGoogle Scholar
  67. 67.
    Denlinger, D.L.: Hormonal Control of Diapause. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G.A. Kerkut and L.I. Gilbert, eds.), Vol. 8, pp. 353–412. Pergamon Press, Oxford. 1985.Google Scholar
  68. 68.
    Diederen, J.H.B., H.A. Maas, H.J. Pel, H. Schooneveld, W.F. Jansen, and H.G.B. Vullings: Co-localization of the Adipokinetic Hormones I and II in the Same Glandular Cells and in the Same Secretory Granules of Corpus Cardiacum of Locusta migratoria and Schistocerca gregaria. Cell Tissue Res. 249, 379 (1987).CrossRefGoogle Scholar
  69. 69.
    Digan, M.E., D.N. Roberts, F.E. Enderlin, A.R. Woodworth, and S.J. Kramer: Characterization of the Precursor for Manduca sexta Diuretic Hormone Mas-DH. Proc. Natl. Acad. Sci. U.S.A. 89, 11074 (1992).CrossRefGoogle Scholar
  70. 70.
    Dircksen, H., A. Müller, and R. Keller: Crustacean Cardioactive Peptide in the Nervous System of the Locust Locusta migratoria: an Immunocytochemical Study of the Ventral Nerve Cord and Peripheral Innervation. Cell Tissue Res. 263, 439 (1991).CrossRefGoogle Scholar
  71. 71.
    Donly, B.C., Q. Ding, S.S. Tobe, and W.G. Bendena: Molecular Cloning of the Gene for the Allatostatin Family of Neuropeptides from the Cockroach Diploptera punctata. Proc. Natl. Acad. Sci. U.S.A. 90, 8807 (1993).CrossRefGoogle Scholar
  72. 72.
    Dow, J.A.T.: Countercurrent Flows, Water Movements and Nutrient Absorption in the Locust Midgut. J. Insect Physiol. 27, 579 (1981).CrossRefGoogle Scholar
  73. 73.
    Duve, H., A.J. Elia, I. Orchard, A. Johnsen, and A. Thorpe: The Effects of CalliFMRFamides and Other FMRFamide-related Neuropeptides on the Activity of the Heart of the Blowfly Calliphora vomitoria. J. Insect Physiol. 39, 31 (1993).CrossRefGoogle Scholar
  74. 74.
    Duve, H., A.H. Johnsen, P. East, and A. Thorpe: Comparative Aspects of the FMRFamides of Blowflies: Isolation of the Peptides, Genes, and Functions. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 91–96. Ottawa: National Research Council of Canada. 1994.Google Scholar
  75. 75.
    Duve, H., A.H. Johnsen, A.G. Scott, P. East, and A. Thorpe: [Hyp3] Met-Callatostatin: Identification and Biological Properties of a Novel Neuropeptide from the Blowfly Calliphora vomitoria. J. Biol. Chem. 269, 21059 (1994).Google Scholar
  76. 76.
    Duve, H., A.H. Johnsen, A.G. Scott, and A. Thorpe: Isolation, Identification and Functional Significance of [Hyp2] Met-Callatostatin and Des Gly-Pro Met-Callatostatin, two Further Post-translational Modifications of the Blowfly Neuropeptide Met-Callatostatin. Regul. Pept. 57, 237 (1995).CrossRefGoogle Scholar
  77. 77.
    Duve, H., A.H. Johnsen, A.G. Scott, C.G. Yu, K.J. Yagi, S.S. Tobe, and A. Thorpe: Callatostatins: Neuropeptides from the Blowfly Calliphora vomitoria with Sequence Homology to Cockroach Allatostatins. Proc. Natl. Acad. Sci. U.S.A. 90, 2456 (1993).CrossRefGoogle Scholar
  78. 78.
    Duve, H., A.H. Johnsen, J.C. Sewell, A.G. Scott, I. Orchard, J.F. Rehfeld, and A. Thorpe: Isolation, Structure, and Activity of-Phe-Met-Arg-Phe-NH2 Neuropeptides (Designated calliFMRFamides) from the Blowfly Calliphora vomitoria. Proc. Natl. Acad. Sci. USA 89, 2326 (1992).CrossRefGoogle Scholar
  79. 79.
    Duve, H., J.C. Sewell, A.G. Scott, and A. Thorpe: Chromatographic Characterisation and Biological Activity of Neuropeptides Immunoreactive to Antisera Against Met5-Enkephalin-Arg6-Phe7 (YGGFMRF) Extracted from the Blowfly Calliphora vomitoria (Diptera). Regul. Pept. 35, 145 (1991).CrossRefGoogle Scholar
  80. 80.
    Duve, H., and A. Thorpe: Mapping of Enkephalin-Related Peptides in the Nervous System of the Blowfly Calliphora vomitoria and their Colocalization with Cholecystokinin (CCK) and Pancreatic Polypeptide (PP)-like Peptides. Cell Tissue Res. 251, 399 (1988).CrossRefGoogle Scholar
  81. 81.
    Duve, H., and A. Thorpe: Distribution and Functional Significance of Met-Enkephalin-Arg6-Phe7-and Met-Enkephalin-Arg6-Gly7-Leu8-like Peptides in the Blowfly Calliphora vomitoria. II. Immunocytochemical Mapping of Neuronal Pathways in the Retrocerebral Complex and Thoracic Ganglion. Cell Tissue Res. 259, 147 (1990).CrossRefGoogle Scholar
  82. 82.
    Duve, H., and A. Thorpe: Distribution and Functional Significance of Leu-Callatostatins in the Blowfly Calliphora vomitoria. Cell Tissue Res. 276, 367 (1994).CrossRefGoogle Scholar
  83. 83.
    Duve, H., A. Thorpe, A.G. Scott, A.H. Johnson, J.F. Rehfeld, E. Hines, and P.D. East: The Sulfakinins of the Blowfly Calliphora vomitoria. Peptide Isolation, Gene Cloning and Expression Studies. Eur. J. Biochem. 232, 633 (1995).CrossRefGoogle Scholar
  84. 84.
    Eckert, M., J. Gabriel, H. Birkenbell, G. Greiner, J. Rapus, and G. Gäde: A Comparative Immunocytochemical Study Using an Antiserum Against a Synthetic Analogue of the Corpora Cardiaca Peptide Pea-CAH-I (MI, Neurohormone D) of Periplaneta americana. Cell Tissue Res. 284, 401 (1996).CrossRefGoogle Scholar
  85. 85.
    Eckert, M., R. Predel, J. Rapus, D. Linde, and H. Penzlin: Immunocytochemical Localization of Periviscerokinin, a New Myotropic Neuropeptide from the Perisympathetic Organs of the American Cockroach. In: Learning and Memory (N. Elsner and R. Menzel, eds.), 23rd Neurobiol. Conf. Goettingen, p. 668. Stuttgart, New York: Thieme Verlag. 1995.Google Scholar
  86. 86.
    Eldridge, R., F.M. Horodyski, D.B. Morton, D.R. O’Reilly, J.W. Truman, L.M. Riddiford, and L.K. Miller: Expression of an Eclosion Hormone in Insect Cells Using Baculovirus Vectors. Insect Biochem. 21, 341 (1991).CrossRefGoogle Scholar
  87. 87.
    Engelmann, F.: The Physiology of Insect Reproduction. Oxford: Pergamon. 1970.Google Scholar
  88. 88.
    Engelmann, F.: Vitellogenesis Controlled by Juvenile Hormone. In: Endocrinology of Insects (R.G.H. Downer and H. Laufer, eds.), pp. 259–270. New York: A. Liss Inc. 1983.Google Scholar
  89. 89.
    Engelmann, F.: Hormonal Control of Arthropod Reproduction. In: Progress in Comparative Endocrinology (A. Epple, C.G. Scanes, and M.H. Stetson, eds.), pp. 357–364. New York: Wiley-Liss. 1990.Google Scholar
  90. 90.
    Esch, F.S., N.C. Ling, and P. Böhlen: Microisolation of Neuropeptides. Methods Enzymol. 103, 72 (1983).CrossRefGoogle Scholar
  91. 91.
    Fernlund, P.: Structure of a Light-Adapting Hormone from the Shrimp, Pandalus borealis. Biochem. Biophys. Acta 439, 17 (1976).CrossRefGoogle Scholar
  92. 92.
    Fernlund, P., and L. Josefsson: Crustacean Color-change Hormone: Amino Acid Sequence and Chemical Synthesis. Science 177, 173 (1972).CrossRefGoogle Scholar
  93. 93.
    Feyereisen, R.: Regulation of Juvenile Hormone Titre: Synthesis. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G.A. Kerkut and L.I. Gilbert, eds.), Vol. 7, pp. 391–429. Oxford: Pergamon Press. 1985.Google Scholar
  94. 94.
    Feyereisen, R., and S.S. Tobe: A rapid Partition Assay for Routine Analysis of Juvenile Hormone Release by Insect Corpora Allata. Anal. Biochem. 111, 372 (1981).CrossRefGoogle Scholar
  95. 95.
    Fonagy, A., S. Matsumoto, L. Schoofs, A. De Loof, and T. Mitsui: In vivo and in vitro Pheromonotropic Activity of Two Locustatachykinin Peptides in Bombyx mori. Biosci. Biotechnol. Biochem. 56, 1692 (1992).CrossRefGoogle Scholar
  96. 96.
    Fonagy A., L. Schoofs, S. Matsumoto, A. de Loof and T. Mitsui: Functional Cross-Reactivities of Some Locustamyotropins and Bombyx Pheromone Biosynthesis Activating Neuropeptide. J. Insect Physiol. 38, 651 (1992).CrossRefGoogle Scholar
  97. 97.
    Fonagy, A., L. Schoofs, P. Proost, J. Van Damme, H. Bueds, and A. De Loof: Isolation, Primary Structure and Synthesis of Neomyosuppressin, a Myoinhibiting Neuropeptide from the Grey Fleshfly, Neobellieria bullata. Comp. Biochem. Physiol. 102C, 239 (1992).Google Scholar
  98. 98.
    Fonagy, A., L. Schoofs, P. Proost, J. Van Damme, and A. De Loof: Isolation and Primary Structure of Two Sulfakinin-Like Peptides from the Fleshfly, Neobellieria bullata. Comp. Biochem. Physiol. 103C, 135 (1992).Google Scholar
  99. 99.
    Ford, M.M., T.K. Hayes, and L.L. Keeley: Structure-activity Relationships for Insect Hypertrehalosaemic Hormone: The Importance of Side Chains and Termini. In: Peptides, Chemistry and Biology (G.R. Marshall, ed.), pp 653–655. Leiden: Escom Press. 1988Google Scholar
  100. 100.
    Fournier, B., and J. Girardie: A New Function for the Locust Neuroparsins: Stimulation of Water Reabsorption. J. Insect Physiol. 34, 309 (1988).CrossRefGoogle Scholar
  101. 101.
    Fox, A.M., and S.E. Reynolds: The Pharmacology of the Lipid-Mobilizing Response to Adipokinetic Hormone Family Peptides in the Moth, Manduca sexta. J. Insect Physiol. 37, 373 (1991).CrossRefGoogle Scholar
  102. 102.
    Furuya, K., S. Liao, S.E. Reynolds, R.B. Ota, M. Hackett, and D.A. Schooley: Isolation and Identification of a Cardioactive Peptide from Tenebrio molitor and Spodoptera eridania. Biol. Chem. Hoppe-Seyler 374, 1065 (1993).CrossRefGoogle Scholar
  103. 103.
    Furuya, K., R.B. Ota, S.E. Reynolds, D.A. Schooley, R. Troetschler, and S.J. Kramer: Development of an Enzyme-Linked Immunosorbent Assay for a Diuretic Hormone of Manduca sexta. Proc. 2nd Int. Symp. Mol. Insect Sci., Flagstaff, p. 65 (1993).Google Scholar
  104. 104.
    Gäde, G.: Relative Hypertrehalosaemic Activities of Naturally Occurring Neuropeptides from the AKH/RPCH Family. Z. Naturforsch. 41c, 315 (1986).Google Scholar
  105. 105.
    Gäde, G.: Isolation, Physiological Characterization, Release and Sequence Elucidation of a Hypertrehalosaemic Neuropeptide from the Corpus Cardiacum of the Stick Insect, Sipyloidea sipylus. Physiol. Entomol. 14, 405 (1989).CrossRefGoogle Scholar
  106. 106.
    Gäde, G.: The Adipokinetic Hormone/Red Pigment-Concentrating Hormone Peptide Family: Structures, Interrelationships and Functions. J. Insect Physiol. 36, 1 (1990).CrossRefGoogle Scholar
  107. 107.
    Gäde, G.: Extraction, Purification and Sequencing of Adipokinetic/Red Pigment-Concentrating Hormone-Family Peptides. In: Chromatography and Isolation of Insect Hormones and Pheromones (A.R. McCaffery and I.D. Wilson, eds), pp. 165–182. New York: Plenum Press, 1990.CrossRefGoogle Scholar
  108. 108.
    Gäde, G.: The Putative Ancestral Peptide of the Adipokinetic/Red-Pigment-Concentrating Hormone Family Isolated and Sequenced from a Dragonfly. Biol. Chem. Hoppe-Seyler 371, 475 (1990).CrossRefGoogle Scholar
  109. 109.
    Gäde, G.: Structure-Function Studies on Hypertrehalosaemic and Adipokinetic Hormones: Activity of Naturally Occurring Analogues and Some N-and C-Terminally Modified Analogues. Physiol. Entomol. 15, 299 (1990).CrossRefGoogle Scholar
  110. 110.
    Gäde, G.: The Adipokinetic Neuropeptide of Mantodea: Sequence Elucidation and Evolutionary Relationships. Biol. Chem. Hoppe-Seyler 372, 193 (1991).CrossRefGoogle Scholar
  111. 111.
    Gäde, G.: A Unique Charged Tyrosine-Containing Member of the Adipokinetic Hormone/Red-Pigment-Concentrating Hormone Peptide Family Isolated and Sequenced from Two Beetle Species. Biochem. J. 275, 671 (1991).Google Scholar
  112. 112.
    Gäde, G.: The Hormonal Integration of Insect Flight Metabolism. Zool. Jb. Physiol. 96, 211 (1992).Google Scholar
  113. 113.
    Gäde, G.: Isolation and Structure Elucidation of Neuropeptides of the AKH/RPCH family in Long-Horned Grasshoppers (Ensifera). Biol. Chem. Hoppe-Seyler 373, 1169 (1992).CrossRefGoogle Scholar
  114. 114.
    Gäde, G.: Structure-Activity Relationships for the Carbohydrate-Mobilizing Action of Further Bioanalogues of the Adipokinetic Hormone/Red Pigment-Concentrating Hormone Family of Peptides. J. Insect Physiol. 38, 259 (1992).CrossRefGoogle Scholar
  115. 115.
    Gäde, G.: Structure-Activity Relationships for the Lipid-Mobilizing Action of Further Bioanalogues of the Adipokinetic Hormone/Red Pigment-Concentrating Hormone Family of Peptides. J. Insect Physiol. 39, 375 (1993).CrossRefGoogle Scholar
  116. 116.
    Gäde, G.: Isolation and Structure Elucidation of a Neuropeptide from Three Species of Namib Desert Tenebrionid Beetles. S. Afr. J. Zool. 29, 11 (1994).Google Scholar
  117. 117.
    Gäde, G.: Functional and Evolutionary Aspects of Peptides of the AKH/RPCH Family: the Odonata and Dictyoptera Story. In: Insects: Chemical, Physiological and Environmental Aspects (D. Konopinska, ed.), pp. 28–34. Wroclaw: Wroclaw University Press. 1995.Google Scholar
  118. 118.
    Gäde, G.: Isolation and Identification of AKH/RPCH Family Peptides in Blister Beetles (Meloidae). Physiol. Entomol. 20, 45 (1995).CrossRefGoogle Scholar
  119. 119.
    Gäde, G., G.J. Goldsworthy, G. Kegel, and R. Keller: Single Step Purification of Locust Adipokinetic Hormones I and II by Reversed-Phase High-Performance Liquid Chromatography and the Amino-Acid Composition of the Hormone II. Hoppe-Seyler’s Z. Physiol. Chem. 365, 393 (1984).CrossRefGoogle Scholar
  120. 120.
    Gäde, G., G.J. Goldsworthy, M.H. Schaffer, J.C. Cook and K.L. Rinehart, Jr.: Sequence Analyses of Adipokinetic Hormones II from Corpora Cardiaca of Schistocerca nitans, Schistocerca gregaria ,and Locusta migratoria by Fast Atom Bombardment Mass Spectrometry. Biochem. Biophys. Res. Comm. 134, 723 (1986).CrossRefGoogle Scholar
  121. 121.
