Advertisement

Abstract

Marine glycolipids, as well as those from terrestrial organisms, are amphiphylic compounds which are currently divided into two main groups: glycoglycerolipids (GGLs) and glycosphingolipids (GSLs). There is a third important group comprising glycolipids whose lipid portion is derived from mevalonate, i.e. steroidal and terpenic glycosides. The occurrence of polyisoprenoidic glycolipids is generally confined to species of a few taxa, where they frequently perform peculiar biological functions; as to their occurrence in marine organisms, they are mostly present in invertebrates belonging to phylum Echinoderma.

Keywords

Sialic Acid Methylation Analysis Physical Data Marine Sponge Anomeric Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Minale, L., R. Riccio, and F Zollo: Steroidal Oligoglycosides and Polyhydroxysteroids from Echinoderms. In: Progress in the Chemistry of Organic Natural Products (W. Herz, G.W. Kirby, R.E. Moore W. Steglich, and Ch. Tamm, eds. Vol. 62, p. 75. Wien, New York: Springer. 1993.Google Scholar
  2. 2.
    Gunstone, F.D., J.L. Harwood, and F.D.Padley: The Lipid Handbook, p. 12. London: Chapman & Hall. 1994.Google Scholar
  3. 3.
    Sweeley, C.C.: Sphingolipids. In: New Comprehensive Biochemistry D.E. Vance and J. Vance, eds. Vol. 20, Biochemistry of Lipids, Lipoproteins and Membranes, p. 327. Amsterdam: Elsevier. 1991.Google Scholar
  4. 4.
    Rajagopal, M.V., and K. Sohonie: Studies on the Sea Anemone Gyrostomasp. Biochem. J., 65, 34 (1957).Google Scholar
  5. 5.
    Nagai, Y., and Y. Isono: Occurrence of Animal Sulfolipid in the Gametes of Sea Urchins. Jpn. J. Exp. Med., 35, 315 (1965).Google Scholar
  6. 6.
    Isono, Y, and Y. Nagal: Biochemistry of Glycolipids of Sea Urchin Gametes. 1. Separation and Characterization of New Type of Sulfolipid and Sialoglycolipid. Jpn. J. Exp. Med., 36, 461 (1966).Google Scholar
  7. 7.
    Isono, Y: Changes of Glycolipids during Early Development of Sea Urchin Embryos. Jpn. J. Exp. Med., 37, 87 (1967).Google Scholar
  8. 8.
    Nichols, B.W., and B.J.B. Woods: New Glycolipid Specific to Nitrogen-Fixing Blue-Green Algae. Nature, 217, 767 (1968).Google Scholar
  9. 9.
    Walsby, A.E., and B.W. Nichols: Lipid Composition of Heterocysts. Nature, 221,673 (1969).Google Scholar
  10. 10.
    Vaskovsky, V.E., E.Y Kostetsky, V.I. Svetaskev, I.G. Zhukova, and G.P. Smirnova: Glycolipids in Marine Invertebrates. Comp. Biochem. Physiol., 34, 163 (1970).Google Scholar
  11. 11.
    Koezuka, I., M. Kloppenburg, and H. Wiegandt: Characterization of Gangliosides from Fish Brain. Biochim. Biophys. Acta, 210, 299 (1970).Google Scholar
  12. 12.
    Komai, Y, S. Mitsukawa, and M. Satake: Glycolipids in Nervous Tissue of Invertebrates. J. Biochem., 70, 367 (1971).Google Scholar
  13. 13.
    Hayashi, A., and F. Matsuura: Isolation of a New Sphingophosphonolipid Containing Galactose from the Viscera of Turbo cornutus. Biochim. Biophys. Acta, 248, 133 (1971).Google Scholar
  14. 14.
    Bryce, T.A., D. Welti, A.E. Walsby, and W.B. Nichols: Monohexoside Derivatives of Long-Chain Polyhydroxy Alcohols: a Novel Class of Glycolipid Specific to Heterocystous Algae. Phytochemistry, 11, 295 (1972).Google Scholar
  15. 15.
    BJöRkman, L.R., K.A. Karlsson, and K. Nilsson: Existence of Cerebroside and Cholesterol Sulfate in the Tissues of the Sea Star Asterias rubens. Comp. Biochem. Physiol., 43B, 409 (1972).Google Scholar
  16. 16.
    BJöRkman, L.R., K.A. Karlsson, I. Pascher, and B.E. Samuelsson: Isolation of Large Amounts of Cerebroside and Cholesterol Sulphate in the Sea Star Asterias rubens. Biochim. Biophys. Acta, 270, 260 (1972).Google Scholar
  17. 17.
    Matsubara, T., and A. Hayashi: The Existence of Branched Structure in the Sugar Moiety of Oyster Sphingoglycolipid. J. Biochem., 74, 853 (1973).Google Scholar
  18. 18.
    Kochetkov, N.K., I.G. Zhukova, G.P. Smirnova, and I.S. Glukhoded: Isolation and Characterization of a Sialoglycolipid from the Sea Urchin Strongylocentrotus intermedius. Biochim. Biophys. Acta, 326, 74 (1973).Google Scholar
  19. 19.
    KOMAI, Y, S. Matsukawa, and M. Satake: Lipid Composition of the Nervous Tissue of the Invertebrates Aplysia kurodai(Gastropod) and Cambarus clarki(Arthropod). Biochim. Biophys. Acta, 316, 271 (1973).Google Scholar
  20. 20.
    Kreps, E.M., N.F. Avrova, M.A. Chebotarë Va, E.V. Chirkovskaya, V.I. Krasilnikova, E.E. Kruglova, M.V. Levitina, E.L. Obukhova, L.F. Pomazanskaya, N.I. Pravdina, and S.A. Zabelinskii: Phospholipid and Glycolipids in the Brain of Marine Fish. Comp. Biochem. Fhysiol., 52B, 283 (1975).Google Scholar
  21. 21.
    Sugita, M., and T. Hori: New Types of Gangliosides with Sialic Acid Residues in the Inner Part of Their Carbohydrate Chains. J. Biochem., 80, 637 (1976).Google Scholar
  22. 22.
    Matsubara, T., and A. Hayashi: Structural Studies on Glycolipid of Shellfish. II. Occurrence of 3-O-methylgalactosamine in Oyster Glycolipid. J. Biochem., 83, 1195 (1978).Google Scholar
  23. 23.