    Gäde, G., and T.K. Hayes: Structure-activity Relationships for Periplaneta americana Hypertrehalosaemic Hormone I: the Importance of Side Chains and Termini. Peptides 16, 1173 (1995).CrossRefGoogle Scholar
  122. 122.
    Gäde, G., C. Hilbich, K. Beyreuther and K.L. Rinehart: Sequence Analyses of Two Neuropeptides of the AKP/RPCH-Family from the Lubber Grasshopper, Romalea microptera. Peptides 9, 681 (1988).CrossRefGoogle Scholar
  123. 123.
    Gäde, G., and M.P.-E. Janssens: Cicadas Contain Novel Members of the AKH/RPCH Family Peptides with Hypertrehalosaemic Activity. Biol. Chem. Hoppe-Seyler 375, 803 (1994).CrossRefGoogle Scholar
  124. 124.
    Gäde, G., M.P.-E. Janssens and R. Kellner: A Novel Peptide in the AKH/RPCH Family Isolated from the Corpora Cardiaca of the Emperor Dragonfly, Anax Imperator. Peptides 15, 1 (1994).CrossRefGoogle Scholar
  125. 125.
    Gäde, G., and R. Kellner: The Metabolic Neuropeptides of the Corpus Cardiacum from the Potato Beetle and the American Cockroach are Identical. Peptides 10, 1287 (1989).CrossRefGoogle Scholar
  126. 126.
    Gäde, G., and R. Kellner: Primary Structures of the Hypertrehalosemic Peptides from Corpora Cardiaca of the Primitive Cockroach Polyphaga aegyptiaca. Gen. Comp. Endocrin. 86, 119 (1992).CrossRefGoogle Scholar
  127. 127.
    Gäde, G., and R. Kellner: Isolation and Primary Structure of a Novel Adipokinetic Peptide from the Pyrgomorphid grasshopper, Phymateus leprosus. Regul. Pept. 57, 247 (1995).CrossRefGoogle Scholar
  128. 128.
    Gäde, G., R. Kellner, K.L. Rinehart, and M.L. Proefke: A Tryptophan-substituted Member of the AKH/RPCH Family Isolated from a Stick Insect Corpus Cardiacum. Biochem. Biophys. Res. Comm. 189, 1303 (1992).CrossRefGoogle Scholar
  129. 129.
    Gäde, G., A. Lopata, R. Kellner, and K.L. Rinehart: Primary Structures of Neuropeptides Isolated from the Corpora Cardiaca of Various Cetonid Beetle Species Determined by Pulsed-liquid Phase Sequencing and Tandem Fast Atom Bombardment Mass Spectrometry. Biol. Chem. Hoppe-Seyler 373, 133 (1992).CrossRefGoogle Scholar
  130. 130.
    Gäde, G., S.E. Reynolds, and J.R. Beeching: Molecular Evolution of Peptides of the AKH/RPCH family. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 119–128. Ottawa: National Research Council of Canada. 1994.Google Scholar
  131. 131.
    Gäde, G., and K.L. Rinehart, Jr.: Amino Acid Sequence of a Hypertrehalosaemic Neuropeptide from the Corpus Cardiacum of the Cockroach, Nauphoeta cinerea. Biochem. Biophys. Res. Comm. 141, 774 (1986).CrossRefGoogle Scholar
  132. 132.
    Gäde, G., and K.L. Rinehart: Primary Sequence Analysis by Fast Atom Bombardment Mass Spectrometry of a Peptide with Adipokinetic Activity from the Corpora Cardiaca of the Cricket Gryllus bimaculatus. Biochem. Biophys. Res. Comm. 149, 908 (1987).CrossRefGoogle Scholar
  133. 133.
    Gäde, G., and K.L. Rinehart, Jr.: Primary Structure of the Hypertrehalosaemic Factor II from the Corpus Cardiacum of the Indian Stick Insect, Carausius morosus ,Determined by Fast Atom Bombardment Mass Spectrometry. Biol. Chem. Hoppe-Seyler 368, 67 (1987).CrossRefGoogle Scholar
  134. 134.
    Gäde, G., and K.L. Rinehart: Primary Structures of Hypertrehalosaemic Neuropeptides Isolated from the Corpora Cardiaca of the Cockroaches Leucophaea maderae, Gromphadorhina portentosa ,Blattella germanica and Blatta orientalis and of the Stick Insect Extatosoma tiaratum Assigned by Tandem Fast Atom Bombardment Mass Spectrometry. Biol. Chem. Hoppe-Seyler 371, 345 (1990).CrossRefGoogle Scholar
  135. 135.
    Gäde, G., and G. Rosinski: The Primary Structure of the Hypertrehalosaemic Neuropeptide from Tenebrionid Beetles: a Novel Member of the AKH/RPCH-Family. Peptides 11, 455 (1990).CrossRefGoogle Scholar
  136. 136.
    Gäde, G., H. Wilps, and R. Kellner: Isolation and Structure of a Novel Charged Member of the Red-Pigment-Concentrating Hormone-Adipokinetic Hormone Family of Peptides Isolated from the Corpora Cardiaca of the Blowfly Phormia terraenovae (Diptera). Biochem. J. 269, 309 (1990).Google Scholar
  137. 137.
    Gaus, G., L.H. Kleinholz, G. Kegel, and R. Keller: Isolation and Characterization of Red Pigment-Concentrating Hormone (RPCH) from Six Crustacean Species. J. Comp. Physiol. 160B, 373 (1990).Google Scholar
  138. 138.
    Gazit, Y., E. Dunkelblum, O. Ben-Aziz, and M. Altstein: Immunochemical and Biological Analysis of Pheromone Biosynthesis Activating Neuropeptide in Heliothis peltigera. Arch. Insect Biochem. Physiol. 19, 247 (1992).CrossRefGoogle Scholar
  139. 139.
    Gilbert, L.I., and T.A. Miller (eds.): Immunological Techniques in Insect Biology. New York: Springer. 1988.Google Scholar
  140. 140.
    Girardie, J.: Molecular Approaches to Study Invertebrate Hormones, with Particular Reference to Insects. Netherlands J. Zool. 45, 10 (1995).CrossRefGoogle Scholar
  141. 141.
    Girardie, J., D. BourÊme, F. Couillard, M. Tamarelle, and A. Girardie: Anti-Juvenile Effect of Neuroparsin-A, a Neuroprotein Isolated from Locust corpora cardiaca. Insect Biochem 17, 977 (1987).CrossRefGoogle Scholar
  142. 142.
    Girardie, J., A. Girardie, J.-C. Huet, and J.-C. Pernollet: Amino Acid Sequence of Locust Neuroparsins. FEBS Letters 245, 4 (1989).CrossRefGoogle Scholar
  143. 143.
    Girardie, J., J.-C. Huet, and J.-C. Pernollet: The Locust Neuroparsin A: Sequence and Similarities with Vertebrate and Insect Polypeptide Hormones. Insect Biochem. 20, 659 (1990).CrossRefGoogle Scholar
  144. 144.
    Girardie, J., O. Richard, J.-C. Huet, C. Nespoulous, A. van Dorsselaer, and J.-C. Pernollet: Physical Characterization and Sequence Identification of the Ovary Maturating Parsin. A New Neurohormone Purified from the Nervous Corpora Cardiaca of the African Locust (Locusta migratoria migratorioides). Eur. J. Biochem. 202, 1121 (1991).CrossRefGoogle Scholar
  145. 145.
    Gokuldas, M., P.A. Hunt, and D.J. Candy: The Inhibition of Lipid Synthesis in vitro in the Locust Schistocerca gregaria by Factors from the Corpora Cardiaca. Physiol. Entomol. 13, 43 (1988).CrossRefGoogle Scholar
  146. 146.
    Goldsworthy, G.J.: The Endocrine Control of Flight Metabolism in Locusts.In: Advances in Insect Physiology (M.J. Berridge, J.E. Treherne, and V.B. Wigglesworth, eds.), pp. 149–204. New York: Academic Press. 1983.Google Scholar
  147. 147.
    Goldsworthy, G.J.: Hormonal Control of Flight Metabolism in Locusts. In: Biology of Grasshoppers (R.F. Chapman and A. Joern, eds.), pp. 205–225. New York: John Wiley &Sons, Inc. 1990.Google Scholar
  148. 148.
    Goldsworthy, G.J.: Adipokinetic Hormones of Insects: are they the Insect Glucagons? In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 486–492. Ottawa: National Research Council of Canada. 1994.Google Scholar
  149. 149.
    Goldsworthy, G.J., G.M. Coast, C.H. Wheeler, O. Cusinato, I. Kay, and B. Khambay: The Structure and Functional Activity of Neuropeptides. In: Proceedings of Royal Entomological Society Symposium on Insect Molecular Science (J.M. Crampton and P. Eggleston, eds.), pp. 205–225. London and San Diego: Academic Press. 1992.Google Scholar
  150. 150.
    Goldsworthy, G.J., K. Mallison, and C.H. Wheeler: The Relative Potencies of Two Known Locust Adipokinetic Hormones. J. Insect Physiol. 32, 95 (1986).CrossRefGoogle Scholar
  151. 151.
    Goldsworthy, G.J., K. Mallison, C.H. Wheeler, and G. Gäde: Relative Adipokinetic Activities of Members of the Adipokinetic Hormone/Red Pigment Concentrating Hormone Family. J. Insect Physiol. 32, 433 (1986).CrossRefGoogle Scholar
  152. 152.
    Gooding, R.H.: Physiological Aspects of Digestion of the Blood Meal by Aedes aegypti (L.) and Culex fatigans Wiedemann. J. Med. Entomol. 3, 53 (1966).Google Scholar
  153. 153.
    Gray, R.S., D.P. Muehleisen, E.J. Katahira, and W.E. Bollenbacher: The Prothoracicotropic Hormone (PTTH) of the Commercial Silkmoth, Bombyx mori ,in the CNS of the Tobacco Hornworm, Manduca sexta. Peptides 15, 777 (1994).CrossRefGoogle Scholar
  154. 154.
    Gray, A.S., R.H. Osborne, and P.J. Jewess: Pharmacology of Proctolin Receptors in the Isolated Foregut of the Locust Schistocerca gregaria-Identification of [α-Methyl-L-Tyrosine2]-Proctolin as a Potent Receptor Antagonist. J. Insect Physiol. 40, 595 (1994).CrossRefGoogle Scholar
  155. 155.
    Hanström, B.: Hormones in Invertebrates. Oxford: Oxford University Press. 1939.Google Scholar
  156. 156.
    Hayashi, H., M. Nakano, Y. Shibanaka, and N. Fujita: Expression of a Silkworm Eclosion Hormone Gene in Yeast. Biochem. Biophys. Res. Comm. 173, 1065 (1990).CrossRefGoogle Scholar
  157. 157.
    Hayes, T.K., X.-C. Guan, V. Johnson, A. Strey, and S.S. Tobe: Structure-Activity Studies of Allatostatin 4 on the Inhibition of Juvenile Hormone Biosynthesis by Corpora Allata: the Importance of Individual Side Chains and Stereochemistry. Peptides 15, 1165 (1994).CrossRefGoogle Scholar
  158. 158.
    Hayes, T.K., G.M. Holman, T.L. Pannabecker, M.S. Wright, A.A. Strey, R.J. Nachman, D.F. Hoel, J.K. Olson, and K.W. Beyenbach: Culekinin Depolarizing Peptide: a Mosquito Leucokinin-Like Peptide that Influences Insect Malpighian Tubule Ion Transport. Regul. Pept. 52, 235 (1994).CrossRefGoogle Scholar
  159. 159.
    Hayes, T.K., and L.L. Keeley: Structure-Activity Relationships on Hyperglycemia by Representatives of the Adipokinetic/Hyperglycemic Hormone Family in Blaberus discoidalis Cockroaches. J. Comp. Physiol. 160B, 187 (1990).Google Scholar
  160. 160.
    Hayes, T.K., L.L. Keeley, and D.W. Knight: Insect Hypertrehalosemic Hormone: Isolation and Primary Structure from Blaberus discoidalis Cockroaches. Biochem. Biophys. Res. Comm. 140, 674 (1986).CrossRefGoogle Scholar
  161. 161.
    Hayes, T.K., T.L. Pannabecker, D.J. Hinckley, G.M. Holman, R.J. Nachman, D.H. Petzel, and K.W. Beyenbach: Leucokinins, a New Family of Ion Transport Stimulators and Inhibitors in Insect Malpighian Tubules. Life Sci. 44, 1259 (1989).CrossRefGoogle Scholar
  162. 162.
    Hekimi, S., and M. O’Shea: Antisera Against AKHs and AKH Precursors for Experimental Studies of an Insect Neurosecretory System. Insect Biochem. 19, 79 (1989).CrossRefGoogle Scholar
  163. 163.
    Hermodson, M.A.: A Short History of Protein Sequence Analysis. In: Laboratory Methodology in Biochemistry. Amino Acid Analysis and Protein Sequencing (C. Fini, A. Floridi, V.N. Finelli, and B. Wittman-Liebold, eds.), pp. 1–8. Boca Raton, Florida, U.S.A: CRC Press Inc. 1990.Google Scholar
  164. 164.
    Hershey, A.D., L. Polenzani, R.M. Woodward, R. Milledi, and J.E. Krause: Molecular and Genetic Characterization, Functional Expression, and mRNA Expression Patterns of a Rat Substance P Receptor. Ann. NY Acad. Sci. 632, 63 (1991).CrossRefGoogle Scholar
  165. 165.
    Hetru, C., K.W. Li, P. Bulet, M. Lagueux, and J.A. Hoffmann: Isolation and Structural Characterization of an Insulin-Related Molecule, a Predominant Neuropeptide from Locusta migratoria. Eur. J. Biochem. 201, 495 (1991).CrossRefGoogle Scholar
  166. 166.
    Hietter, H., A. van Dorsselaer, B. Green, L. Denoroy, J. Hoffman, and B. Luu: Isolation and Structure Elucidation of a Novel 5-kDa Peptide from Neurohaemal Lobes of the corpora cardiaca of Locusta migratoria (Insecta, Orthoptera). Eur. J. Biochem. 187, 241 (1990).CrossRefGoogle Scholar
  167. 167.
    Hietter, H., A. van Dorsselaer, and B. Luu: Characterization of three Structurally Related 8–9 kDa Monomeric Peptides Present in the corpora cardiaca of Locusta: a Revised Structure for the Neuroparsins. Insect Biochem. 21, 259 (1991).CrossRefGoogle Scholar
  168. 168.
    Hofsteenge, J., D.R. Müller, T. de Beer, A. LÖFFLER, W.J. Richter, and J.F.G. Vliegenthart: New Type of Linkage between a Carbohydrate and a Protein: C-Glycosylation of a Specific Tryptophan Residue in Human RNase Us. Biochemistry 33, 13524 (1994).CrossRefGoogle Scholar
  169. 169.
    Holman, G.M., and B.J. Cook: Pharmacological Properties of Excitatory Neuromuscular Transmission in the Hindgut of the Cockroach, Leucophaea maderae. J. Insect Physiol. 16, 1891 (1970).CrossRefGoogle Scholar
  170. 170.
    Holman, G.M., B.J. Cook, and R.J. Nachman: Isolation, Primary Structure and Synthesis of Two Neuropeptides from Leucophaea maderae: Members of a New Family of Cephalomyotropins. Comp. Biochem. Physiol. 84C, 205 (1986).Google Scholar
  171. 171.
    Holman, G.M., B.J. Cook, and R.J. Nachman: Isolation, Primary Structure and Synthesis of Two Additional Neuropeptides from Leucophaea maderae: Members of a New Family of Cephalomyotropins. Comp. Biochem. Physiol. 84C, 271 (1986).Google Scholar
  172. 172.
    Holman, G.M., B.J. Cook, and R.J. Nachman: Isolation, Primary Structure and Synthesis of a Blocked Myotropic Neuropeptide Isolated from the Cockroach, Leucophaea maderae. Comp. Biochem. Physiol. 85C, 219 (1986).Google Scholar
  173. 173.
    Holman, G.M., B.J. Cook, and R.J. Nachman: Isolation, Primary Structure and Synthesis of Leucomyosuppressin, an Insect Neuropeptide which Inhibits Spontaneous Contractions of the Cockroach Hindgut. Comp. Biochem. Physiol. 85C, 329 (1986).Google Scholar
  174. 174.