    Lambein, F., and C.P. Wolk: Structural studies on the Glycolipid from the Envelope of the Heterocyst of Anabaene cylindrica. Biochemistry, 12, 791 (1973).Google Scholar
  24. 24.
    Kochetkov, N.K., and G.P. Smirnova: Glycolipids of Marine Invertebrates. Adv. Carbohydr. Chem. Biochem., 44, 387 (1986).Google Scholar
  25. 25.
    Hori, T., and M. Sugita: Sphingolipids in Lower Animals. Prog. Lipid Res., 32, 25 (1993).Google Scholar
  26. 26.
    Kates, M.: Glycolipids of Higher Plants, Algae, Yeasts, and Fungi. In: Handbook of Lipid Research M. Kates, ed.) Vol. 6, p. 235. New York, London: Plenum Press. 1990.Google Scholar
  27. 27.
    Higuchi, R., T. Natori, and T. Komori: Glycosphingolipids from the Starfish Asterina pectinifera. Isolation and Characterization of Acanthacerebroside B and Structure Elucidation of Related, Nearly Homogeneous Cerebrosides. Liebigs Ann. Chem., 51 (1990).Google Scholar
  28. 28.
    Higuchi, R., M. Inagaki, K. Togawa, T. Miyamoto, and T. Komori: Constituents of Holothuriodeae. IV CE-2b, CE-2c and CE-2d, Three New Sphingosine-type Glucocerebrosides from the Sea Cucumber Cucumaria echinata. Liebigs Ann. Chem., 79 (1994).Google Scholar
  29. 29.
    Folch, J., M. Lees, and G.H.Sloane-Stanley: A Simple Method for the Isolation and Purification of Total Lipids from Animals Tissues. J. Biol. Chem., 226, 497 (1957).Google Scholar
  30. 30.
    Higuchi, R., S. Matsumoto, M. Fujita, T. Komori, and T. Sasaki: Glycosphingolipids from the Starfish Astropecten latespinosus, 2.Structure of Two New Ganglioside Molecular Species and Biological Activity of the Ganglioside. Liebigs Ann. Chem., 545 (1995).Google Scholar
  31. 31.
    Oshima, Y, S.-H. Yamada, K. Matsunaga, T. Moriya, and Y. Ohizumi: A Monogalactosyl Diacylglycerol from a Cultured Marine Dinoflagellate, Scrippsiella tro-choidea. J. Nat. Prod., 57, 534 (1994).Google Scholar
  32. 32.
    Jin, W., K.L. Rinehart, and E.A. Jares-Erijman: Ophidiacerebrosides A-E, Five New Cytotoxic Glycosphingolipids from the Sea Star Ophidiaster ophidiamus. J. Org. Chem., 59, 144 (1994).Google Scholar
  33. 33.
    Kobayashi, J., Y Doi, and M. Ishibashi: Shimofuridin A, a Cytotoxic and Antimicrobial Nucleoside Derivative with an Acylfucopyranoside Unit from the Marine Tunicate Aplidium multiplicatum. J. Org. Chem., 59, 255 (1994).Google Scholar
  34. 34.
    Higuchi, R., K. Inukai, J.X. Jhou, M. Honda, T. Komori, S. Tsuji, and Y Nagai: GAA-6 and GAA-7, Two Ganglioside Molecular Species from the Starfish Asterias amurensis versicolor, Liebigs Ann. Chem., 359 (1993).Google Scholar
  35. 35.
    Natori, T., M. Morita, K. Akimoto, and Y. Koezuka: Agelasphin, Novel Antitumor and Immunostimulatory Cerebrosides from the Marine Sponge Agelas mauritiana. Tetrahedron, 50, 2771 (1994).Google Scholar
  36. 36.
    Higuchi, R., M. Inagaki, K. Togawa, T. Miyamoto, and T. Komori: Constituents of Holothuriodeae. V. Isolation and Structure of Cerebrosides from the Sea Cucumber Pentacta australis. Liebigs Ann. Chem., 653 (1994).Google Scholar
  37. 37.
    Sata, N., N. Asai, S. Matsunaga, and N. Fusetani: Erylusamines, Interleukin-6 Receptor Antagonists, from the Marine Sponge Erylus placenta. Tetrahedron, 50, 1093 (1994).Google Scholar
  38. 38.
    Kubo, H., A. Irie, F. Inagaki, and M. Hoshi: Gangliosides from the Eggs of the Sea Urchin Anthocidaris crassispina. J. Biochem., 108, 185 (1990).Google Scholar
  39. 39.
    Itonori, S., K. Kamemura, K. Narushima, N. Sonku, O. Itasaka, T. Hori, and M. Sugita: Characterization of a New Phosphonocerebroside, N-Methyl-2-aminoethyl-phosphonylglucosylceramide, from the Antarctic Krill Euphausia superba. Biochim. Biophys. Acta, 1081, 321 (1991).Google Scholar
  40. 40.
    Costantino, V., E. Fattorusso, A. Mangoni, M. DI Rosa, A. Ianaro, and P. Maffia: Glycolipids from Sponges. IV. Immunomodulating Glycosyl Ceramides from the Marine Sponge Agelas dispar. Tetrahedron, 52, 1573 (1996).Google Scholar
  41. 41.
    Sweeley, C.C., and R.V.P. Tao: Gas Chromatographie Estimation of Carbohydrates in Glycosphingolipids. Methods Carbohydr. Chem., 6, 8 (1972).Google Scholar
  42. 42.
    Svennerholm, L.: Quantitative Estimation of Sialic Acid. III. An Anion-Exchange-Resin Method. Acta Chem. Scand., 12, 547 (1958).Google Scholar
  43. 43.
    Hakomori, S.: Rapid Permethylation of Glycolipids and Polysaccharides, Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide. J. Biochem., 55, 205 (1964).Google Scholar
  44. 44.
    Sanford, P.A., and H.E. Conrad: The Structure of the Aerobacter aerogenesA3(S1) Polysaccharide. I. A Reexamination using Improved Procedures for Methylation Analysis. Biochemistry, 5, 1508 (1966).Google Scholar
  45. 45.
    Li, Y.-T., and S.-C. Li: Glycosidases in Jack Bean Meal. I. Separation of Various Glycosidases by Isoelectric Focusing. J. Biol. Chem., 243, 3994 (1968).Google Scholar
  46. 46.
    Li, S.-C., and Y.-T. Li: Glycosidases of Jack Bean Meal. II. Crystallization and Properties of β-N-Acetylhexosaminidase. J. Biol. Chem., 245, 5153 (1970).Google Scholar
  47. 47.