    Holman, G.M., B.J. Cook, and R.J. Nachman: Isolation, Primary Structure and Synthesis of Leucokinins V and VI: Myotropic Peptides of Leucophaea maderae. Comp. Biochem. Physiol. 88C, 27 (1987).Google Scholar
  175. 175.
    Holman, G.M., B.J. Cook, and R.J. Nachman: Isolation, Primary Structure and Synthesis of Leucokinins of VII and VIII: the Final Members of this New Family of Cephalomyotropic Peptides Isolated from Head Extracts of Leucophaea maderae: Comp. Biochem. Physiol. 88C, 31 (1987).Google Scholar
  176. 176.
    Holman, G.M., R.J. Nachman, L. Schoofs, T.K. Hayes, M.S. Wright, and A. de Loof: The Leucophaea maderae Hindgut Preparation: a Rapid and Sensitive Bioassay Tool for the Isolation of Insect Myotropins of Other Insect Species. Insect Biochem. 21, 107 (1991).CrossRefGoogle Scholar
  177. 177.
    Holman, G.M., R.J. Nachman, and M.S. Wright: A Strategy for the Isolation and Structural Characterization of Certain Insect Myotropic Peptides that Modify the Spontaneous Contractions of the Isolated Cockroach Hindgut. In: Chromatography and Isolation of Insect Hormones and Pheromones (A.R. McCaffery and I.D. Wilson, eds), pp. 195–204. New York: Plenum Press. 1990.CrossRefGoogle Scholar
  178. 178.
    Holman, G.M., R.J. Nachman, M.S. Wright, L. Schoofs, T.K. Hayes, and A. de Loof: Insect Myotropic Peptides. Isolation, Structural Characterization, and Biological Activities. In: Insect Neuropeptides: Chemistry, Biology, and Action ACS Symposium Series No. 453. (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), pp. 40–50. Washington, D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  179. 179.
    Holwerda, D.A., J. van Doorn, and A.M.Th. Beenakkers: Characterization of the Adipokinetic and Hyperglycemic Substances from the Locust Corpus Cardiacum. Insect Biochem. 7, 151 (1977).CrossRefGoogle Scholar
  180. 180.
    Homberg, U., N.T. Davis, and J.G. Hildebrand: Peptide Immunocytochemistry of Neurosecretory Cells in the Brain and Retrocerebral Complex of the Sphinx Moth Manduca sexta. J. Comp. Neurol. 303, 35 (1991).CrossRefGoogle Scholar
  181. 181.
    Homberg, U., S. Würden, H. Dircksen and K.R. Rao: Comparative Anatomy of Pigment-Dispersing Hormone-Immunoreactive Neurons in the Brain of Orthopteroid Insects. Cell Tissue Res. 266, 343 (1991).CrossRefGoogle Scholar
  182. 182.
    Horne, T.J., D.G. Doak, R.C. Rayne, G. Balacco, M. O’Shea, and I.D. Campbell: A Model for the Structure of a Homodimeric Prohormone: the Precursor to the Locust Neuropeptide AKH I. Proteins: Structure, Function and Genetics 20, 356 (1994).CrossRefGoogle Scholar
  183. 183.
    Horodyski, F.M., L.M. Riddiford, and J.W. Truman: Isolation and Expression of the Eclosion Hormone Gene from the Tobacco Hornworm, Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 86, 8123 (1989).CrossRefGoogle Scholar
  184. 184.
    Huesmann, G.R., C.C. Cheung, P.K. Loi, T.D. Lee, K.M. Swiderek, and N.J. Tublitz: Amino Acid Sequence of CAP2b, an Insect Cardioacceleratory Peptide from the Tobacco Hawkmoth Manduca sexta. FEBS Lett 371, 311 (1995).CrossRefGoogle Scholar
  185. 185.
    Imai, K., T. Konno, Y. Nakazawa, T. Komiya, M. Isobe, K. Koga, T. Goto, T. Yaginuma, K. Sakakibara, K. Hasegawa, and O. Yamashita: Isolation and Structure of Diapause Hormone of the Silkworm, Bombyx mori ,Proc. Japan Acad. 67B, 98 (1991).Google Scholar
  186. 186.
    Isaac, R.E.: Proctolin Degradation by Membrane Peptidases from Nervous Tissues of the Desert Locust (Schistocerca gregaria). Biochem J. 245, 365 (1987).Google Scholar
  187. 187.
    Isaac, R.E.: Neuropeptide-Degrading Endopeptidase Activity of Locust (Schistocerca gregaria) Synaptic Membranes. Biochem. J. 255, 843 (1988).Google Scholar
  188. 188.
    Ishibashi, J., H. Kataoka, H. Nagasawa, A. Isogai, and A. Suzuki: Isolation and Identification of Adipokinetic Hormone of the Silkworm, Bombyx mori. Biosci. Biotech. Biochem. 56, 66 (1992).CrossRefGoogle Scholar
  189. 189.
    Ishizaki, H., A. Mizoguchi, M. Fujishita, A. Suzuki, I. Moriya, H. O’oka, H. Kataoka, A. Isogai, H. Nagasawa, S. Tamura, and A. Suzuki: Species Specificity of the Insect Prothoracicotropic Hormone (PTTH): the Presence of Bombyx- and Samia-Specific PTTHs in the Brain of Bombyx mori. Dev. Growth Diff. 25,593 (1983).CrossRefGoogle Scholar
  190. 190.
    Ishizaki, H., and A. Suzuki: Brain Secretory Peptides of the Silkmoth Bombyx mori: Prothoracicotropic Hormone and Bombyxin. In: Progress in Brain Research (J. Joosse, R.M. Buus, and F.J.H. Tilders, eds.) Vol. 92, pp. 1–14. Amsterdam: Elsevier Science Publishers B.V. 1992.Google Scholar
  191. 191.
    Ishizaki, H., A. Suzuki, I. Moriya, A. Mizoguchi, M. Fujishita, H. O’oka, H. Kataoka, A. Isogai, H. Nagasawa, and A. Suzuki: Prothoracicotropic Hormone Bioassay: Pupal-Adult Bombyx assay. Dev. Growth Diff. 25, 585 (1983).CrossRefGoogle Scholar
  192. 192.
    Isobe, M., and T. Goto: Diapause hormone. In: Neurohormonal Techniques in Insects (T.A. Miller, ed.), pp. 216–243. Berlin: Springer. 1980.CrossRefGoogle Scholar
  193. 193.
    IsoBE, M., K. Hasegawa, and T. Goto: Isolation of the Diapause Hormone from the Silkworm, Bombyx mori. J. Insect Physiol. 19, 1221 (1973).CrossRefGoogle Scholar
  194. 194.
    Isobe, M., K. Hasegawa, and T. Goto: Further Characterization of the Silkworm Diapause Hormone A. J. Insect Physiol. 21, 1917 (1975).CrossRefGoogle Scholar
  195. 195.
    Iverson, L.L.: What next? Trends Neurosci. 6, 293 (1983).CrossRefGoogle Scholar
  196. 196.
    Iwami, M., T. Adachi, H. Kondo, A. Kawakami, Y. Suzuki, H. Nagasawa, A. Suzuki, and H. Ishizaki: A Novel Family C of the Genes that Encode Bombyxin, an Insulin-Related Brain Secretory Peptide of the Silkmoth, Bombyx mori: Isolation and Characterization of Gene C-l. Insect Biochem. 20, 295 (1990).CrossRefGoogle Scholar
  197. 197.
    Iwami, M., A. Kawakami, H. Ishizaki, S.Y. Takahashi, T. Adachi, Y. Suzuki, H. Nagasawa, and A. Suzuki: Cloning of a Gene Encoding Bombyxin, an Insulin-Like Brain Secretory Peptide of the Silkmoth Bombyx mori with Prothoracicotropic Activity. Dev. Growth Diff. 31, 31 (1989).CrossRefGoogle Scholar
  198. 198.
    Jaffe, H., A.K. Raina, C.T. Riley, B.A. Fraser, T.G. Bird, C.-M. Tseng, Y.-S. Zhang, and D.K. Hayes: Isolation and Primary Structure of a Neuropeptide Hormone from Heliothis zea with Hypertrehalosemic and Adipokinetic Activities. Biochem. Biophys. Res. Comm. 155, 344 (1988).CrossRefGoogle Scholar
  199. 199.
    Jaffe, H., A.K. Raina, C.T. Riley, B.A. Fraser, G.M. Holman, R.M. Wagner, R.L. Ridgway, and D.K. Hayes: Isolation and Primary Structure of a Peptide from the Corpora Cardiaca of Heliothis zea with Adipokinetic Activity. Biochem. Biophys. Res. Comm. 135, 622 (1986).CrossRefGoogle Scholar
  200. 200.
    Jaffe, H., A.K. Raina, C.T. Riley, B.A. Fraser, R.J. Nachman, V.W. Vogel, Y.-S. Zhang, and D.K. Hayes: Primary Structure of Two Neuropeptide Hormones with Adipokinetic and Hypotrehalosemic Activity Isolated from the Corpora Cardiaca of Horse Flies (Diptera). Proc. Natl. Acad. Sci. USA 86, 8161 (1989).CrossRefGoogle Scholar
  201. 201.
    Jaffe, H., A.K. Raina, R.M. Wagner, H.M. Fales, T.G. Kempe, P. Keim, R.W. Blacker, and C.T. Riley: Pheromone Biosynthesis-Activating Neuropeptide Hormone of Heliothis zea. Isolation and Characterization In: Insect Neuropeptides. Chemistry, Biology, and Action ACS Symposium Series No. 453. (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), pp. 215–225. Washington, D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  202. 202.
    Janssens, M.P.-E., R. Kellner, and G. Gäde: A Novel Adipokinetic Octapeptide Found in the Damselflies Pseudagrion inconspicuum and Ischnura senegalensis. Biochem. J. 302, 539 (1994).Google Scholar
  203. 203.
    Jaros, P.P., and G. Gäde: Evidence for a Crustacean Hyperglycemic Hormone-Like Molecule in the Nervous System of the Stick Insect, Carausius morosus. Cell Tissue Res. 227, 555 (1982).CrossRefGoogle Scholar
  204. 204.
    Jhoti, H., A.N. McLeod, T.L. Blundell, H. Ishizaki, H. Nagasawa, and A. Suzuki: Prothoracicotropic Hormone has an Insulin-Like Tertiary Structure. FEBS Lett. 219, 419 (1987).CrossRefGoogle Scholar
  205. 205.
    Jurenka, R.A., E. Jacquin, and W.L. Roelofs: Control of the Pheromone Biosynthetic Pathway in Helicoverpa zea by the Pheromone Biosynthesis Activating Neuropeptide. Arch. Insect Biochem. Physiol. 17, 81 (1991).CrossRefGoogle Scholar
  206. 206.
    Kadono-Okuda, K., M. Yamamoto, Y. Higashino, K. Taniai, Y. Kato, S. Chowdhury, J. Xu, S.K. Choi, M. Sugiyama, K. Nakashima, S. Maeda, and M. Yamakawa: Baculovirus-Mediated Production of the Human Growth Hormone in Larvae of the Silkworm, Bombyx mori. Biochem. Biophys. Res. Comm. 213, 389 (1995).CrossRefGoogle Scholar
  207. 207.
    Kamito, T., H. Tanaka, B. Sato, H. Nagasawa, and A. Suzuki: Nucleotide Sequence of cDNA for the Eclosion Hormone of the Silkworm, Bombyx mori ,and the Expression in a Brain. Biochem. Biophys. Res. Comm. 182, 514 (1992).CrossRefGoogle Scholar
  208. 208.
    Karlson, P., and M. Lüscher: Pheromones: a New Term for a Class of Biologically Active Substances. Nature 183, 55 (1959).CrossRefGoogle Scholar
  209. 209.
    Kataoka, H., J.P. Li, A.S.T. Lui, S.J. Kramer, and D.A. Schooley: Complete Structure of Eclosion Hormone of Manduca sexta. Assignment of Disulfide Bond Location. Int. J. Peptide Protein Res. 39, 29 (1992).CrossRefGoogle Scholar
  210. 210.
    Kataoka, H., H. Nagasawa, A. Isogai, H. Ishizaki, and A. Suzuki: Prothoracicotropic Hormone of the Silkworm, Bombyx mori: Amino Acid Sequence and Dimeric Structure. Agric. Biol. Chem. 55, 73 (1991).CrossRefGoogle Scholar
  211. 211.
    Kataoka, H., H. Nagasawa, A. Isogai, S. Tamura, A. Mizoguchi, Y. Fujiwara, C. Suzuki, H. Ishizaki, and A. Suzuki: Isolation and Partial Characterization of a Prothoracicotropic Hormone of the Silkworm, Bombyx mori. Agric. Biol. Chem. 51, 1067 (1987).CrossRefGoogle Scholar
  212. 212.
    Kataoka, H., A. Toschi, J.P. Li, R.L. Carney, D.A. Schooley, and S.J. Kramer: Identification of an Allatotropin from Adult Manduca sexta. Science 243, 1481 (1989).CrossRefGoogle Scholar
  213. 213.
    Kataoka, H., R.G. Troetschler, S.J. Kramer, B.J. Cesarin, and D.A. Schooley: Isolation and Primary Structure of the Eclosion Hormone of the Tobacco Hornworm, Manduca sexta. Biochem. Biophys. Res. Comm. 146, 746 (1987).CrossRefGoogle Scholar
  214. 214.
    Kataoka, H., R.G., Troetschler, J.P. Li, S.J. Kramer, B.J. Cesarin, and D.A. Schooley: Isolation and Identification of a Diuretic Hormone from the Tobacco Hornworm moth, Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 86, 2976 (1989).CrossRefGoogle Scholar
  215. 215.
    Kawakami, A., M. Iwami, H. Nagasawa, A. Suzuki, and H. Ishizaki: Structure and Organization of Four Clustered Genes that Encode Bombyxin, an Insulin-Related Brain Secretory Peptide of the Silkmoth Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 86, 6843 (1989).CrossRefGoogle Scholar
  216. 216.
    Kawakami, A., H. Kataoka, T. Oka, A. Mizoguchi, M. Kimura-Kawakami, T. Adachi, M. Iwami, H. Nagasawa, A. Suzuki, and H. Ishizaki: Molecular Cloning of the Bombyx mori Prothoracicotropic Hormone. Science 247, 1333 (1990).CrossRefGoogle Scholar
  217. 217.
    Kawano, T., H. Kataoka, H. Nagasawa, A. Isogai, and A. Suzuki: cDNA Cloning and Sequence Determination of the Pheromone Biosynthesis Activating Neuropeptide of the Silkworm, Bombyx mori. Biochem. Biophys. Res. Comm. 189: 221 (1992).CrossRefGoogle Scholar
  218. 218.
    Kay, I., G.M. Coast, O. Cusinato, C.H. Wheeler, N.F. Totty, and G.J. Goldsworthy: Isolation and Characterization of a Diuretic Peptide from Acheta domesticus. Evidence for a Family of Insect Diuretic Peptides. Biol. Chem. Hoppe-Seyler 372, 505 (1991).CrossRefGoogle Scholar
  219. 219.
    Kay, I., M. Patel, G.M. Coast, N.F. Totty, A.I. Mallet, and G.J. Goldsworthy: Isolation, Characterization and Biological Activity of a CRF-Related Diuretic Peptide from Periplaneta americana L. Regul. Pept. 42, 111 (1992).CrossRefGoogle Scholar
  220. 220.
    Kay, L, C.H. Wheeler, G.M. Coast, N.F. Totty, O. Cusinato, M. Patel, and G.J. Goldsworthy: Characterisation of a Diuretic Peptide from Locusta migratoria. Biol. Chem. Hoppe-Seyler 372, 929 (1991).CrossRefGoogle Scholar
  221. 221.
    Keeley, L.L., J.Y. Bradfield, S.M. Sowa, Y.-H. Lee, and K.-H. Lu: Physiological Actions of Hypertrehalosemic Hormones in Cockroaches. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 475–485. Ottawa: National Research Council of Canada. 1994.Google Scholar
  222. 222.
    Keeley, L.L., and T.K. Hayes: Speculations on Biotechnology Applications for Insect Neuroendocrine Research. Insect Biochem. 17, 639 (1987).CrossRefGoogle Scholar
  223. 223.
    Keeley, L.L., S.M. Sowa, T.K. Hayes, and J.Y. Bradfield: Neuroendocrine and Juvenile Hormone Effects on Fat Body Protein Synthesis During the Reproductive Cycle in Female Blaberus discoidalis Cockroaches. Gen. Comp. Endocrinol. 72, 364 (1988).CrossRefGoogle Scholar
  224. 224.
    Kegel, G., B. Reichwein, C.P. Tenson, and R. Keller: Amino Acid Sequence of Crustacean Hyperglycaemic Hormone (CHH) from the Crayfish Orconectes limosus: Emergence of a Novel Neuropeptide Family. Neuropeptides 12, 909 (1991).Google Scholar
  225. 225.
    Kegel, G., B. Reichwein, S. Weese, G. Gaus, J. Peter-Katalinic, and R. Keller: Amino acid Sequence of the Crustacean Hyperglycaemic Hormone (CHH) from the Shore crab, Carcinus maenas. FEBS Lett. 255, 10 (1989).CrossRefGoogle Scholar
  226. 226.
    Kellner, R.: Chemical and Enzymatic Fragmentation of Proteins. In: Microcharacterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 11–27. Weinheim: VCH Verlagsgesellschaft. 1994.CrossRefGoogle Scholar
  227. 227.
    Kingan, T.G., M.B. Blackburn, and A.K. Raina: The Distribution of Pheromone-Biosynthesis-Activating Neuropeptide (PBAN) Immunoreactivity in the Central Nervous System of the Corn Earworm Moth, Helicoverpa zea. Cell Tissue Res. 270, 229 (1992).CrossRefGoogle Scholar
  228. 228.
    Kingan, T.G., D.B. Teplow, J.M. Phillips, J.P. Riehm, K.R. Rao, J.G. Hildebrand, U. Homberg, A.E. Kammer, I. Jardine, P.R. Griffin, and D.F. Hunt: A New Peptide in the FMRFamide Family Isolated from the CNS of the Hawkmoth, Manduca sexta. Peptides 11, 849 (1990).CrossRefGoogle Scholar
  229. 229.
    Kitamura, A., H. Nagasawa, H. Kataoka, T. Ando, and A. Suzuki: Amino Acid Sequence of Pheromone Biosynthesis Activating Neuropeptide-II (PBAN-II) of the Silkmoth, Bombyx mori. Agric. Biol. Chem. 54, 2495 (1990).CrossRefGoogle Scholar
  230. 230.
    Kitamura, A., H. Nagasawa, H. Kataoka, T. Inoue, T. Ando, and A. Suzuki: Amino Acid Sequence of Pheromone-Biosynthesis-Activating Neuropeptide (PBAN) of the Silkmoth, Bombyx mori. Biochem. Biophys. Res. Comm. 163, 520 (1989).CrossRefGoogle Scholar
  231. 231.
    Klein, J.M., C.J. Mohrherr, F. Sleutels, N. Jaenecke, J.P. Riehm, and K.R. Rao: A Highly Conserved Red Pigment-Concentrating Hormone Precursor in the Blue Crab Callinectes sapidus. Biochem. Biophys. Res. Comm. 212, 151 (1995).CrossRefGoogle Scholar
  232. 232.
    Kodrik, D., and G.J. Goldsworthy: Inhibition of RNA Synthesis by Adipokinetic Hormones and Brain Factor(s) in Adult Fat Body of Locusta migratoria. J. Insect Physiol. 41, 127 (1995).CrossRefGoogle Scholar
  233. 233.
    Konings, P.N.M., H.G.B. Vullings, R. Siebinga, J.H.B. Diederen, and W.F. Jansen: Serotonin-Immunoreactive Neurones in the Brain of Locusta migratoria Innervating the Corpus Cardiacum. Cell Tissue Res. 254, 147 (1988).CrossRefGoogle Scholar
  234. 234.
    Kono, T., A. Mizoguchi, H. Nagasawa, H. Ishizaki, H. Fugo, and A. Suzuki: A Monoclonal Antibody Against a Synthetic Carboxyl-Terminal Fragment of the Eclosion Hormone of the Silkworm, Bombyx mori: Characterization and Application to Immunohistochemistry and Affinity Chromatography. Zool. Sci. 7, 47 (1990).Google Scholar
  235. 235.
    Kono, T., H. Nagasawa, A. Isogai, H. Fugo, and A. Suzuki: Amino Acid Sequence of Eclosion Hormone of the Silkworm, Bombyx mori. Agric. Biol. Chem. 51, 2307 (1987).CrossRefGoogle Scholar
  236. 236.
    Kono, T., H. Nagasawa, A. Isogai, H. Fugo, and A. Suzuki: Isolation and Complete Amino Acid Sequences of Eclosion Hormones of the Silkworm, Bombyx mori. Insect Biochem. 21, 185 (1991).CrossRefGoogle Scholar
  237. 237.
    Kono, T., H. Nagasawa, H. Kataoka, A. Isogai, H. Fugo, and A. Suzuki: Eclosion Hormone of the Silkworm Bombyx mori. Expression in Escherichia coli and Location of Disulfide Bonds. FEBS Lett. 263, 358 (1990).Google Scholar
  238. 238.
    Konopinska, D., G. Rosinski, and W. Sobótka: Insect Peptide Hormones, an Overview of the Present Literature. Int. J. Peptide Protein Res. 39, 1 (1992).CrossRefGoogle Scholar
  239. 239.
    KopeČ, S.: Studies on the Necessity of the Brain for the Inception of Insect Metamorphosis. Biol. Bull. 42, 323 (1922).CrossRefGoogle Scholar
  240. 240.
    Kramer, S.J., A. Toschi, C.A. Miller, H. Kataoka, G.B. Quistad, J.P. Li, R.L. Carney, and D.A. Schooley: Identification of an Allatostatin from the Tobacco hornworm Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 88, 9458 (1991).CrossRefGoogle Scholar
  241. 241.
    Kromer, E., and M. Lagueux: Studies on Locusta Insulin Related Peptide. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 220–225. Ottawa: National Research Council of Canada. 1994.Google Scholar
  242. 242.
    Kromer-Metzger, E., and M. Lagueux: Expression of the Gene Encoding an Insulin-Related Peptide in Locusta (Insecta, Orthoptera). Evidence for Alternative Promoter Usage. Eur. J. Biochem. 221, 427 (1994).CrossRefGoogle Scholar
  243. 243.
    Kuniyoshi, H., H. Nagasawa, T. Ando, and A. Suzuki: N-terminal Modified Analogs of C-terminal Fragments of PBAN with Pheromonotropic Activity. Insect Biochem. Molec. Biol. 22, 399 (1992).CrossRefGoogle Scholar
  244. 244.
    Kuniyoshi, H., H. Nagasawa, T. Ando, A. Suzuki, R.J. Nachman, and G.M. Holman: Cross-activity between Pheromone Biosynthesis Activating Neuropeptide (PBAN) and Myotropic Pyrokinin Insect Peptides. Biosci. Biotechnol. Biochem. 56, 167 (1992).CrossRefGoogle Scholar
  245. 245.
    Lagueux, M., E. Kromer, and J. Girardie: Cloning of a Locusta cDNA Encoding Neuroparsin A. Insect Biochem. Molec. Biol. 22, 511 (1992).CrossRefGoogle Scholar
  246. 246.
    Lagueux, M., L. Lwoff, M. Meister, F. Goltzené, and J.A. Hoffmann: cDNAs from Neurosecretory Cells of Brains of Locusta migratoria (Insecta, Orthoptera) Encoding a Novel Member of the Superfamily of Insulins. Eur. J. Biochem. 187, 249 (1990).CrossRefGoogle Scholar
  247. 247.
    Lange, A.B., I. Orchard, and B.G. Loughton: Spontaneous and Neurally Evoked Contractions of Visceral Muscles in the Oviduct of Locusta migratoria. Arch. Insect Biochem. Physiol. 1, 179 (1984).CrossRefGoogle Scholar
  248. 248.
    Lange, A.B., N.M. Peeff, and I. Orchard: Isolation, Sequence, and Bioactivity of FMRFamide-related Peptides from the Locust Ventral Nerve Cord. Peptides 15, 1089 (1994).CrossRefGoogle Scholar
  249. 249.
    Lea, A.O.: The Medial Neurosecretory Cells and Egg Maturation in Mosquitoes. J. Insect Physiol. 13, 419 (1967).CrossRefGoogle Scholar
  250. 250.
    Lea, A.O.: Regulation of Egg Maturation in the Mosquito by the Neurosecretory System: the Role of the Corpus Cardiacum. Gen. Comp. Endocrinol. (suppl) 3, 602 (1972).CrossRefGoogle Scholar
  251. 251.
    Lederis, K., A. Letter, D. McMaster, G. Moore, and D. Schlesinger: Complete Amino Acid Sequence of Urotensin I, a Hypotensive and Corticotropin-Releasing Neuropeptide from Catostomus. Science 218, 162 (1982).CrossRefGoogle Scholar
  252. 252.
    Lederis, K.P., Y. Okawara, D. Richter, and S.D. Morley: Evolutionary Aspects of Corticotropin Releasing Hormones. In: Progress in Comparative Endocrinology (A. Epple, C.G. Scanes, and M.H. Stetson, eds.). pp. 467–472. New York: Wiley-Liss. 1990.Google Scholar
  253. 253.
    Lee, M.J., and G.J. Goldsworthy: Acetate Uptake Test; the Basis of a Rapid Method for Determining Potencies of Adipokinetic Peptides for Structure-Activity Studies. J. Insect Physiol. 41, 163 (1995).CrossRefGoogle Scholar
  254. 254.
    Lee, M.J., and G.J. Goldsworthy: The Preparation and Use of Dispersed Cells from Fat Body of Locusta migratoria in a Filtration Plate Assay for Adipokinetic Peptides. Anal. Biochem. 228, 155 (1995).CrossRefGoogle Scholar
  255. 255.
    Lehman, H.K., C.M. Margiuc, T.A. Miller, T.D. Lee, and J.G. Hildebrand: Crustacean Cardioactive Peptide in the Sphinx Moth, Manduca sexta. Peptides 14, 735 (1993).CrossRefGoogle Scholar
  256. 256.
    Lehmberg, E., R.B. Ota, K. Furuya, D.S. King, S.W. Applebaum, H.-J. Ferenz, and D.A. Schooley: Identification of a Diuretic Hormone of Locusta migratoria. Biochem. Biophys. Res. Comm. 179, 1036 (1991).CrossRefGoogle Scholar
  257. 257.
    Liebrich, W., R. Kellner, and G. Gäde: Isolation and Primary Structures of Neuropeptides of the AKH/RPCH Family from Various Termite Species. Peptides 16, 559 (1995).CrossRefGoogle Scholar
  258. 258.
    Linck, B., J.M. Klein, S. Mangerich, R. Keller, and W.M. Weidemann: Molecular Cloning of Crustacean Red Pigment Concentrating Hormone Precursor. Biochem. Biophys. Res. Comm. 195, 807 (1993).CrossRefGoogle Scholar
  259. 259.
    Liu, T.P., and K.G. Davey: Partial Characterization of a Proposed Antigonadotropin from the Ovaries of the Insect, Rhodnius prolixus ,Stal. Gen. Comp. Endocrinol. 24, 405 (1974).CrossRefGoogle Scholar
  260. 260.
    Lorenz, M.W., R. Kellner, and K.H. Hoffmann: A Family of Neuropeptides that Inhibit Juvenile Hormone Biosynthesis in the Cricket, Gryllus bimaculatus. J. Biol. Chem. 270, 21103 (1995).CrossRefGoogle Scholar
  261. 261.
    Lorenz, M.W., R. Kellner, and K.H. Hoffmann: Identification of Two Allatostatins from the Cricket, Gryllus bimaculatus de Geer (Ensifera, Gryllidae): Additional Members of a Family of Neuropeptides Inhibiting Juvenile Hormone Biosynthesis. Regul. Pept. 57, 117 (1995).CrossRefGoogle Scholar
  262. 262.
    Lottspeich, F., T. Houthaeve, and R. Kellner: The Edman Degradation. In: Microcharacterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 117–130. Weinheim: VCH Verlagsgesellschaft. 1994.CrossRefGoogle Scholar
  263. 263.
    Lundquist, C.T., F.L. Clottens, G.M. Holman, R. Nichols, R.J. Nachman, and D.R. Nässel: Callitachykinin I and II, Two Novel Myotropic Peptides Isolated from the Blowfly, Calliphora vomitoria ,that Have Resemblances to Tachykinins. Peptides 15, 761 (1994).CrossRefGoogle Scholar
  264. 264.
    Lundquist, T., and D.R. Nässel: Substance P, FMRFamide and Gastrin/ Cholecystokinin-Like Neurons in the Thoracico-Abdominal Ganglia of the Flies Drosophila and Calliphora. J. comp. Neurol. 294, 161 (1990).CrossRefGoogle Scholar
  265. 265.
    Ma, M., K.-P. Sieber, J. Ballarino, and S.-J. Wu: ELISA and Monoclonal Antibodies. In: Immunological Techniques in Insect Biology (L.I. Gilbert and T.A. Miller, eds.), Chapter 2, pp. 43–73. New York: Springer. 1988.CrossRefGoogle Scholar
  266. 266.
    Maddrell, S.H.P.: Characteristics of Epithelial Transport in Insect Malpighian Tubules. In: Current Topics in Membranes and Ion Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 14, pp. 427–463. New York: Academic Press. 1980.Google Scholar
  267. 267.
    Maeda, S.: Increased Insecticidal Effect by a Recombinant Baculovirus Carrying a Synthetic Diuretic Hormone Gene. Biochem. Biophys. Res. Comm. 165, 1177 (1989).CrossRefGoogle Scholar
  268. 268.
    Marti, T., K. Takio, K.A. Walsh, G. Terzi, and J.W. Truman: Microanalysis of the Amino Acid Sequence of the Eclosion Hormone from the Tobacco Hornworm Manduca sexta. FEBS Lett. 219, 415 (1987).CrossRefGoogle Scholar
  269. 269.
    Maruyama, K., H. Hietter, H. Nagasawa, A. Isogai, S. Tamura, A. Suzuki, and H. Ishizaki: Isolation and Primary Structure of Bombyxin-IV, a Novel Molecular Species of Bombyxin from the Silkworm, Bombyx mori. Agric. Biol. Chem. 52, 3035 (1988).CrossRefGoogle Scholar
  270. 270.
    Maruyama K., H. Nagasawa, A. Isogai, S. Tamura, H. Ishizaki, and A. Suzuki: Synthesis of Bombyxin-IV, an Insulin-Like Heterodimeric Peptide from the Silkworm, Bombyx mori. Peptides 11, 169 (1990).CrossRefGoogle Scholar
  271. 271.
    Maruyama K., K. Nagata, M. Tanaka, H. Nagasawa, A. Isogai, H. Ishizaki, and A. Suzuki: Synthesis of Bombyxin-IV, an Insulin Superfamily Peptide from the Silkworm, Bombyxin mori ,by Stepwise and Selective Formation of Three Disulfide Bridges. J. Protein Chem. 11, 1 (1992).CrossRefGoogle Scholar
  272. 272.
    Masler, E.P., A.K. Raina, R.M. Wagner, and J.P. Kochansky: Isolation and Identification of a Pheromonotropic Neuropeptide from the Brain-Suboesophageal Ganglion Complex of Lymantria dispar: a New Member of the PBAN Family. Insect Biochem. Molec. Biol. 24, 829 (1994).CrossRefGoogle Scholar
  273. 273.
    Matsumoto, S., M.R. Brown, J.W. Crim, S.R. Vigna, and A.O. Lea: Isolation and Primary Structure of Neuropeptides from the Mosquito, Aedes aegypti ,Immunoreactive to FMRFamide Antiserum. Insect Biochem. 19, 277 (1989).CrossRefGoogle Scholar
  274. 274.
    Matsumoto, S., M.R. Brown, A. Suzuki, and A.O. Lea: Isolation and Characterization of Ovarian Ecdysteroidogenic Hormones from the Mosquito, Aedes aegypti. Insect Biochem. 19, 651 (1989).CrossRefGoogle Scholar
  275. 275.
    Matsumoto, S., A. Fonagy, M. Kurihara, K. Uchiumi, T. Nagamine, M. Chijimatsu, and T. Mitsui: Isolation and Primary Structure of a Novel Pheromonotropic Neuropeptide Structurally Related to Leucopyrokinin from the Armyworm Larvae, Pseudaletia separata. Biochem. Biophys. Res. Comm. 182, 534 (1992).CrossRefGoogle Scholar
  276. 276.