    Weissman, B., and D.F. Hinrichsen: Mammalian α-Acetylagalactosaminase. Occurrence, Partial Purification, and Action on Linkages in Submaxillary Mucins. Biochemistry, 8, 2034 (1969).Google Scholar
  48. 48.
    Gatt, S., and M.M. Rapport: Isolation of β-Galactosidase and β-Glucosidase from Brain. Biochim. Biophys. Acta, 113, 567 (1966).Google Scholar
  49. 49.
    Kubo, H., G.J. Jiang, A. Irie, M. Morita, T. Matsubara, and M. Hoshi: A Novel Ceramide Trihexoside from the Eggs of the Sea Urchin Hemicentrotus pulcherrimus. J. Biochem., 111, 726 (1992).Google Scholar
  50. 50.
    KAWANO, Y, R. Higuchi, and T. Komori: Glycosphingolipids from the Starfish Acanthaster planci,4. Isolation and Structure of Five New Gangliosides. Liebigs Ann. Chem., 43 (1990).Google Scholar
  51. 51.
    Muralikrishna, G., G. Reuter, J. PETER-Katalinic, H. Egge, F.G. Hanish, H.C. Siebert, and R. Shauer: Identification of a New Ganglioside from the Starfish Asterias rubens. Carbohydr. Res., 236, 321 (1992).Google Scholar
  52. 52.
    Hoffman, J., B. Lindberg, and S. Svensson: Determination of Anomeric Configuration of Sugar Residues in Acetylated Oligo-and Polysaccharides by Oxidation with Chromium Trioxide. Acta Chem. Scand., 26, 661 (1972).Google Scholar
  53. 53.
    Laine, R.A., and O. Renkonen: Ceramide Di-and Trihexosides of Wheat Flour. Biochemistry, 13, 2837 (1974).Google Scholar
  54. 54.
    Laine, R.A., and O. Renkonen: Analysis of Anomeric Configurations in Glyceroglycolipids and Glycosphingolipids by Chromium Trioxide Oxidation. J. Lipid Res., 16, 102 (1975).Google Scholar
  55. 55.
    Inagaki, F., S. Tate, H. Kubo, and M. Hoshi: A Novel Difucosylated Neutral Glycosphingolipid from the Eggs of the Sea Urchin Hemicentrotus pulcherrimus. II. Structural Determination by Two-Dimensional NMR. J. Biochem., 112, 286 (1992).Google Scholar
  56. 56.
    Costantino, V., E. Fattorusso, and A.Mangoni: Glycolipids from Sponges. III. Glycosyl Ceramide Composition of the Marine Sponge Agelas conifera. Liebigs Ann. Chem., 2133 (1995).Google Scholar
  57. 57.
    Costantino, V., E. Fattorusso, A. Mangoni, M. Aknin, A. Fall, A. Samb, and J. Miralles: An Unusual Ether Glycolipid from the Senegalese Sponge Trikentrion loeveCarter. Tetrahedron, 49, 2711 (1993).Google Scholar
  58. 58.
    Costantino, V., E. Fattorusso, and A.Mangoni: Isolation of Five-Membered Cyclitol Glycolipids, Crasserides: Unique Glycerides from the Sponge Pseudoceratina crassa. J. Org Chem., 58, 186 (1993).Google Scholar
  59. 59.
    Costantino, V., E. Fattorusso, A. Mangoni, M. Aknin, and E.M. Gaydou: Axycer-amide A and B, Two Novel Tri-α-glycosylceramides from the Marine Sponge Axinellasp. Liebigs Ann. Chem., 181 (1994).Google Scholar
  60. 60.
    Cafieri, F., E. Fattorusso, Y. Mahajnah, and A.Mangoni: Longiside, a Novel Digalactosylceramide from the Caribbean Sponge Agelas longissima. Liebigs Ann. Chem., 1187 (1994).Google Scholar
  61. 61.
    Kobayashi, J., C. Zeng, and M. Ishibashi: Keruffaride, a New All-cis-Cyclopentane-pentol-containing Metabolite from the Okinawan Marine Sponge Luffariellasp. J. Chem. Soc. Chem. Comm., 79 (1993).Google Scholar
  62. 62.
    Ishibashi, M., C.-M. Zeng, and J. Kobayashi: Keruffaride: Structure Revision and Isolation from Plural Genera of Okinawan Marine Sponges. J. Nat. Prod., 56, 1856 (1993).Google Scholar
  63. 63.
    VAN Hummel, H.C.: Chemistry and Biosynthesis of Plant Galactolipids. Fortschr. Chem. Org. Naturst., 32, 267 (1975).Google Scholar
  64. 64.
    Dembitsky, V. M., O.A. Rozentsvet, E.E. and Pechenkina: Glycolipids, Phospholipids and Fatty Acids of Brown Algae Species. Phytochemistry, 29, 3417 (1990).Google Scholar
  65. 65.
    Jones, A.L., and J.L. Harwood: Comparative Aspects of Lipid Metabolisms in Marine Algae. Biochem. Soc. Trans., 15, 482 (1987).Google Scholar
  66. 66.
    Dembitsky, V.M., E.E. Pechenkina, and O.A. Rozentsvet: Glycolipids and Fatty Acids of Some Seaweeds and Marine Grasses from the Black Sea. Phytochemistry, 30,2279 (1991).Google Scholar
  67. 67.
    Dembitsky, V.M., T. Rezanka, and O.A. Rozentsvet: Lipid Composition of Three Macrophytes from the Caspian Sea. Phytochemistry, 33, 1015 (1993).Google Scholar
  68. 68.
    Kitagawa, I., K. Hayashi, and J. Kobayashi: Heterosigma-glycolipids I and II, New Galactolipids from a Raphidophycean Dinoflagellate Heterosigmasp. Chem. Pharm. Bull., 37, 849 (1989).Google Scholar
  69. 69.
    Kobayashi, M., K. Hayashi, K. Kawazoe, and I. Kitagawa: Heterosigma Glycolipids I-IV, Four New Diacylglycerolipids from the Marine Dinoflagellate Heterosigma akashiwo. Chem. Pharm. Bull., 40, 1404 (1992).Google Scholar
  70. 70.