    Matsumoto, S., A. Fonagy, L. Schoofs, A. de Loof, M. Kurihara, T. Nagamine, and T. Mitsui: Induction of Cuticular Melanization in the Army Worm Larvae, Pseudaletia separata by Insect Myotropin Neuropeptides, Possessing FXPRLamide at the C-Terminus. J. Pestic. Sci. 18, 127 (1993).CrossRefGoogle Scholar
  277. 277.
    Matsumoto, S., A. Kitamura, H. Nagasawa, H. Kataoka, C. Orikasa, T. Mitsui, and A. Suzuki: Functional Diversity of a Neurohormone Produced by the Suboesophageal Ganglion: Molecular Identity of Melanization and Reddish Colouration Hormone and Pheromone Biosynthesis Activating Neuropeptide. J. Insect Physiol. 36, 427 (1990).CrossRefGoogle Scholar
  278. 278.
    Matsumoto, S., O. Yamashita, A. Fonagy, M. Kurihara, K. Uchiumi, T. Nagamine, and T. Mitsui: Functional Diversity of a Pheromonotropic Neuropeptide: Induction of Cuticular Melanization and Embryonic Diapause in Lepidopteran Insects by Pseudaletia pheromonotropin. J. Insect Physiol. 38, 847 (1992).CrossRefGoogle Scholar
  279. 279.
    Mayer, R.J., and D.J. Candy: Control of Haemolymph Lipid Concentration During Locust Flight: an Adipokinetic Hormone from the Corpora Cardiaca. J. Insect Physiol. 15, 611 (1969).CrossRefGoogle Scholar
  280. 280.
    Metzger, J.W., and C. Eckerskorn: Electrospray Mass Spectrometry. In: Micro-Characterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 167–188. Weinheim: VCH Verlagsgesellschaft. 1994.Google Scholar
  281. 281.
    Meyer, H.E.: Analyzing Post-Translational Protein Modifications. In: Microcharacterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 131–146. Weinheim: VCH Verlagsgesellschaft. 1994.CrossRefGoogle Scholar
  282. 282.
    Milde, J.J., R. Ziegler, and M. Wallstein: Adipokinetic Hormone Stimulates Neurones in the Insect Central Nervous System. J. exp. Biol. 198, 1307 (1995).Google Scholar
  283. 283.
    Mizoguchi, A.: Distribution and Function of Bombyxin. In: Perspectives in Comparative Endocrinology (K.G. Davey, R.E. Peter, and S.S. Tobe, eds.), pp. 215–219. Ottawa: National Research Council of Canada. 1994.Google Scholar
  284. 284.
    Mizoguchi, A., H. Ishizaki, H. Nagasawa, H. Kataoka, A. Isogai, S. Tamura, A. Suzuki, M. Fujino, and C. Kitada: A Monoclonal Antibody Against a Synthetic Fragment of Bombyxin (4K-Prothoracicotropic Hormone) from the Silkmoth Bombyx mori: Characterization and Immunohistochemistry. Mol. Cell. Endocrinol. 51, 227 (1987).CrossRefGoogle Scholar
  285. 285.
    Mizoguchi, A., T. Oka, H. Kataoka, H. Nagasawa, A. Suzuki, and H. Ishizaki: Immunohistochemical Localization of Prothoracicotropic Hormone-producing Neurosecretory Cells in the Brain of Bombyx mori. Dev. Growth Diff. 32, 591 (1990).CrossRefGoogle Scholar
  286. 286.
    Mohrherr, C.J., K. Maruska, M. Raabe, J.P. Riehm, and K.R. Rao: PrimaryGoogle Scholar
  287. 283.
    Structure of a Pigment-Dispersing Factor from the Stick Insect, Carausius morosus. Soc. Neurosci. Abstr. 20, 914 (1994).Google Scholar
  288. 287.
    Mohrherr, C.J., K.R. Rao and J.P. Riehm: Characterization of a Pigment-Dispersing Factor from the American Cockroach. Soc. Neurosci. Abstr. 17, 276 (1991).Google Scholar
  289. 288.
    Montecucchi, P.C., and A. Henschen: Amino Acid Composition and Sequence Analysis of Sauvagine, a New Active Peptide from the Skin of Phyllomedusa sauvagei. Int. J. Pept. Protein Res. 18, 113 (1981).CrossRefGoogle Scholar
  290. 289.
    Moreau, R., L. Gourdoux, and J. Girardie: Neuroparsin: A New Energetic Neurohormone in the African Locust. Arch. Insect Biochem. Physiol. 8, 135 (1988).CrossRefGoogle Scholar
  291. 290.
    Moshitzky, P., D.F. Yamashiro, L. Stuve, J. Ramachandran, and S.W. Applebaum: Determination of Locust AKH I by Radioimmunoassay and the Identification of an AKH I-Like Factor in the Locust Brain. Insect Biochem. 17, 765 (1987).CrossRefGoogle Scholar
  292. 291.
    Muehleisen, D.P., R.S. Gray, E.J. Katahira, M.K. Thomas, and W.E. Bollenbacher: Immunoaffnity Purification of the Neuropeptide Prothoracicotropic Hormone from Manduca sexta. Peptides 14, 531 (1993).CrossRefGoogle Scholar
  293. 292.
    Muren, J.E., C.T. Lundquist, and D.R. Nässel: Quantitative Determination of Myotropic Neuropeptide in the Nervous System of the Cockroach Leucophaea maderae: Distribution and Release of Leucokinins. J. exp. Biol. 179, 289 (1993).Google Scholar
  294. 293.
    Nachman, R.J., G.M. Holman, and B.J. Cook: Active Fragments and Analogs of the Insect Neuropeptide Leucopyrokinin: Structure-Function Studies. Biochem. Biophys. Res. Comm. 137, 936 (1986).CrossRefGoogle Scholar
  295. 294.
    Nachman, R.J., and G.M. Holman: Myotropic Insect Neuropeptide Families from the Cockroach Leucophaea maderae. Structure-Activity Relationships. In: Insect Neuropeptides: Chemistry, Biology, and Action ACS Symposium Series No. 453 (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), pp. 194–214. Washington, D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  296. 295.
    Nachman, R.J., G.M. Holman, B.J. Cook, W.F. Haddon, and N. Ling: Leucosul-fakinin-II, a Blocked Sulfated Insect Neuropeptide with Homology to Gastrin and Cholecystokinin. Biochem. Biophys. Res. Comm. 140, 357 (1986).CrossRefGoogle Scholar
  297. 296.
    Nachman, R.J., G.M. Holman, and W.F. Haddon: Structural Aspects of Gastrin/CCK-Like Insect Leucosulfakinins and FMRF-Amide. Peptides 9, 137 (1988).CrossRefGoogle Scholar
  298. 297.
    Nachman, R.J., G.M. Holman, W.F. Haddon, and T.K. Hayes: Structure Activity Relationships for Myotropic Activity of the Gastrin/CCK-like Insect Sulfakinins. Peptide Res. 2, 171 (1989).Google Scholar
  299. 298.
    Nachman, R.J., G.M. Holman, W.F. Haddon, and N. Ling: Leucosulfakinin, a Sulfated Insect Neuropeptide with Homology to Gastrin and Cholecystokinin. Science 234, 71 (1986).CrossRefGoogle Scholar
  300. 299.
    Nachman, R.J., G.M. Holman, W.F. Haddon, and W.H. Vensel: An Active Pseudopeptide Analog of the Leucokinin Insect Neuropeptide Family. Int. J. Peptide Protein Res. 37, 220 (1991).CrossRefGoogle Scholar
  301. 300.
    Nachman, R.J., G.M. Holman, L. Schoofs, and O. Yamashita: Silkworm Diapause Induction Activity of Myotropic Pyrokinin (FXPRLamide) Insect Neuropeptides. Peptides 14, 1043 (1993).CrossRefGoogle Scholar
  302. 301.
    Nachman, R.J., V.A. Roberts, H.J. Dyson, G.M. Holman, and J.A. Tainer: Active Conformation of an Insect Neuropeptide Family. Proc. Natl. Acad. Sci. U.S.A. 88, 4518 (1991).CrossRefGoogle Scholar
  303. 302.
    Nachman, R.J., V.A. Roberts, G.M. Holman, and R.C. Beier: Pseudodipeptide Analogs of the Pyrokinin/PBAN (FXPRLa) Insect Neuropeptide Family Containing Carbocyclic Pro-Mimetic Conformation Components. Regul. Pept. 57, 359 (1995).CrossRefGoogle Scholar
  304. 303.
    Nässel, D.R.: Insect Myotropic Peptides: Differential Distribution of Lo-custatachykinin-and Leucokinin-like Immunoreactive Neurons in the Locust Brain. Cell Tissue Res. 274, 27 (1993).CrossRefGoogle Scholar
  305. 304.
    Nässel, D.R.: Neuropeptides in the Insect Brain: a Review. Cell Tissue Res. 273, 1 (1993).CrossRefGoogle Scholar
  306. 305.
    Nässel, D.R.: Neuropeptides, Multifunctional Messengers in the Nervous System of Insects. Verh. Dtsch. Zool. Ges. 87, 59 (1994).Google Scholar
  307. 306.
    Nässel, D.R., E. Bayraktaroglu, and H. Dircksen: Neuropeptides in Neurosecretory and Efferent Neural Systems of Insect Thoracic and Abdominal Ganglia. Zool. Sci. 11, 15 (1994).Google Scholar
  308. 307.
    Nässel, D.R., R. Cantera, and A. Karlsson: Neurons in the Cockroach Nervous System Reacting with Antisera to the Neuropeptide Leucokinin I. J. Comp. Neurol. 322, 45 (1992).CrossRefGoogle Scholar
  309. 308.
    Nässel, D.R., and M. O’Shea: Proctolin-Like Immunoreactive Neurons in the Blowfly Control Nervous System. J. Comp. Neurol. 265, 437 (1987).CrossRefGoogle Scholar
  310. 309.
    Nässel, D.R., P.C.C.M. Passier, K. Elekes, H. Dircksen, H.G.B. Vullings, and R. Cantera: Evidence that Locustatachykinin I is Involved in Release of Adipokinetic Hormone from Locust Corpora Cardiaca. Regul. Pept. 57, 297 (1995).CrossRefGoogle Scholar
  311. 310.
    Nässel, D.R., S. Shiga, C.J. Mohrherr, and K.R. Rao: Pigment-Dispersing Hormone-Like Peptide in the Nervous System of the Flies Phormia and Drosophila: Immunocytochemistry and Partial Characterization. J. Comp. Neurol. 331, 183 (1993).CrossRefGoogle Scholar
  312. 311.
    Nagasawa, H.: Neuropeptides of the Silkworm, Bombyx mori. Experientia 48, 425 (1992).CrossRefGoogle Scholar
  313. 312.
    Nagasawa, H., T. Kamito, S. Takahashi, A. Isogai, H. Fugo, and A. Suzuki: Eclosion Hormone of the Silkworm, Bombyx mori: Purification and Determination of the N-Terminal Amino Acid Sequence. Insect Biochem. 15, 573 (1985).CrossRefGoogle Scholar
  314. 313.
    Nagasawa, H., H. Kataoka, Y. Hori, A. Isogai, S. Tamura, A. Suzuki, F. Guo, X. Zhong, A. Mizoguchi, M. Fujishita, S.Y. Takahashi, E. Ohnishi, and H. Ishizaki: Isolation and Some Characterization of the Prothoracicotropic Hormone from Bombyx mori. Gen. Comp. Endocrinol. 53, 143 (1984).CrossRefGoogle Scholar
  315. 314.
    Nagasawa, H., H. Kataoka, A. Isogai, S. Tamura, A. Suzuki, H. Ishizaki, A. Mizoguchi, Y. Fujiwara, and A. Suzuki: Amino-Terminal Amino Acid Sequence of the Silkworm Prothoracicotropic Hormone: Homology with Insulin. Science 226, 1344 (1984).CrossRefGoogle Scholar
  316. 315.
    Nagasawa, H., H. Kataoka, A. Isogai, S. Tamura, A. Suzuki, A. Mizoguchi, Y. Fujiwara, A. Suzuki, S.Y. Takahashi, and H. Ishizaki: Amino Acid Sequence of a Prothoracicotropic Hormone of the Silkworm Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 83, 5840 (1986).CrossRefGoogle Scholar
  317. 316.
    Nagasawa, H., A. Kitamura, T. Inoue, H. Kataoka, S. Matsumoto, R. Arima, T. Ando, M. Uchiyama, and A. Suzuki: Isolation of Pheromone Biosynthesis Activating Neuropeptide of the Silkworm, Bombyx mori. Agric. Biol. Chem. 52, 2985 (1988).CrossRefGoogle Scholar
  318. 317.
    Nagasawa, H., H. Kuniyoshi, R. Arima, T. Kawano, T. Ando, and A. Suzuki: Structure and Activity of Bombyx PBAN. Arch. Insect Biochem. Physiol. 25, 261 (1994).CrossRefGoogle Scholar
  319. 318.
    Nagasawa, H., K. Maruyama, B. Sato, H. Hietter, H. Kataoka, A. Isogai, S. Tamura, H. Ishizaki, T. Semba, and A. Suzuki: Structure and Synthesis of Bombyxin from the Silkworm, Bombyx mori. In: Peptide Chemistry (T. Shiba and S. Sakakibara, eds.), pp. 123–126. Osaka: Protein Research Foundation. 1988.Google Scholar
  320. 319.
    Nagasawa, H., T. Mikogami, Y. Kono, H. Fugo, and A. Suzuki: Molecular Heterogeneity of Eclosion Hormone in Adult Heads of the Silkworm, Bombyx mori. Agric. Biol. Chem. 51, 1741 (1987).CrossRefGoogle Scholar
  321. 320.
    Nambu, J.R., C. Murphy-Erdosh, P.C. Andrews, G.J. Feistner, and R.H. Scheller:Isolation and Characterization of a Drosophila Neuropeptide Gene. Neuron 1, 55 (1988).CrossRefGoogle Scholar
  322. 321.
    Nichols, R., Isolation of a Vertebrate Peptide Homologue Present in Drosophila melanogaster. In: Molecular Neurobiology of Drosophila (B. Ganetsky and J. Hall, eds.), p. 25. Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press, 1987.Google Scholar
  323. 322.
    Nichols, R.: Isolation and Expression of the Drosophila Drosulfakinin Neural Peptide Gene Product, DSK-1. Mol. Cell. Neurosci. 3, 342 (1992).CrossRefGoogle Scholar
  324. 323.
    Nichols, R.: Isolation and Structural Characterization of Drosophila TDVDHVFLRFamide and FMRFamide-Containing Neural Peptides. J. Molec. Neurosci. 3, 213 (1992).Google Scholar
  325. 324.
    Nichols, R., S.A. Schneuwly, and J.E. Dixon: Identification and Characterization of a Drosophila homologue to the Vertebrate Neuropeptide Cholecystokinin. J. Biol. Chem. 263, 12167 (1988).Google Scholar
  326. 325.
    Nicolson, S.W.: Diuresis or Clearance: is there a Physiological Role for the “Diuretic Hormone” of the Desert Beetle Onymacris? J. Insect Physiol. 37, 447 (1991).CrossRefGoogle Scholar
  327. 326.
    Nicolson, S.W.: The Ionic Basis of Fluid Secretion in Insect Malpighian Tubules: Advances in the Last Ten Years. J. Insect Physiol. 39, 451 (1993).CrossRefGoogle Scholar
  328. 327.
    Nijhout, H.F.: Insect Hormones. Princeton: Princeton University Press. 1994.Google Scholar
  329. 328.
    Noyes, B.E., F.N. Katz, and M.H. Schaffer: Identification and Expression of the Drosophila Adipokinetic Hormone Gene. Mol. Cell. Endocrin. 109, 133 (1995).CrossRefGoogle Scholar
  330. 329.
    Noyes, B.E., and M.H. Schaffer: The Structurally Similar Neuropeptides Adipokinetic Hormone I and II are Derived from Similar, Very Small mRNAs. J. Biol. Chem. 265, 483 (1990).Google Scholar
  331. 330.
    O’Brien, M.A., E.J. Katahira, T.R. Flanagan, L.W. Arnold, G. Haughton, and W.E. Bollenbacher: A Monoclonal Antibody to the Insect Prothoracicotropic Hormone. J. Neurosci. 8, 3247 (1988).Google Scholar
  332. 331.
    Orchard, I.: Neurosecretion: Morphology and Physiology. In: Endocrinology of Insects (R.G.H. Downer and H. Laufer, eds.), pp. 13–38. New York: A. Liss Inc. 1983.Google Scholar
  333. 332.
    Orchard, I.: Adipokinetic Hormones-an Update. J. Insect Physiol. 33, 451 (1987).CrossRefGoogle Scholar
  334. 333.
    Orchard, I., J.H. Belanger, and A.B. Lange: Proctolin: a Review with Emphasis on Insects. J. Neurobiol. 20, 470 (1989).CrossRefGoogle Scholar
  335. 334.
    O’Shea, M., and M.A. Adams: Proctolin: from “Gut Factor” to Model Neuropeptide. In: Advances in Insect Physiology Vol 19 (P.D. Evans and V.B. Wigglesworth, eds.), pp. 1–28. London: Academic Press. 1986.Google Scholar
  336. 335.
    O’Shea, M., and R.C. Rayne: Adipokinetic Hormones: Cell and Molecular Biology. Experientia 48, 430 (1992).CrossRefGoogle Scholar
  337. 336.
    O’Shea, M., J. Witten, and M. Schaffer: Isolation and Characterization of two Myoactive Neuropeptides: Further Evidence for an Invertebrate Peptide Family. J. Neurosci. 4, 521 (1984).Google Scholar
  338. 337.
    Otsuka, M., and K. Yoshioka: Neurotransmitter Functions of Mammalian Tachykinins. Physiol. Rev. 73, 229 (1993).Google Scholar
  339. 338.
    Oudejans, R.C.H.M., R.M. Dijkhuizen, F.P. Kooiman, and A.M.T. Beenakkers: Dose-Response Relationships of Adipokinetic Hormones (Lom-AKH-I, II and III) from the Migratory Locust, Locusta migratoria. Proc. Exper. Appl. Entomol. 3, 165 (1992).Google Scholar
  340. 339.
    Oudejans, R.C.H.M., F.P. Kooiman, W. Heerma, C. Versluis, A.J. Slotboom, and A.M.T. Beenakkers: Isolation and Structure Elucidation of a Novel Adipokinetic Hormone (Lom-AKH-III) from the Glandular Lobes of the Corpus Cardiacum of the Migratory locust, Locusta migratoria. Eur. J. Biochem. 195, 351 (1991).CrossRefGoogle Scholar
  341. 340.
    Paemen, L., L. Schoofs, and A. de Loof: Localization of Lom-AG-Myotropin-I-Like Substances in the Male Reproductive and Nervous Tissue of the Locust, Locusta migratoria. Cell Tissue Res. 268, 91 (1992).CrossRefGoogle Scholar
  342. 341.
    Paemen, L., L. Schoofs, P. Proost, B. Decock, and A. de Loof: Isolation, Identification and Synthesis of Lom-AG-Myotropin II, a Novel Peptide in the Male Accessory Glands of Locusta migratoria. Insect Biochem. 21, 243 (1991).CrossRefGoogle Scholar
  343. 342.
    Paemen, L., A. Tips, L. Schoofs, P. Proost, J. van Damme, and A. de Loof: Lom-AG-Myotropin, a Novel Myotropic Peptide from the Male Accessory Glands of Locusta migratoria. Peptides 12, 7 (1991).CrossRefGoogle Scholar
  344. 343.
    Pannabecker, T., and I. Orchard: Octopamine and Cyclic AMP Mediate release of Adipokinetic Hormone I and II from Isolated Neuroendocrine Tissue. Mol. Cell. Endocrin. 48, 153 (1986).CrossRefGoogle Scholar
  345. 344.
    Passier, P.C.C.M., H.G.B. Vullings, J.H.B. Diederen, and D.J. Van der Horst: Modulatory Effects of Biogenic Amines on Adipokinetic Hormone Secretion from Locust Corpora Cardiaca in vitro. Gen. Comp. Endocrin. 97, 231 (1995).CrossRefGoogle Scholar
  346. 345.
    Peeff, N.M., I. Orchard, and A.B. Lange: Isolation, Sequence, and Bioactivity of PDVDHVFLRFamide and ADVGHVFLRFamide Peptides from the Locust Central Nervous System. Peptides 15, 387 (1994).CrossRefGoogle Scholar
  347. 346.
    Phillips, J.E.: Comparative Physiology of Insect Renal Function. Am. J. Physiol. 241, R241 (1981).Google Scholar
  348. 347.
    Phillips, J.E.: Endocrine Control of Salt and Water Balance: Excretion. In: Endo-crinology of Insects (R.G.H. Downer and H. Laufer, eds.), pp. 411–425. New York: A. Liss Inc. 1983.Google Scholar
  349. 348.
    Phillips, J.E., J. Hanrahan, M. Chamberlin, and B. Thomson: Mechanisms and Control of Reabsorption in Insect Hindgut. Adv. Insect Physiol. 19, 329 (1986).CrossRefGoogle Scholar
  350. 349.
    Phillips, J.E., B. Thomson, J.L. Peach, A.P. Stagg, and N. Audsley: Mechanisms of Acid-Base Transport and Control in Locust Excretory System. Physiol. Zool. 67, 95 (1993).Google Scholar
  351. 350.
    Pope, M.M., L.K. Gaston, and T.C. Baker: Composition, Quantification and Peri-odicity of Sex Pheromone Volatiles from Individual Heliothis zea Females. J. Insect Physiol. 12, 943 (1984).CrossRefGoogle Scholar
  352. 351.
    Pratt, G.E., D.E. Farnsworth, and R. Feyereisen: Changes in the Sensitivity of Adult Cockroach Corpora Allata to the Brain Allatostatin. Mol. Cell. Endocrin. 70, 185 (1990).CrossRefGoogle Scholar
  353. 352.
    Pratt, G.E., D.E. Farnsworth, K.F. Fok, N.R. Siegel, A.L. McCormack, J. Shabanowitz, D.F. Hunt, and R. Feyereisen: Identity of a Second Type of Allato-statin From Cockroach Brains: An Octadecapeptide Amide with a Tyrosine-Rich Address Sequence. Proc. Natl. Acad. Sci. U.S.A. 88, 2412 (1991).CrossRefGoogle Scholar
  354. 353.
    Pratt, G.E., D.E. Farnsworth, N.R. Siegel, K.F. Fok, and R. Feyereisen: Identifica-tion of an Allatostatin from Adult Diploptera punctata. Biochem. Biophys. Res. Comm. 163, 1243 (1989).CrossRefGoogle Scholar
  355. 354.
    Pratt, G.E., D.E. Farnsworth, N.R. Siegel, K.F. Fok, and R. Feyereisen: Two Types of Allatostatic Peptides from Brains of the Cockroach Diploptera punctata. In: Insect Neuropeptides: Chemistry, Biology, and Action. ACS Symposium Series 453 (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), pp. 177–192. Washington D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  356. 355.
    Predel, R., H. Agricola, D. Linde, L. Wollweber, J.A. Veenstra, and H. Penzlin: The Insect Neuropeptide Corazonin: Physiological and Immunocytochemical Studies in Blattariae. Zoology 98, 35 (1994).Google Scholar
  357. 356.
    Predel, R., D. Linde, J. Rapus, S. Vettermann, and H. Penzlin: Periviscerokinin (Pea-PVK): A Novel Myotropic Neuropeptide from the Perisympathetic Organs of the American Cockroach. Peptides 16, 61 (1995).CrossRefGoogle Scholar
  358. 357.
    Proux, J.P., and J.-R. Hérault: Cyclic AMP: a Second Messenger of the Newly Characterized AVP-Like Insect Diuretic Hormone, the Migratory Locust Diuretic Hormone. Neuropeptides 12, 7 (1988).CrossRefGoogle Scholar
  359. 358.
    Proux, J.P., C.A. Miller, J.P. Li, R.L. Carney, A. Girardie, M. Delaage, and D.A. Schooley: Identification of an Arginine Vasopressin-Like Diuretic Hormone from Locusta migratoria. Biochem. Biophys. Res. Comm. 149, 180 (1987).CrossRefGoogle Scholar
  360. 359.
    Proux, J., and G. Rougon-Rapuzzi: Evidence for Vasopressin-like Molecule in Migratory Locust. Radioimmunological Measurements in Different Tissues: Correla-tion with Various States of Hydration. Gen. Comp. Endocrin. 42, 378 (1980).Google Scholar
  361. 360.
    Puiroux, J., and B.G. Loughton: Degradation of the Neuropeptide Proctolin by Membrane Bound Proteases of the Hindgut and Ovary of Locusta migratoria and the Effects of Different Inhibitors. Arch. Insect Biochem. Physiol. 19, 193 (1992).CrossRefGoogle Scholar
  362. 361.
    Puiroux, J., A. Pedelaborde, and B.G. Loughton: Characterization of Proctolin Binding Sites on Locust Hindgut Membranes. Insect Biochem. Molec. Biol. 22, 547 (1992).CrossRefGoogle Scholar
  363. 362.
    Puiroux, J., A. Pedelaborde, and B.G. Loughton: Characterization of Proctolin Binding Sites on Locust Oviduct Membranes. Insect Biochem. Molec. Biol. 22, 859 (1992).CrossRefGoogle Scholar
  364. 363.
    Puiroux, J., A. Pedelaborde, and B.G. Loughton: The Effect of Proctolin Analogues and Other Peptides on Locust Oviduct Muscle Contractions. Peptides 14, 1103 (1993).CrossRefGoogle Scholar
  365. 364.
    Quistad, G.B., M.E. Adams, R.M. Scarborough, R.L. Carney, and D.A. Schooley: Metabolism of Proctolin, a Pentapeptide Neurotransmitter in Insects. Life Sci. 34, 569 (1984).CrossRefGoogle Scholar
  366. 365.
    Raabe, M.: Etudes des Phénomènes de Neurosecretion au Niveau de la Chaine Nerveuse Ventrale des Phasmides. Bull. Soc. Zool. 90, 631 (1965).Google Scholar
  367. 366.
    Raabe, M.: Insect Neurohormones. New York: Plenum Press. 1982.CrossRefGoogle Scholar
  368. 367.
    Rafaeli, A., J. Hirsch, V. Soroker, B. Kamensky, and A.K. Raina: Spatial and Temporal Distribution of Pheromone Biosynthesis-Activating Neuropeptide in Heli-coverpa (Heliothis) armigera Using RIA and in vitro Bioassay. Arch. Insect Biochem. Physiol. 18, 119 (1991).CrossRefGoogle Scholar
  369. 368.
    Raina, A.K., and G. Gäde: Insect Peptide Nomenclature. Insect Biochem. 18, 785 (1988).CrossRefGoogle Scholar
  370. 369.
    Raina, A.K., H. Jaffe, T.G. Kempe, P. Kiem, R.W. Blacher, H.M. Fales, C.T. Riley, J.A. Klun, R.L. Ridgway, and D.K. Hayes: Identification of a Neuropeptide Hor-mone that Regulates Sex Pheromone Production in Female Moths. Science 244, 796 (1989).CrossRefGoogle Scholar
  371. 370.
    Raina, A.K., H. Jaffe, J.A. Klun, R.L. Ridgway, and D.K. Hayes: Characteristics of a Neurohormone that Controls Sex Pheromone Production in Heliothis zea. J. Insect Physiol. 33, 809 (1987).CrossRefGoogle Scholar
  372. 371.
    Raina, A.K., and T.G. Kempe: A Pentapeptide of the C-Terminal Sequence of PBAN with Pheromonotropic Activity. Insect Biochem. 20, 849 (1990).CrossRefGoogle Scholar
  373. 372.
    Raina, A.K., and T.G. Kempe: Structure Activity Studies of PBAN of Helicoverpa zea (Lepidoptera: Noctuidae). Insect Biochem. Molec. Biol. 22, 221 (1992).CrossRefGoogle Scholar
  374. 373.
    Raina, A.K., and J.A. Klun: Brain Factor Control of Sex Pheromone Production in the Female Corn Earworm Moth. Science 225, 531 (1984).CrossRefGoogle Scholar
  375. 374.
    Raina, A.K., J.A. Klun, and E.A. Stadelbacher: Diel Periodicity and Effect of Age and Mating on Female Sex Pheromone Titer in Heliothis zea (Lepidoptera: Noc-tuidae). Ann. Entomol. Soc. Am. 79, 128 (1986).Google Scholar
  376. 375.
    Raina, A.K., and J.J. Menn: Pheromone Biosynthesis Activating Neuropeptide: from Discovery to Current Status. Arch. Insect Biochem. Physiol 22, 141 (1993).CrossRefGoogle Scholar
  377. 376.
    Raina, A., L. Pannell, J. Kochansky, and H. Jaffe: Primary Structure of a Novel Neuropeptide Isolated from the Corpora Cardiaca of Periodical Cicadas having Adipokinetic and Hypertrehalosaemic Activities. Insect Biochem. Molec. Biol. 25, 929 (1995).CrossRefGoogle Scholar
  378. 377.
    Rao, K.R., C.J. Mohrherr, S.L. Bonomelli, J.P. Riehm and T.G. Kingan: Insect Neuropeptides: Influence on Color Change in Insects and Chromatophoral Pigment Movements in Crustaceans. In: Insect Neuropeptides: Chemistry, Biology, and Action. ACS Symposium Series No. 453. (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), pp. 110–122. Washington D.C.: American Chemical Society. 1991.CrossRefGoogle Scholar
  379. 378.
    Rao, K.R., C.J. Mohrherr, J.P. Riehm, C.A. Zahnow, S. Norton, L. Johnson, G.E. Tarr: Primary Structure of an Analog of Crustacean Pigment-Dispersing Hormone from the Lubber Grasshopper Romalea microptera. J. Biol. Chem. 262, 2672 (1987).Google Scholar
  380. 379.
    Rao, K.R., and J.P. Riehm: Pigment-Dispersing Hormones. In: The Melanotropic Peptides. Ann. N.Y. Acad. Sci., Vol. 680, pp. 78–88. 1993.Google Scholar
  381. 380.
    Rao, K.R., J.P. Riehm, C.A. Zahnow, L.H. Kleinholz, G.E. Tarr, L. Johnson, S. Norton, M. Landau, O.J. Semmes, R.M. Sattelberg, W.H. Jorenby, and M.F. Hintz: Characterization of a Pigment-Dispersing Hormone in Eyestalks of the Fiddler Crab Uca pugilator. Proc. Natl. Acad. Sci. U.S.A. 82, 5319 (1985).CrossRefGoogle Scholar
  382. 381.
    Rayne, R.C., and M. O’Shea: Inactivation of Neuropeptide Hormones (AKH I and AKH II) Studied in vivo and in vitro. Insect Biochem. Molec. Biol. 22, 25 (1992).CrossRefGoogle Scholar
  383. 382.
    Rayne, R.C., and M. O’Shea: Structural Requirements for Processing of Pro-Adipokinetic Hormone I. Eur. J. Biochem. 217, 905 (1993).CrossRefGoogle Scholar
  384. 383.
    Rayne, R.C., and M. O’Shea: Reconstitution of Adipokinetic Hormone Biosynthesis in vitro Indicates Steps in Prohormone Processing. Eur. J. Biochem. 219, 781 (1994).CrossRefGoogle Scholar
  385. 384.
    Reagan, J.D.: Expression Cloning of an Insect Diuretic Hormone Receptor. J. Biol. Chem. 269, 9 (1994).Google Scholar
  386. 385.
    Remy, C., and J. Girardie: Anatomical Organization of two Vasopressin-Neurophysin-Like Neurosecretory Cells Throughout the Central Nervous System of the Migratory Locust. Gen. Comp. Endocrin. 40, 27 (1980).CrossRefGoogle Scholar
  387. 386.
    Reynolds, S.E., and J.W. Truman: Eclosion Hormone. In: Endocrinology of Insects (R.G.H. Downer and H. Laufer, eds.), pp. 217–233. New York: A. Liss Inc. 1983.Google Scholar
  388. 387.
    Rinehart, K.L., T.G. Holt, N.L. Fregeau, A.L. Staley, A.G. Thompson, K.-I. Harada, J.M. Curtis, L.-S. Rong, F. Sun, L.S. Shield, G. Gäde, C.J.P. Grimmelikhuijzen, C.C. Doughty and C.E. Grimshaw: Applications of High-Resol-ution Tandem FAB Mass Spectrometry. In: Biological Mass Sectrometry (A.L. Burlin-game and J.A. McCloskey, eds.), pp. 233–257. Amsterdam: Elsevier Science Publishers B.V. 1990.Google Scholar
  389. 388.