    Kikuchi, H., Y. Ksukitani, T. Manda, T. Fujii, H. Nakanishi, M. Kobayashi, and I. Kitagawa: Marine Natural Products. X. Pharmacologically Active Glycolipid from the Okinawan Marine Sponge Phyllospongiafoliascens(Pallas). Chem. Pharm. Bull., 30, 3544 (1982).Google Scholar
  71. 71.
    Jiang, Z.D., and W.H. Gerwick: Galactolipid from the Temperate Red Marine Alga Gracilariopsis lemaneiformis. Phytochemistry, 29, 1433 (1990).Google Scholar
  72. 72.
    Arao, T., and M. Yamada: Positional Distribution of Fatty Acids in Galactolipids of Algae. Phytochemistry, 28, 805 (1989).Google Scholar
  73. 73.
    Murakami, N., H. Shirahshi, J. Sakakibara, and Y. Tsuchida: A Novel Glicerogly-colipid from the Nitrogen-fixing Cyanobacterium Anabaena flos-aquaeF. flosaquae. Chem. Pharm. Bull., 40, 285 (1992).Google Scholar
  74. 74.
    Jiang, Z.D., and W.H. Gerwick: An Aldehyde-Containing Galactolipid from the Red Alga Gracilariopsis lemaneiformis. Lipids, 26, 960 (1991).Google Scholar
  75. 75.
    Fusetani, N., and Y. Hashimoto: Structures of Two Water Soluble Hemolysins Isolated from the Green Alga Ulva pertusa. Agric. Biol. Chem., 39, 2021 (1975).Google Scholar
  76. 76.
    Son, B.W.: Glycolipids from Gracilaria verrucosa. Phytochemistry, 29, 307 (1990).Google Scholar
  77. 77.
    Son, B.W.: Glycolipid from the Korean Marine Red Alga Gracilaria verrucosa. Bull. Korean Chem. Soc, 9, 264 (1988).Google Scholar
  78. 78.
    Katsuoka, M., C. Ogura, H. Etoh, K. Sakata, and K. Ina: Galactosyl-and Sulfoquinovosyldiacylglicerols Isolated from the Brown Algae, Undaria pinnatifidaand Costaria costataas repellents of the blue mussel Mytilus edulis. Agric. Biol. Chem., 54, 3043 (1990).Google Scholar
  79. 79.
    Pettit, G.R., A.L. Jones, and L.H.Harwood: Lipids of the Marine Red Algae, Chondrus crispusand Polysiphonia lanosa. Phytochemistry, 28, 399 (1989).Google Scholar
  80. 80.
    Gustafson, K.R., J.H. Cardellina Ii, R.W. Fuller, O.S. Weislow, R.F. Kiser, K.M. Snader, G.M.L. Patterson, and M.R. Boyd: Aids-Antiviral Sulfolipids from Cyanobacteria (Blue-Green Algae). J. Natl. Cancer Inst, 81, 1254 (1989).Google Scholar
  81. 81.
    Gordon, D.M., and S.J. Danishefsky: Synthesis of a Cyanobacterial Sulpholipid: Confirmation of its Structure, Stereochemistry, and Anti-HIV-1 Activity. J. Am. Chem. Soc, 114, 659 (1992).Google Scholar
  82. 82.
    Son, B.W., Y.J. Cho, N.K. Kim, and H.D. Choi: New Glyceroglycolipids from the Brown Alga Sargassum thunbergii. Bull. Korean Chem. Soc, 13, 584 (1992).Google Scholar
  83. 83.
    Kitagawa, I., Y. Hamamoto, and J. Kobayashi: Sulfonoglycolipid from the Sea Urchin Antocidaris crassispinaA. Agassiz. Chem. Pharm. Bull., 27, 1934 (1979).Google Scholar
  84. 84.
    Costantino, V., E. Fattorusso, and A.Mangoni: The Stereochemistry of Crasserides. J. Nat. Prod., 57, 1726 (1994).Google Scholar
  85. 85.
    Hakomori, S.: Chemistry of Glycosphingolipids. In: Handbook of Lipid Research, J. N. KANFER and S. Hakomori, eds. Vol. 3, p. 327. New York, London: Plenum Press. 1983.Google Scholar
  86. 86.
    Nojiri, H., F. Takaku, Y. Terui, Y Miura, and M. Saito: Ganglioside GM3: an Acidic Membrane Component that Increase During Macrophage-like Cell Differentiation Can Induce Monocytic Differentiation of Human Myeloid and Monocytoid Leukemic Cell Lines HL-60 and U937. Proc Natl. Acad. Sci. USA, 83, 782 (1986).Google Scholar
  87. 87.
    Hanai, N., T. Dohi, G.A. Nores, and S. Hakomori: A Novel Ganglioside, De-N-acetyl-GM3 (II3NeuNH2LacCer), Acting as a Strong Promoter fro Epidermial Growth Factor Receptor Kinase and as a Stimulator for Cell Growth. J. Biol. Chem., 263, 6296 (1988).Google Scholar
  88. 88.
    Ishida, R., H. Shirahama, and T. Matsumoto: Coralipid, a New Glycosphingolipid from the Red Alga Corallina pilulifera. Chem. Lett., 9 (1993).Google Scholar
  89. 89.
    Irie, A., H. Kubo, and M. Hoshi: Glucosylceramide Having a Novel Tri-Unsaturated Long-Chain Base from the Spermatozoa of the Starfish Asterias amurensis. J. Biochem., 107, 578 (1990).Google Scholar
  90. 90.
    Schmitz, F.J., and F.J. Mcdonald: Isolation and Identification of Cerebrosides from the Marine Sponge Chondrilla nucula. J. Lipid Res., 15, 158 (1974).Google Scholar
  91. 91.
    Hirsch, S., and J. Kashman: Structure of Ceramides and Cerebrosides, New Glycosphingolipids from Marine Organisms. Tetrahedron, 45, 3873 (1989).Google Scholar
  92. 92.
    Hayashi, A., Y. Nishimura, and T. Matsubara: Occurence of Ceramide Digalactoside as the Main Glycosphingolipid in the Marine Sponge Halichondria japonica. Biochim. Biophys. Acta. 1083, 179 (1991).Google Scholar
  93. 93.
    Endo, M., M. Nakagawa, Y. Hamamoto, and M. Ishihama: Pharmacologically Active Substances from Southern Pacific Marine Invertebrates. Pure Appl. Chem., 58, 387 (1986).Google Scholar
  94. 94.
    Nagle, D.G., W.C. Mcclatchey, and W.H.Gerwick: New Glycosphingolipids from the Marine Sponge Halichondria panicea. J. Nat. Prod., 55, 1013 (1992).Google Scholar
  95. 95.