    Rivier, J., J. Spiess, and W. Vale: Characterization of Rat Hypothalamic Corticotropin-Releasing Factor. Proc. Natl. Acad. Sci. U.S.A. 80, 4851 (1983).CrossRefGoogle Scholar
  390. 389.
    Robb, S., L.C. Packman, and P.D. Evans: Isolation, Primary Structure and Bioactivity of SchistoFLRF-amide, a FMRF-amide-like Neuropeptide from the Locust, Schis-tocerca gregaria. Biochem. Biophys. Res. Comm. 160, 850 (1989).CrossRefGoogle Scholar
  391. 390.
    Saegusa, H., A. Mizoguchi, H. Kitahora, H. Nagasawa, A. Suzuki, and H. Ishizaki: Change in the Titer of Bombyxin-Immunoreactive Material in Hemolymph during the Postembryonic Development of the Silkmoth Bombyx mori. Dev. Growth Differ. 34, 595 (1992).CrossRefGoogle Scholar
  392. 391.
    Sato, Y., M. Ikeda, and O. Yamashita: Neurosecretory Cells Expressing the Gene for Common Precursor for Diapause Hormone and Pheromone Biosynthesis-Activating Neuropeptide in the Suboesophageal Ganglion of the Silkworm, Bombyx mori. Gen. Comp. Endocrin. 96, 27 (1994).CrossRefGoogle Scholar
  393. 392.
    Sato, Y., Y. Nakazawa, N. Menjo, K. Imai, T. Komiya, H. Saito, M. Shin, M. Ikeda, K. Sakakibara, M. Isobe, and O. Yamashita: A New Diapause Hormone Molecule of the Silkworm, Bombyx mori. Proc. Japan Acad. 68B, 75 (1992).Google Scholar
  394. 393.
    Sato, Y., M. Oguchi, N. Menjo, K. Imai, H. Saito, M. Ikeda, M. Isobe, and O. Yamashita: Precursor Polyprotein for Multiple Neuropeptides Secreted from the Suboesophageal Ganglion of the Silkworm Bombyx mori: Characterization of the cDNA Encoding the Diapause Hormone Precursor and Identification of Additional Peptides. Proc. Natl. Acad. Sci. U.S.A. 90, 3251 (1993).CrossRefGoogle Scholar
  395. 394.
    Scarborough, R.M., G.C. Jamieson, F. Kalish, S.J. Kramer, G.A. McEnroe, C.A. Miller, and D.A. Schooley: Isolation and Primary Structure of Two Peptides with Cardioacceleratory and Hyperglycemic Activity from the Corpora Cardiaca of Peri-ptlaneta americana. Proc. Natl. Acad. Sci. USA 81, 5575 (1984).CrossRefGoogle Scholar
  396. 395.
    Schaffer, M.H.: Isolation and Characterization of Neuropeptides. In: Neurochemical Techniques in Insect Research (H. Breer and T.A. Miller, eds.), pp. 47–78. Berlin: Springer. 1985.CrossRefGoogle Scholar
  397. 396.
    Schaffer, M.H., and B.E. Noyes: Adipokinetic Hormone Neuropeptide Family. Applying Recombinant DNA Techniques. In: Insect Neuropeptides. Chemistry, Biol-ogy, and Action. ACS Symposium Series No. 453. (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), Chapter 20, pp. 226–233. Washington, D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  398. 397.
    Schaffer, M.H., B.E. Noyes, C.A. Slaughter, G.C. Thorne, and S.J. Gaskell: The Fruitfly Drosophila melanogaster Contains a Novel Charged Adipokinetic-Hormone-Family Peptide. Biochem. J. 269, 315 (1990).Google Scholar
  399. 398.
    Scharrer, B.: Über sekretorisch tätige Nervenzellen bei wirbellosen Tieren. Natur-wissenschaften 9, 131 (1937).CrossRefGoogle Scholar
  400. 399.
    Scharrer, B.: Neurosecretion. II. Neurosecretory Cells in the Central Nervous System of Cockroaches. J. Comp. Neurol. 74, 93 (1941),Google Scholar
  401. 400.
    Scharrer, B., and E. Scharrer: Neurosecretion. VI. A Comparison Between the Intercerebralis-Cardiacum-Allatum System of the Insects and the Hypothalamo-Hypophyseal System of Vertebrates. Biol. Bull. 87, 243 (1944).Google Scholar
  402. 401.
    Scharrer, E.: Die Lichtempfindlichkeit blinder Elritzen. I. Untersuchungen über das Zwischenhirn der Fische. Z. Vergl. Physiol. 7, 1 (1928).CrossRefGoogle Scholar
  403. 402.
    Schneider, L.E., and P.H. Taghert: Isolation and Characterization of a Drosophila Gene that Encodes Multiple Neuropeptides Related to Phe-Met-Arg-Phe-NH2 (FMRFamide). Proc. Natl. Acad. Sci. U.S.A. 85, 1993 (1988).CrossRefGoogle Scholar
  404. 403.
    Schoofs, L., G.M. Holman, T.K. Hayes, J.P. Kochansky, R.J. Nachman, and A. de Loof: Locustatachykinin III and IV: Two Additional Insect Neuropeptides with Homology to Peptides of the Vertebrate Tachykinin Family. Regul. Pept. 31, 199 (1990).CrossRefGoogle Scholar
  405. 404.
    Schoofs, L., G.M. Holman, T.K. Hayes, R.J. Nachman, and A. De Loof: Lo-custatachykinin I and II, Two Novel Insect Neuropeptides with Homology to Peptides of the Vertebrate Tachykinin Family. FEBS Lett. 261, 397 (1990).CrossRefGoogle Scholar
  406. 405.
    Schoofs, L., G.M. Holman, T.K. Hayes, R.J. Nachman, and A. De Loof: Isolation and Identification of a Sulfakinin-like Peptide with Sequence Homology to Vertebrate Gastrin and Cholecystokinin from the Brain of Locusta migratoria. In: Chromatogra-phy and Isolation of Insect Hormones and Pheromones (A.R. McCaffery, and I.D. Wilson, eds.), pp. 231–241. New York: Plenum Press. 1990.CrossRefGoogle Scholar
  407. 406.
    Schoofs, L., G.M. Holman, T.K. Hayes, R.J. Nachman, and A. De Loof: Isolation, Identification and Synthesis of Locustamyotropin II, an Additional Neuropeptide of Locusta migratoria: Member of the Cephalomyotropic Peptide Family. Insect Bio-chem. 20, 479 (1990).CrossRefGoogle Scholar
  408. 407.
    Schoofs, L., G.M. Holman, T.K. Hayes, R.J. Nachman, and A. De Loof: Isolation, Primary Structure, and Synthesis of Locustapyrokinin: a Myotropic Peptide of Locusta migratoria. Gen. Comp. Endocrin. 81, 97 (1991).CrossRefGoogle Scholar
  409. 408.
    Schoofs, L., G.M. Holman, T.K. Hayes, R.J. Nachman, and A. De Loof: Isolation, Identification and Synthesis of Locustamyoinhibiting Peptide (Lom-MIP), a Novel Biologically Active Neuropeptide from Locusta migratoria. Regul. Pept. 36, 111 (1991).CrossRefGoogle Scholar
  410. 409.
    Schoofs, L., G.M. Holman, T.K. Hayes, R.J. Nachman, J.P. Kochansky, and A. De Loof: Isolation, Identification and Synthesis of Locustamyotropin III and IV, Two Additional Neuropeptides of Locusta migratoria: Members of the Locustamyotropin Peptide Family. Insect Biochem. Molec. Biol. 22, 447 (1992).CrossRefGoogle Scholar
  411. 410.
    Schoofs, L., G.M. Holman, T.K. Hayes, A. Tips, R.J. Nachman, F. Vandesande, and A. De Loof: Isolation, Identification and Synthesis of Locustamyotropin (Lom-MT), a Novel Biologically Active Insect Peptide. Peptides 11, 427 (1990).CrossRefGoogle Scholar
  412. 411.
    Schoofs, L., G.M. Holman, R. Nachman, P. Proost, J. Van Damme, and A. De Loof: Isolation, Identification and Synthesis of Locustapyrokinin II from Locusta migratoria ,Another Member of the FXPRL-amide Peptide Family. Comp. Biochem. Physiol. 106C, 103 (1993).Google Scholar
  413. 412.
    Schoofs, L., G.M. Holman, L. Paemen, D. Veelaert, M. Amelinckx, and A. De Loof: Isolation, Identification and Synthesis of PDVDHVFLRFamide(SchistoFLRFamide) in Locusta migratoria and its Association with the Male Accessory Glands, the Salivary Glands, the Head and the Oviduct. Peptides 14, 409 (1993).CrossRefGoogle Scholar
  414. 413.
    Schoofs, L., G.M. Holman, P. Proost, J. Van Damme, T.K. Hayes, and A. De Loof: Locustakinin, a Novel Myotropic Peptide from Locusta migratoria ,Isolation, Primary Structure and Synthesis. Regul. Pept. 37, 49 (1992).CrossRefGoogle Scholar
  415. 414.
    Schoofs, L., A. Tips, G.M. Holman, R.J. Nachman, and A. De Loof: Distribution of Locustamyotropin-like Immunoreactivity in the Nervous System of Locusta migra-toria. Regul. Pept. 37, 237 (1992).CrossRefGoogle Scholar
  416. 415.
    Schoofs, L., J. van den Broeck, and A. de Loof: The Myotropic Peptides of Locusta migratoria: Structures, Distribution, Functions and Receptors. Insect Biochem. Molec. Biol. 23, 859 (1993).CrossRefGoogle Scholar
  417. 416.
    Schoofs, L., D. Veelaert, G.M. Holman, T.K. Hayes, and A. De Loof: Partial Identification, Synthesis and Immunolocalization of Locustamyoinhibin, the Third Myoinhibiting Neuropeptide Isolated from Locusta migratoria. Regul. Pept. 52, 139 (1994).CrossRefGoogle Scholar
  418. 417.
    Schooley, D.A., and F.C. Baker: Juvenile Hormone Biosynthesis. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G.A. Kerkut and L.I. Gilbert, eds.) Vol. 7, pp. 363–389. Oxford: Pergamon Press. 1985.Google Scholar
  419. 418.
    Schooley, D.A., H. Kataoka, S.J. Kramer, and A. Toschi: Isolation Techniques for Insect Neuropeptides. In: Insect Neurochemistry and Neurophysiology 1989 (A.B. Borkovec and E.P. Masler, eds.), pp. 39–62. Clifton, N.J.: The Humana Press Inc. 1990.CrossRefGoogle Scholar
  420. 419.
    Schooley, D.A., C.A. Miller, and J.P. Proux: Isolation of Two Arginine Vaso-pressin-like Factors from Ganglia of Locusta migratoria. Arch. Insect Biochem. Physiol. 5, 157 (1987).CrossRefGoogle Scholar
  421. 420.
    Schooneveld, H., H.M. Romberg-Privee, and J.A. Veenstra: Adipokinetic Hormone-immunoreactive Peptide in the Endocrine and Central Nervous System of Several Insect Species: a Comparative Immunocytochemical Approach. Gen. Comp. Endocrin. 57, 184 (1985).CrossRefGoogle Scholar
  422. 421.
    Schooneveld, H., H.M. Romberg-Privee, and J.A. Veenstra: Immunocytochemical Differentiation between Adipokinetic Hormone (AKH)-like Peptides in Neurons and Glandular Cells in the Corpus Cardiacum of Locusta migratoria and Periplaneta americana with C-terminal and N-terminal Specific Antisera to AKH. Cell Tissue Res. 243, 9 (1986).CrossRefGoogle Scholar
  423. 422.
    Schooneveld, H., G.I. Tesser, J.A. Veenstra, and H.M. Romberg-Privee: Adipokinetic Hormone and AKH-like Peptide Demonstrated in Corpora Cardiaca and Nervous System of Locusta migratoria by Immunocytochemistry. Cell Tissue Res. 230, 67 (1983).CrossRefGoogle Scholar
  424. 423.
    Schooneveld, H., and J.A. Veenstra: Immunocytochemistry. In: Immunological Techniques in Insect Biology (L.I. Gilbert and T.A. Miller, eds.), Chapter 4, pp. 93–133. New York: Springer. 1988.CrossRefGoogle Scholar
  425. 424.
    Schulz-Aellen, M.F., E. Roulet, J. Fisher-Lougheed, and M. O’Shea: Synthesis of a Homodimeric Neurohormone Precursor of Locust Adipokinetic Hormone Studied by in vitro Translation and cDNA Cloning. Neuron 2, 1369 (1989).CrossRefGoogle Scholar
  426. 425.
    Schwartz, L.M., and J.W. Truman: Peptide and Steroid Regulation of Muscle Degeneration in an Insect. Science 215, 1420 (1982).CrossRefGoogle Scholar
  427. 426.
    Schwarz, T.L., C.M.H. Lee, K.K. Siwicki, D.G. Standaert, and E.A. Kravitz: Proctolin in the Lobster: the Distribution, Release, and Chemical Characterization of a Likely Neurohormone. J. Neurosci. 4, 1300 (1984).Google Scholar
  428. 427.
    Serwe, M., and H.E. Meyer: Microseparation Techniques I: High Performance Liquid Chromatography. In: Microcharacterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 29–45. Weinheim: VCH Verlagsgesellschaft. 1994.CrossRefGoogle Scholar
  429. 428.
    Shimonishi, Y., and T. Takao: Methods for Determination of Protein Sequences by Fast Atom Bombardment Mass Spectrometry. In: Laboratory Methodology in Bio-chemistry. Amino Acid Analysis and Protein Sequencing (C. Fini, A. Floridi, V.N. Finelli, and B. Wittman-Liebold, eds.), pp. 239–256. Boca Raton, Florida, U.S.A: CRC Press Inc. 1990.Google Scholar
  430. 429.
    Siegert, K., P. Morgan, and W. Mordue: Primary Structures of Locust Adipokinetic Hormones II. Biol. Chem. Hoppe-Seyler 366, 723 (1985).CrossRefGoogle Scholar
  431. 430.
    Siegert, K.J., and W. Mordue: Elucidation of the Primary Structures of the Cock-roach Hyperglycaemic Hormones I and II Using Enzymatic Techniques and Gas-phase Sequencing. Physiol. Entomol. 11, 205 (1986).CrossRefGoogle Scholar
  432. 431.
    Siegert, K.J., and W. Mordue: Breakdown of Locust Adipokinetic Hormone I by Malpighian Tubules of Schistocerca gregaria. Insect Biochem. 17, 705 (1987).CrossRefGoogle Scholar
  433. 432.
    Siegert, K.J., and W. Mordue: Preliminary Characterization of Enzyme Activities in Malpighian Tubules Involved in the Breakdown of Adipokinetic Hormones. Arch. Insect Biochem. Physiol. 19, 147 (1992).CrossRefGoogle Scholar
  434. 433.
    Snyder, S.H.: Brain Peptides as Neurotransmitters. Science, 209, 976 (1980).CrossRefGoogle Scholar
  435. 434.
    Spittaels, K., L. Schoofs, L. Grauwels, H. Smet, J. van Damme, P. Proost, and A. De Loof: Isolation, Identification and Synthesis of Novel Oviductal Motility Stimulating Head Peptide in the Colorado Potato Beetle, Leptinotarsa decemlineata. Peptides 12, 31 (1991).CrossRefGoogle Scholar
  436. 435.
    Spring, J.H.: Endocrine Regulation of Diuresis in Insects. J. Insect Physiol. 36, 13 (1990).CrossRefGoogle Scholar
  437. 436.
    Spring, J.H., and I. Kim: Differential Effects of Neuropeptides on the Distal and Mid-Tubules of the House Cricket. Arch. Insect Biochem. Physiol. 29, 11 (1995).CrossRefGoogle Scholar
  438. 437.
    Stangier, J., C. Hilbich, K. Beyreuther, and R. Keller: Unusual Cardioactive Peptide (CCAP) from Pericardial Organs of the Shore Crab Carcinus maenas. Proc. Natl. Acad. Sci. U.S.A. 84, 575 (1987).CrossRefGoogle Scholar
  439. 438.
    Stangier, J., C. Hilbich, and R. Keller: Occurrence of Crustacean Cardioactive Peptide (CCAP) in the Nervous System of an Insect, Locusta migratoria. J. Comp. Physiol. 159B, 5 (1989).Google Scholar
  440. 439.
    Starratt, A.N., and B.E. Brown: Structure of the Pentapeptide Proctolin, a Proposed Neurotransmitter in Insects. Life Sci. 17, 1253 (1975).CrossRefGoogle Scholar
  441. 440.