    Costantino, V., E. Fattorusso, and A.Mangoni: Glycolipids from Sponges, I. Glycosyl Ceramide Composition of the Marine Sponge Agelas clathrodes. Liebigs Ann. Chem., 1471 (1995).Google Scholar
  96. 96.
    CAFIERI, R, E. Fattorusso, A. Mangoni, and TAGLIALATELA-Scafati: Glycolipids from Sponges, II. Glycosyl Ceramide Composition of the Marine Sponge Agelas longissima. Liebigs Ann. Chem., 1477 (1995).Google Scholar
  97. 97.
    Sugita, M.: Studies on Glycosphingolipids of the Starfish, Asterina pectinifera. I. The Isolation and Characterization of Ceramide Mono-and Di-Hexosides. J. Biochem., 82, 1307 (1977).Google Scholar
  98. 98.
    Komori, T., Y. Sanechika, Y. Ito, J. Matsuo, T. Nohara, and T. Kawasaki: Strukturen eines neuen Cerebrosidgemischs und von Nucleosiden aus dem Seestern Acantaster planci. Liebigs Ann. Chem., 653 (1980).Google Scholar
  99. 99.
    Kawano, Y, R. Higuchi, R. Isobe, and T. Komori: Glycosphingolipids from the Starfish Acanthaster planci. Isolation and Structure of Six New Cerebrosides. Liebigs Ann. Chem., 19 (1988).Google Scholar
  100. 100.
    Irie, A., H. Kubo, F. Inagaki, and M. Hoshi: Ceramide Dihexosides from the Spermatozoa of the Starfish, Asterias amurensis, Consist of Gentobiosyl-, Cellobio-syl-, and Lactosylceramide. J. Biochem. 108, 531 (1990).Google Scholar
  101. 101.
    Higuchi, R., J.X. Jhou, K. Inukai, and T. Komori: Glycosphingolipids from the Starfish Asterias amurensis versicolor, 1. Isolation and Structure of Six New Cerebrosides, Asteriacerebrosides A-F, and two Known Cerebrosides, Astrocerebroside A and Acanthacerebroside C. Liebigs Ann. Chem., 745 (1991).Google Scholar
  102. 102.
    Higuchi, R., M. Kagoshima, and T. Komori: Glicosphingolipids from the Starfish Astropecten latespinosus, I. Structure of Three New Cerebrosides, Astrocerebrosides A, B, and C, and of Related Nearly Homogeneous Cerebrosides. Liebigs Ann. Chem., 659 (1990).Google Scholar
  103. 103.
    Kubo, H., A. Irie, F. Inagaki, and M. Hoshi: Melibiosyl Ceramide as the Sole Ceramide Dihexoside from the Eggs of the Sea Urchin Anthocidaris crassispina. J. Biochem., 104, 755 (1988).Google Scholar
  104. 104.
    Batrakov, S.G., V.B. Muratov, O.G. Sakandelidze, A.V. Sulima, and B.V. Rosynov: Cerebrosides of the Far-East Sea Cucumber Cucumaria japonica. Bioorg. Khim., 9, 539 (1983).Google Scholar
  105. 105.
    Shimomura, K., S. Hanjura, P. F. Ki, and Y Ishimoto: An Unusual Glucocerebroside in the Crustacean Nervous System. Science, 220, 1392 (1983).Google Scholar
  106. 106.
    Karlsson, K.A., H. Leffler, and B.E. Samuelsson: Characterization of Cerebroside (Monoglycosylceramide) from the Sea Anemone Metridium senile. Identification of the Major Long-chain Base as an Unusual Dienic Base with a Methyl Branch at a Double Bond. Biochim. Biophys. Acta, 574, 79 (1979).Google Scholar
  107. 107.
    Yamaguchi, Y, K. Konda, and A. Hayashi: Studies on the Chemical Structure of Neutral Glycosphinolipids in Eggs of the Sea Hare Aplysia Juliana. Biochim. Biophys. Acta, 1165, 110 (1992).Google Scholar
  108. 108.
    Sugiyama, S., M. Honda, and T. Komori: The Stereochemistry of the Four Diastereomers of the Phytosphingosine. Liebigs Ann. Chem., 1069 (1990).Google Scholar
  109. 109.
    Sugiyama, S., M. Honda, and T. Komori: Synthesis of Acanthacerebroside A from the Starfish Acanthaster planci. Liebigs Ann. Chem., 1063 (1990).Google Scholar
  110. 110.
    Matsubara, T., and A. Hayashi: Structural Studies on Glycolipid of Shellfish. III. Novel Glycolipids from Turbo cornutus. J. Biochem., 89, 645 (1981).Google Scholar
  111. 111.
    Matsubara, T., and A. Hayashi: Structural Studies on Glycolipids of Shellfish. V. Gala-6 Series Glycosphingolipids of the Marine Snail Chlorostoma argyrostoma turbinatum. J. Biochem., 99, 1401 (1986).Google Scholar
  112. 112.
    Li, H., S. Matsunaga, and N. Fusetani: Halicylindrosides, Antifungal and Cytotoxic Cerebrosides from the Marine Sponge Halichondria cylindrata. Tetrahedron, 51, 2273 (1995).Google Scholar
  113. 113.
    Natori, T., Y. Koezuka, and T. Higa: Agelasphin, Novel α-Galactosylceramides from the Marine Sponge Agelas mauritiana. Tetrahedron Lett., 34, 5591 (1993).Google Scholar
  114. 114.
    Akimoto, K., T. Natori, and M. Morita: Synthesis and Stereochemistry of Agelasphin-9b. Tetrahedron Lett., 35, 5593 (1993).Google Scholar
  115. 115.
    Motoki, K., E. Kobayashi, T. Uchida, H. Fukushima, and Y. Koezuka: Antitumor Activity of α-, β-Monogalactosylceramides and Four Diastereomers of an α-Galactosylceramide. Bioorg. Med. Chem. Lett., 5, 705 (1995).Google Scholar
  116. 116.
    Morita, M., T. Natori, K. Aktmoto, T. Osawa, H. Fukushima, and Y. Koezuka: Syntheses of α-, β-Monoglycosylceramides and Four Diastereomers of an α-Galactosylceramide. Bioorg. Med. Chem. Lett., 5, 699 (1995).Google Scholar
  117. 117.
    Kawano, Y., R. Higuchi, and T. Komori: Achantalactoside A and B, Two New Ceramide Lactosides from the Starfish Acanthaster planci. Liebigs Ann. Chem., 1181 (1988).Google Scholar
  118. 118.
    Sweeley, C.C., and B. Klionskt. Fabry’s Disease. Classification as a Sphingolipidosis and Partial Characterization of a Novel Glycolipid. J. Biol. Chem., 238, 3148 (1963).Google Scholar
  119. 119.
    Yamaguchi, Y, M. Otha, and A. Hayashi: Structural Elucidation of a Novel Phosphonoglycolipid in Eggs of a Sea Hare Aplysia Juliana. Biochim. Biophys. Acta, 1165, 160 (1992).Google Scholar
  120. 120.
    Kubo, H., GJ. Jiang, A. Irie, M. Suzuki, F. Inagaki, and M. Hoshi: A Novel Difucosylated Neutral Glycosphingolipid from the Eggs of the Sea Urchin Hemicentrotus pulcherrimus. I. Purification and Structural Determination of the Glycolipid. J. Biochem., 112, 281 (1992).Google Scholar
  121. 727.
    Matsubara, T., and A. Hayashi: Structural Studies on Glycolipid of Shellfish. IV. A Novel Pentaglycosyl from Abalone Haliotis japonica. Biochim. Biophys. Acta, 711, 551 (1982).Google Scholar
  122. 722.
    Matsuura, F.: Phosphonosphingolipid, a Novel Sphingolipid from the Viscera of Turbo cornutus. Chem. Phys. Lipids, 19, 223 (1977).Google Scholar
  123. 123.
    Hayashi, A., and T. Matsuura: Characterization of Aminoalkylphosphonyl Cerebrosides in Muscle Tissues of Turbo Cornutus. Chem. Phys. Lipids, 22, 9 (1978).Google Scholar
  124. 124.
    Matsuura, E: The Identification of Aminoalkylphosphonyl Cerebrosides in the Marine Gastropod Monodonta labio. J. Biochem., 85, 433 (1979).Google Scholar
  125. 125.
    Noda, N., R. Tanaka, K. Miyahara, and T. Kawasaki: TWO Novel Galactosylceramides from the Marine Annelid Marphysa sanguinea. Tetrahedron Lett., 33, 7527 (1992).Google Scholar
  126. 126.
    Noda, N., R. Tanaka, K. Miyahara, and T. Kawasaki: Isolation and Characterization of a Novel Type of Glycosphingolipid from Neanthes diversicolor. Biochim. Biophys. Acta, 1169, 30 (1993).Google Scholar
  127. 127.
    Hayashi, A., and T. Matsubara: A new Homologue of Phosphonoglycosphingolipid, N-Methylaminoethylphosphonylgalactosylceramide. Biochim. Biophys. Acta, 1006, 89 (1989).Google Scholar
  128. 128.
    Araki, S., Y. Komai, and M. Satake: A Novel Sphingophosphonoglycolipid Containing 3-O-Methylgalactose Isolated from the Skin of the Marine Gastropod Aplysia kurodai. J. Biochem., 87, 503 (1980).Google Scholar
  129. 129.
    Araki, S., S. Abe, S. Odani, S. Ando, N. Fujii, and M. Satake: Structure of a Triphosphonopentaosylceramide Containing 4-0-Methyl-N-acetylglucosamine from the Skin of the Sea Hare Aplysia kurodai. J. Biol. Chem., 262, 14141 (1987).Google Scholar
  130. 130.
    Araki, S., and M. Satake: Structure of a Novel Diphosphonoglycosphingolipid Isolated from the Skin of Aplysia kurodai. Biochem. Int., 10, 603 (1985).Google Scholar
  131. 131.
    Araki, S., M. Satake, A. Ando, A. Hayashi, and N. Fujii: Characterization of a Diphosphonopentaosylceramide Containing 3-O-Methylgalactose from the Skin of Aplysia kurodai(Sea Hare). J. Biol. Chem., 261, 5138 (1986).Google Scholar
  132. 132.
    Hori, T., O. Itasaka, H. Inoue, and K. Yamada: Structural Components of the Pyridine-Insoluble Sphingolipid from Corbicula Sandai, and the Distribution in Other Species. J. Biochem., 56, 477 (1964).Google Scholar
  133. 133.
    Abe, S., Y. Watanabe, S. Araki, T. Kumanishi, and M. Satake: Immunochemical and Histochemical Studies on a Phosphonoglycosphingolipid, SGL-II, isolated from the Sea Gastropod Aplysia kurodai. J. Biochem., 104, 220 (1988).Google Scholar
  134. 134.
    Araki, S., S. Abe, S. Ando, N. Fujii, and M. Satake: Isolation and Characterization of a Novel 2-Aminoethylphosphonyl Glycosphingolipid from the Skin of the Sea Hare Aplysia kurodai. J. Biochem., 101, 145 (1987).Google Scholar
  135. 135.
    Matsubara, T., and A. Hayashi: Occurrence of Phosphonotetraglycosyl Ceramide in the Sea Hare Dolabella auricolaria. Biochim. Biophys. Acta, 1166, 55 (1993).Google Scholar
  136. 136.
    Abe S., S. Araki, M. Satake, S. Fujiwara, K. Kon, and S. Ando: Structure of Triphosphonoglycosphongolipid containing N-Acetylgalactosamine-6-0-2-ami-noethylphosphonate in the Nervous System of Aplysia kurodai. J. Biol. Chem., 266, 9939 (1991).Google Scholar
  137. 137.
    Araki, S., S. Abe, S. Ando, K. Kon, N. Fujiwara, and M. Satake: Structure of Phosphonoglycosphingolipid Containing Pyruvylated Galactose in Nerve Fibres of Aplysia kurodai. J. Biol. Chem., 264, 19922 (1989).Google Scholar
  138. 138.
    Araki, S., S. Abe, M. Satake, A. Hayashi, K. Kon, and S. Ando: Novel Phospho-noglycosphingolipids Containing Pyruvylated Galactose from the Nervous System of Aplysia kurodai. Eur. J. Biochem., 198, 689 (1991).Google Scholar
  139. 139.
    Garegg, P.J., P.-E. Jansson, P. Lindberg, F. Lindh, J. LöNngren, I. KVANRSTRöM, and W. Nimmich: Configuration of the Acetal Carbon Atom of Pyruvic Acid Acetals in Some Bacterial Polysaccharides. Carbohydr. Res., 78, 127 (1980).Google Scholar
  140. 140.