    Starratt, A.N., and B.E. Brown: Analogs of the Insect Myotropic Peptide Proctolin: Synthesis and Structure-activity Studies. Biochem. Biophys. Res. Comm. 90, 1125 (1979).CrossRefGoogle Scholar
  442. 441.
    Starratt, A.N., and R.W. Steele: In vivo Inactivation of the Insect Neuropeptide Proctolin in Periplaneta americana. Insect Biochem. 14, 97 (1984).CrossRefGoogle Scholar
  443. 442.
    Starratt, A.N., and R.W. Steele: In vitro Inactivation of the Insect Neuro-peptide Proctolin in Haemolymph from Periplaneta americana. Insect Biochem. 15, 511 (1985).CrossRefGoogle Scholar
  444. 443.
    Stay, B., S.S. Tobe, and W.G. Bendena: Allatostatins: Identification, Primary Struc-tures, Functions and Distributions. Adv. Insect Physiol. 25, 267 (1994).CrossRefGoogle Scholar
  445. 444.
    Stay, B., A.P. Woodhead, S. Joshi, and S.S. Tobe: Allatostatins. Neuropeptide Inhibitors of Juvenile Hormone Synthesis in Brain and Corpora Allata of the Cock-roach Diploptera punctata. In: Insect Neuropeptides: Chemistry, Biology, and Action ACS Symposium Series No. 453 (J.J. Menn, T.J. Kelly, and E.P. Masler, eds.), pp. 164–176. Washington D.C.: American Chemical Society Books. 1991.CrossRefGoogle Scholar
  446. 445.
    Steel, C.G.H., and K.G. Davey: Integration in the Insect Endocrine System. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G.A. Kerkut and L.I. Gilbert, eds.), Vol. 8, pp. 1–35. Oxford: Pergamon Press. 1985.Google Scholar
  447. 446.
    Steele, J.E.: Occurrence of a Hyperglycaemic Factor in the Corpus Cardiacum of an Insect. Nature 192, 680 (1961).CrossRefGoogle Scholar
  448. 447.
    Steele, J.E.: Hormonal Modulation of Carbohydrate and Lipid Metabolism in Fat Body. In: Insect Biology in the Future (M. Locke and D.S. Smith, eds.), pp. 253–271. New York: Academic Press. 1980.Google Scholar
  449. 448.
    Stone, K.L., M.B. Lopresti, and K.R. Williams: Enzymatic Digestion of Proteins and HPLC Peptide Isolation in the Subnanomole Range. In: Laboratory Methodology in Biochemistry. Amino Acid Analysis and Protein Sequencing (C. Fini, A. Floridi, V.N. Finelli, and B. Wittman-Liebold, eds.), pp. 181–205. Boca Raton, Florida, U.S.A: CRC Press Inc. 1990.Google Scholar
  450. 449.
    Stone, J.V., and W. Mordue: Adipokinetic Hormone. In: Neurohormonal Techniques in Insects (T.A. Miller, ed.), pp. 31–80. New York: Springer Verlag. 1980.CrossRefGoogle Scholar
  451. 450.
    Stone, J.V., W. Mordue, K.E. Batley, and H.R. Morris: Structure of Locust Adipokinetic Hormone, a Neurohormone that Regulates Lipid Utilisation During Flight. Nature 263, 207 (1976).CrossRefGoogle Scholar
  452. 451.
    Stone, J.V., W. Mordue, C.E. Broomfield, and P.M. Hardy: Structure-Activity Relationships for the Lipid-Mobilising Action of Locust Adipokinetic Hormone. Synthesis and Activity of a Series of Hormone Analogues. Eur. J. Biochem. 89, 195 (1978).Google Scholar
  453. 452.
    Sullivan, R.E., and R.W. Newcomb: Structure-Function Analysis of an Arthropod Peptide Hormone: Proctolin and Synthetic Analogues Compared on the Cockroach Hindgut Receptor. Peptides 3, 337 (1982).CrossRefGoogle Scholar
  454. 453.
    Suzuki, A., H. Nagasawa, T. Kono, B. Sato, T. Kamito, H. Tanaka, Y. Sakagami, A. Mizoguchi, H. Ishizaki, and H. Fugo: Bombyx Eclosion Hormone. In: Insect Neurochemistry and Neurophysiology 1989 (A.B. Borkovec and E.P. Masler, eds.), pp. 211–214. Clifton, N.J.: The Humana Press Inc. 1990.CrossRefGoogle Scholar
  455. 454.
    Taghert, P.H., and L.E. Schneider: Interspecific Comparison of a Drosophila Gene Encoding FMRFamide-Related Neuropeptides. J. Neurosci 10, 1929 (1990).Google Scholar
  456. 455.
    Thorpe, A., and H. Duve: Insect Neuropeptides. In: Current Topics in Neuroendo-crinology, Vol. 9, pp. 185–230. Berlin: Springer. 1988.Google Scholar
  457. 456.
    Tips, A., L. Schoofs, L. Paemen, M. Ma, M. Blackburn, A. Raina, and A. De Loof: Co-localization of Locustamyotropin-and Pheromone Biosynthesis Activating Neur-opeptide-like Immunoreactivity in the Central Nervous System of Five Insect Species. Comp. Biochem. Physiol. 106A, 195 (1993).CrossRefGoogle Scholar
  458. 457.
    Tobe, S.S., and N. Clarke: The effect of L-methionine Concentration on Juvenile Hormone Biosynthesis by Corpora Allata of the Cockroach Diploptera punctata. Insect Biochem. 15, 175 (1985).CrossRefGoogle Scholar
  459. 458.
    Troetschler, R.G., and S.J. Kramer: Mode of Action Studies on a Manduca sexta Diuretic Hormone. Archs. Insect Biochem. Physiol. 20, 35 (1992).CrossRefGoogle Scholar
  460. 459.
    Truman, J.W.: Hormonal Control of Ecdysis. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G.A. Kerkut and L.I. Gilbert, eds.), Vol. 8, pp. 413–440. Oxford: Pergamon Press. 1985.Google Scholar
  461. 460.
    Truman, J.W, P.H. Taghert, P.F. Copenhaver, N.J. Tublitz and L.M. Schwartz: Eclosion Hormone May Control All Ecdyses in Insects. Nature 291, 70 (1981).CrossRefGoogle Scholar
  462. 461.
    Tublitz, N.J., D.L. Brink, K.S. Broadie, P.K. Loi, and A.W. Sylwester: From Behavior to Molecules: an Integrated Approach to the Study of Neuropeptides. Trends Neurosci. 14, 254 (1991).CrossRefGoogle Scholar
  463. 462.
    Unger, H.: Untersuchungen zur Neurohormonalen Steuerung der Herztätigkeit bei Schaben. Biol. Zbl. 76, 204 (1957).Google Scholar
  464. 463.
    Vakharia, V.N., A.K. Raina, T.G. Kingan, and T.G. Kempe: Synthetic Pheromone Biosynthesis Activating Neuropeptide Gene Expressed in a Baculovirus Expression System. Insect Biochem. Molec. Biol. 25, 583 (1995).CrossRefGoogle Scholar
  465. 464.
    Veenstra, J.A.: Isolation and Structure of Corazonin, a Cardioactive Peptide from the American Cockroach. FEBS Lett 250, 231 (1989).CrossRefGoogle Scholar
  466. 465.
    Veenstra, J.A.: Isolation and Structure of Two Gastrin/CCK-like Neuropeptides from the American Cockroach Homologous to the Leucosulfakinins. Neuropeptides 14, 145 (1989).CrossRefGoogle Scholar
  467. 466.
    Veenstra, J.A.: Presence of Corazonin in Three Insect Species, and Isolation and Identification of [His7] Corazonin from Schistocerca americana. Peptides 12, 1285 (1991).CrossRefGoogle Scholar
  468. 467.
    Veenstra, J.A.: Isolation and Identification of Three Leucokinins from the Mosquito Aedes aegypti. Biochem. Biophys. Res. Comm. 202, 715 (1994).CrossRefGoogle Scholar
  469. 468.
    Veenstra, J.A., and F. Camps: Structure of the Hypertrehalosemic Neuropeptide of the German Cockroach, Blattella germanica. Neuropeptides 15, 107 (1990).CrossRefGoogle Scholar
  470. 469.
    Veenstra, J.A., and N.T. Davis: Localization of Corazonin in the Nervous System of the Cockroach Periplaneta americana. Cell Tissue Res. 274, 57 (1993).CrossRefGoogle Scholar
  471. 470.
    Veenstra, J.A., and H.H. Hagedorn: Identification of Neuroendocrine Cells Produc-ing a Diuretic Hormone in the Tobacco Hornworm Moth, Manduca sexta. Cell Tissue Res. 266, 359 (1991).CrossRefGoogle Scholar
  472. 471.
    Veenstra, J.A., and H.H. Hagedorn: Isolation of Two AKH-Related Peptides from Cicadas. Arch. Insect Biochem. Physiol. 29, 391 (1995).CrossRefGoogle Scholar
  473. 472.
    Veenstra, J.A., H.M. Romberg-Privee, and H. Schooneveld: A Proctolin-like Peptide and its Immunocytochemical Localization in the Colorado Potato Beetle, Leptinotarsa decemlineata. Cell Tissue Res. 240, 535 (1985).CrossRefGoogle Scholar
  474. 473.
    Wagner, R.M., C.W. Woods, J.A. Hayes, J.P. Kochansky, J.C. Hill, and B.A. Fraser: Isolation and Identification of a Novel Peptide from the Accessory Sex Gland of the Female House Fly, Musca domestica. Biochem. Biophys. Res. Comm. 194, 1336 (1993).CrossRefGoogle Scholar
  475. 474.
    Weaver, R.J., Z.A. Freeman, M.G. Pickering, and J.P. Edwards: Identification of two Allatostatins from the CNS of the Cockroach Periplaneta americana: Novel Members of a Family of Neuropeptide Inhibitors of Insect Juvenile Hormone Bio-synthesis. Comp. Biochem. Physiol. 107C, 119 (1994).Google Scholar
  476. 475.
    Weigt, C., H.E. Meyer, and R. Kellner: Sequence Analysis of Proteins and Peptides by Mass Spectrometry. In: Microcharacterization of Proteins (R. Kellner, F. Lottspeich, and H.E. Meyer, eds.), pp. 189–205. Weinheim: VCH Verlagsgesellschaft. 1994.CrossRefGoogle Scholar
  477. 476.
    Wheeler, C.H., and G.M. Coast: Assay and Characterisation of Diuretic Factors in Insects. J. Insect Physiol. 36, 23 (1990).CrossRefGoogle Scholar
  478. 477.
    Wheeler, C.H., A.F. Drake, C.M. Wilmot, J.M. Thornton, G. Gäde, and G.J. Goldsworthy: Structures in the AKH family of Neuropeptides. In: Insect Neuro-chemistry and Neurophysiology 1989 (A.B. Borkovec and E.P. Masler, eds.), pp. 235–238. Clifton, N.J.: The Humana Press Inc. 1990.CrossRefGoogle Scholar
  479. 478.
    Witten, J.L., M.H. Schaffer, M. O’Shea, J.C. Cook, M.E. Hemling, and K.L. Rinehart, Jr.: Structures of Two Cockroach Neuropeptides Assigned by Fast Atom Bombardment Mass Spectrometry. Biochem. Biophys. Res. Comm. 124, 350 (1984).CrossRefGoogle Scholar
  480. 479.
    Woodhead, A.P., M.A. Khan, B. Stay, and S.S. Tobe: Two New Allatostatins from the Brains of Diploptera punctata. Insect Biochem. Molec. Biol. 24, 257 (1994).CrossRefGoogle Scholar
  481. 480.
    Woodhead, A.P., B. Stay, S.L. Seidel, M.A. Khan, and S.S. Tobe: Primary Structure of Four Allatostatins: Neuropeptide Inhibitors of Juvenile Hormone Synthesis. Proc. Natl. Acad. Sci. U.S.A. 86, 5997 (1989).CrossRefGoogle Scholar
  482. 481.
    Woodring, J.P., S. Das, R. Kellner, and G. Gäde: The Sequence of Acheta Adipokinetic Hormone and the Variation in Corpus Cardiacum Content and Hyper-lipaemic Response with Age. Z. Naturforsch 45c, 1176 (1990).Google Scholar
  483. 482.
    Xu, W.-H., Y. Sato, M. Ikeda, and O. Yamashita: Molecular Characterization of the Gene Encoding the Precursor Protein of Diapause Hormone and Pheromone Bio-synthesis Activating Neuropeptide (DH-PBAN) of the Silkworm, Bombyx mori and its Distribution in Some Insects. Biochim. Biophys. Acta 1261, 83 (1995).CrossRefGoogle Scholar
  484. 483.
    Xu, W.-H., Y. Sato, M. Ikeda, and O. Yamashita: Stage-Dependent and Temperature-controlled Expression of the Gene Encoding the Precursor Protein of Diapause Hormone and Pheromone Biosynthesis Activating Neuropeptide in the Silkworm, Bombyx mori. J. Biol. Chem. 270, 3804 (1995).CrossRefGoogle Scholar
  485. 484.
    Yamashita, O.: Egg Diapause. In: Endocrinology of Insects (R.G.H. Downer and H. Laufer, eds.), pp. 337–342. New York: A. Liss Inc. 1983.Google Scholar
  486. 485.
    Yamashita, O., and K. Suzuki: Role of Morphogenetic Hormones in Embryonic Diapause. In: Morphogenetic Hormones in Arthropods (A.P. Gupta, ed.) Vol. 3, pp. 81–128. New Brunswick: Rutger University Press. 1991.Google Scholar
  487. 486.
    Yi, S.: Detection, Purification and Identification of Myoactive Peptide in Larval Tissues of Manduca sexta (L.) (Lepidoptera: Sphingidae). Ph.D. Thesis. State Univer-sity of Gent, Belgium. 1993.Google Scholar
  488. 487.
    Yi, S.-X., L. Tirry, C. Bai, B. Devreese, J. Van Beeumen, and D. Degheele: Isolation, Identification, and Synthesis of Mas-MG-MT-I, a Novel Peptide from the Larval Midgut of Manduca sexta (Lepidoptera: Sphingidae). Arch. Insect Biochem. Physiol. 28, 159 (1995).CrossRefGoogle Scholar
  489. 488.
    Yu, C.G., T.K. Hayes, A. Strey, W.G. Bendena, and S.S. Tobe: Identification and Partial Characterization of Receptors for Allatostatins in Brain and Corpora Allata of the Cockroach Diploptera punctata Using a Binding Assay and Photoaffinity Labeling. Regul. Pept. 57, 347 (1995).CrossRefGoogle Scholar
  490. 489.
    Ziegler, R., K. Eckart, R.D. Jasensky, and J.H. Law: Structure-activity Studies on Adipokinetic Hormones in Manduca sexta. Arch. Insect Biochem. Physiol. 18, 229 (1991).CrossRefGoogle Scholar
  491. 490.
    Ziegler, R., K. Eckart, and J.H. Law: Adipokinetic Hormone Controls Lipid Metabolism in Adults and Carbohydrate Metabolism in Larvae of Manduca sexta. Peptides 11, 1037 (1990).CrossRefGoogle Scholar
  492. 491.
    Ziegler, R., K. Eckart, H. Schwarz, and R. Keller: Amino Acid Sequence of Manduca sexta Adipokinetic Hormone Elucidated by Combined Fast Atom Bombard-ment (FAB)/Tandem Mass Spectrometry. Biochem. Biophys. Res. Comm. 133, 337 (1985).CrossRefGoogle Scholar
  493. 492.
    Ziegler, R., R.D. Jasensky, and H. Morimoto: Characterization of the Adipokinetic Hormone Receptor from the Fat Body of Manduca sexta. Regul. Pept. 57, 329 (1995).CrossRefGoogle Scholar
  494. 493.
    Zöllner, N., and K. Kirsch: Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plas-malipoiden) gemeinsamen Sulfophosphovanillin Reaktion. Z. Ges. Exp. Med. 135, 545 (1962).CrossRefGoogle Scholar
  495. 494.
    Zubrzycki, I.Z., and G. Gäde: Conformational Study on an Insect Neuropeptide of the AKH/RPCH Family by Combined 1H NMR Spectroscopy and Molecular Mech-anics. Biochem. Biophys. Res. Comm. 198, 228 (1994).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • G. Gade
    • 1
  1. 1.Zoology DepartmentUniversity of Cape TownRondeboschRepublic of South Africa

Personalised recommendations