    Araki, S., S. Abe, S. Yamada, M. Satake, N. Fujiwara, K. Kon, and S. Ando: Characterization of Two Novel Pyruvylated Glycosphingolipids Containing 2′-Aminoethylphosphoryl( →6)-galactose from the Nervous System of Aplysia kurodai. J. Biochem., 112, 461 (1992).Google Scholar
  141. 141.
    Yamada, S., S. Araki, S. Abe, K. Kon, S. Ando, and M. Satake: Structural Analysis of a Novel Triphosphonoglycosphingolipid from the Egg of the Sea Hare Aplysia kurodai. J. Biochem., 117, 794 (1995).Google Scholar
  142. 142.
    Hoshi, M., and Y. Nagai: Novel Sialosphingolipids from the Spermatozoa of the Sea Urchin Anthocidaris crassispina. Biochim. Biophys. Acta, 388, 152 (1975).Google Scholar
  143. 143.
    Shashkov, A.S., G.P. Smirnova, N.V. Cekareva, and J. Dabrowski: Structural Study of Sialoglycolipids from the Sea Urchin Tripneustes ventricosaGonads using 1H-and 13C-NMR Spectroscopy. Bioorg. Khim., 12, 789 (1986).Google Scholar
  144. 144.
    Kochetkov, N.K., G.R Smirnova, and I.S. Glukhoded: Structure of Sialolipids from the Gonads of the Sea Urchin Strongylocentrotus nudus. Bioorg. Khim., 4, 1093 (1978).Google Scholar
  145. 145.
    Kubo, H., and M. Hoshi: Immunochemical Study of the Distribution of a Ganglioside in Sea Urchin Eggs. J. Biochem., 108, 193 (1990).Google Scholar
  146. 146.
    Chekareva, N.V., G.R Smirnova, and N.K. Kochetkov: Gangliosides of the Holothurian Cucumaria japonicaSemper. Bioorg. Khim., 17, 398 (1991).Google Scholar
  147. 147.
    Chekareva, N.V., G.R Smirnova, and N.K. Kochetkov: Gangliosides from two Species of Ophiuria, Ophtocoma echinataand Ophiomastix annulosaClark. Bioorg. Khim., 17, 387 (1991).Google Scholar
  148. 148.
    Smirnova, G.R, N.V. Chekareva, and N.K. Kochetkov: Gangliosides of Ophiura sarsi. Bioorg. Khim., 12, 507 (1986).Google Scholar
  149. 149.
    Yamamoto, T., T. Teshima, U. Saitoh, M. Hoshi, and T. Shiba: Synthesis of Ganglioside M5 from Sea Urchin Eggs (Anthocidaris crassispina). Tetrahedron Lett., 35, 2701 (1994).Google Scholar
  150. 150.
    Kochetkov, N.K., G.R Smirnova, N.V. Chekareva: Isolation and Structural Studies on a Sulfated Sialosphingolipid from the Sea Urchin Echinocardium cordatum. Biochim. Biophys. Acta, 424, 274 (1976).Google Scholar
  151. 151.
    Smirnova, G.R, N.V. Chekareva, and N.K. Kochetkov: Structure of Sialoglycolipids from the Gonad Tissue of the Sea Urchin Echinarachnius parma. Bioorg. Khim., 6, 1667 (1980).Google Scholar
  152. 152.
    Smirnova, G.R, N.V. Chekareva, and N.K. Kochetkov: Structure of a Minor Sialoglycolipid from the Sea Urchin Echinocardium cordatum. Bioorg. Khim., 4, 937 (1978).Google Scholar
  153. 153.
    Smirnova, G.R, I.S. Glukhoded, and N.K. Kochetkov: Gangliosides of the Starfish Lethasterias fuska. Bioorg. Khim., 12, 679 (1986).Google Scholar
  154. 154.
    Prokazova, N.V, A.T. Mikhailov, S.L. Kocharov, L.A. Malchenko, N.D. Zvezdina, G. Buznikov, and L.D. Bergelson: Unusual Gangliosides of Eggs and Embryos of the Sea Urchin Strongylocentrotus intermedius. Eur. J. Biochem., 115, 671 (1981).Google Scholar
  155. 155.
    Smirnova, G.R, N.K. Kochetkov, and V.L. Sadovskaya: Gangliosides from the Starfish Aphelasterias japonica, Evidence for a New Linkage Between Two N-Glycolylneuraminic Acid Residues through the Hydroxy Group of the Glycolyc Acid Residue. Biochim. Biophys. Acta, 920, 47 (1987).Google Scholar
  156. 156.
    Kochetkov, N.K., G.R Smirnova, and I.S. Glukhoded: Gangliosides with Sialic Acid Bound to N-Acetylgalactosamine from Hepatopancreas of the Starfish, Evasterias retiferaand Asterias amurensis. Biochim. Biophys. Acta, 712, 650 (1982).Google Scholar
  157. 157.
    Smirnova, G.R, I.S. Glukhoded, and N.K. Kochetkov: A Branched Disialoganglio-side Containing N-Acetylgalactosamine from the Starfish Asterias rubens. Bioorg. Khim., 14, 636 (1988).Google Scholar
  158. 158.
    Smirnova, G.R, and N.K. Kochetkov: Gangliosides with Sialic Acid Located in the Inner Part of the Carbohydrate Chain Isolated from the Starfish Luidia quinaria bispinosa. Bioorg. Khim., 11, 1650 (1985).Google Scholar
  159. 159.
    Smirnova, G.R: Gangliosides with a Sialic Acid Residue in the Inner Part of the Oligosaccharide Chain and with a Terminal Galactofuranose Residue from the Starfish Achantaster planci. Bioorg. Khim., 16, 830 (1990).Google Scholar
  160. 160.
    Sugita, M.: Studies on the Glycosphingolipids of the Starfish, Asterina pectinifera. III. Isolation and Structural Studies of Two Novel Gangliosides Containing Internal Sialic Acid Residues. J. Biochem., 86, 765 (1979).Google Scholar
  161. 161.
    Sugita, M.: Studies on Glycosphingolipids of the Starfish, Asterina pectinifera. II. Isolation and Characterization of a Novel Ganglioside with an Internal Sialic Acid Residue. J. Biochem., 86, 289 (1979).Google Scholar
  162. 162.
    Glukhoded, I.S., G.R Smirnova, and N.K. Kochetkov: Structures of Gangliosides from the Body of the Starfish Patina pectinifera. Bioorg. Khim., 16, 839 (1990).Google Scholar
  163. 163.
    Higuchi, R., K. Inagaki, T. Natori, T. Komori, and S. Kawajiri: Glycosphingolipids from the Starfish Asterina pectinifera. Structure of Three Ganglioside Molecular Species and a Homogeneous Ganglioside, and Biological Activity of the Ganglioside. Liebigs Ann. Chem., 1 (1991).Google Scholar
  164. 164.
    Smirnova, G.R, and N.K. Kochetkov: A Novel Sialylglycolipid from Hepatopancreas of the Starfish Patiria pectinifera. Biochim. Biophys. Acta, 618, 486 (1980).Google Scholar
  165. 165.
    Hakomori, S.: Chemistry of Glycosphingolipids. In: Handbook of Lipid Research, (Kanfer, J.N. and S. Hakomori eds.) Vol. 3, p. 61. New York, London: Plenum Press. 1983.Google Scholar
  166. 166.
    Kochetkov, N.K., and G.R Smirnova: A Disialoglycolipid with Two Sialic Acid Residue Located in the Inner Part of the Oligosaccharide Chain from the Hepatopancreas of the Starfish Patiria pectinifera. Biochim. Biophys. Acta, 759, 192 (1983).Google Scholar
  167. 167.
    Soriente, A., T. Bisogno, A. Gambacorta, I. Romano, C. Sili, A. Trincone, and G. Sodano: Reinvestigation of Heterocyst Glycolipids from the Cyanobacterium Anabaena cylindrica. Phytochemistry, 38, 641 (1995).Google Scholar
  168. 168.
    Soriente, A., G. Sodano, A. Gambacorta, and A. Trincone: Structure of the Heterocyst Glycolipids of Marine Cyanobacterium Nodularia harveyana. Tetrahedron, 48, 5375 (1992).Google Scholar
  169. 169.
    Harada, N., A. Saito, H. Ono, J. Gawronsky, K. Gawronska, T. Sagioka, H. Uda, and T. Kurki: A CD Method for Determination of Absolute Stereochemistry of Acyclic Glycols. 1. Application of the CD Exciton Chirality Method to Acyclic 1,3-Dibenzoate Systems. J. Am. Chem. Soc, 113, 3842 (1991).Google Scholar
  170. 170.
    Dale, J.A., and H.S. Mosher: Nuclear Magnetic Resonance Enantiomer Reagents. Configurational Correlation via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and α-Metoxy-a-trifluoromethylphenylacetate (MTPA) Esters. J. Am. Chem. Soc, 95, 512 (1973).Google Scholar
  171. 171.
    Mori, K., and Z.-H. Qian: Synthesis of (3R, 25R)-3,25-Dihydroxyhexacosyl-a-D-glucopyranoside, the Heterocyst Glycolipid of the Marine Cyanobacterium Nodularia harveyana. Liebigs Ann. Chem., 35 (1994).Google Scholar
  172. 172.
    Soriente, A., A. Laudisio, M. Giordano, and G. Sodano: Enzymatic Desymmetriza-tion of a Prochiral 1,3,5-Pentanetriol Derivative. Application to the Synthesis of a Cyanobacterial Heterocyst Glycolipid. Tetrahedron Asymm., 6, 859 (1995).Google Scholar
  173. 173.
    Gambacorta, A., A. Soriente, A. Trincone, and G. Sodano: Biosynthesis of the Heterocyst Glycolipids in the Cyanobacterium Anabaena cylindrica. Phytochemistry, 39, 771 (1995).Google Scholar
  174. 174.
    Soriente, A., A. Gambacorta, A. Trincone, C. Sili, M. Vincenzini, and G. Sodano: Heterocyst Glycolipids of the Cyanobacterium Cyanospira Rippkae. Phytochemistry, 33, 393 (1993).Google Scholar
  175. 175.
    Makariewa, T.N., V.A. Denisenko, V.A. Stonik, Y.M. Milgrom, and Y.V. Rashkes: Rhizochalin, a Novel Antimicrobial Secondary Metabolite from the Sponge Rhizochalina incrustata. Tetrahedron Lett., 30, 6581 (1989).Google Scholar
  176. 176.
    Fusetani, N., N.S. Ata, N. Asai, and S. Matsunaga: Isolation and Structure Elucidation of Erylusamine B, a New Class of Marine Natural Products which Blocks an IL-6 Receptor, from the Marine Sponge Erylus placenta. Tetrahedron Lett., 34, 4067 (1993).Google Scholar
  177. 177.
    Partridge, J.J., V. Toome, and M.R. Uskokovic: A Stereoselective Synthesis of the 24(/?),25-Dihydroxycholesterol Side Chain. J. Am. Chem. Soc, 98, 3739 (1976).Google Scholar
  178. 178.
    Findlay, J.A., Z.-Q. He, and L.A. Calhoun: Forbesin, a Novel Sulphated Glycolipid from the Starfish Asterias forbesi. J. Nat. Prod., 53, 1015 (1990)Google Scholar
  179. 179.
    Watanabe, J., S. Abe, S. Araki, T. Kumanishi, and M. Satake: Characterization of Phosphonoglycosphingolipids Containing Pyruvate: Localization in AplysiaNerve Bundles. J. Biochem., 106, 972 (1989).Google Scholar
  180. 180.
    Morita, M., K. Motoki, K. Akimoto, T. Natori, T. Sakai, E. Sawa, K. Yamaji, Y. Koezuka, E. Kobayashi, and H. Fukushima: Structure-Activity Relationship of α-Galactosylceramides against B16-Bearing Mice. J. Med. Chem., 38, 2176 (1995).Google Scholar
  181. 181.
    Kobayashi, E., K. Motoki, Y. Yamaguchi, T. Uchida, H. Fukushima, and Y. Koezuka: Enhancing Effect of α-, β-Monoglycosylceramides on Natural Killer Cell Activity. Bioorg. Med. Chem. Lett., 4, 615 (1996).Google Scholar
  182. 182.
    Kishimoto, T.: Interleukin-6 and Its Receptors: a Paradigm for Cytokines. Science, 258, 593 (1992).Google Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • E. Fattorusso
    • 1
  • A. Mangoni
    • 1
  1. 1.Dipartimento di Chimica delle Sostanze NaturaliUniversità degli Studi di Napoli Federico IINapoliItaly

Personalised recommendations