Application of the Approximate Inverse to 3D X-Ray CT and Ultrasound Tomography

  • A. K. Louis


We study operator equations Af = g for operators between Hilbert spaces X and Y. Both the cases of linear operators A and of nonlinear A with a special structure are treated. Approximate inverse means a solution operator which maps the data g to a stable approximation of the solution of the ill — posed problem Af = g. This inversion operator is precomputed without using the data g, see [10].


Regularization Method Helmholtz Equation Smooth Particle Hydrodynamic Approximate Inverse Reconstruction Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Backus G and Gilbert F 1967 Geophys. J. R. Astron. Soc. 13 247–276CrossRefGoogle Scholar
  2. [2]
    Bertero M, de Mol C and Viano C 1980 in Inverse scattering in optics ed H P Baltes (Berlin: Springer) pp 161–214CrossRefGoogle Scholar
  3. [3]
    Davison M E and Grunbaum F A 1981 Tomographic reconstruction with arbitrary directions Comm Pure Appl Math 34 p77–119MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Eckhardt U 1976 Computing 17 193–206MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Engl H W 1993 Surveys on Mathematics for Industry 3 71–143MathSciNetMATHGoogle Scholar
  6. [6]
    Louis, A K 1979 Numerische Mathematik 33 43–53MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    Louis A K 1989 Inverse und schlecht gestellte Probleme (Stuttgart: Teubner)MATHCrossRefGoogle Scholar
  8. [8]
    Louis A K 1984 Mathematische Zeitschrift 185 429–440MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    Louis A K 1992 Inverse Problems 8 709–738MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    Louis A K 1996 Inverse Problems 12 175–190MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Louis A K and Maaß P 1990 Inverse Problems 6 427–440MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    Louis A K and Maass P 1993 IEEE Trans. Med. Imaging 12 764–769CrossRefGoogle Scholar
  13. [13]
    Louis A K, Maaß P, Rieder A 1994 Wavelets (Stuttgart: Teubner)MATHCrossRefGoogle Scholar
  14. [14]
    Louis A K and Schuster Th 1996 Inverse Problems 12 686–696MathSciNetGoogle Scholar
  15. [15]
    Natterer F 1986 The mathematics of computerized tomography (Stuttgart: Teubner-Wiley)MATHGoogle Scholar
  16. [16]
    Parker R L 1994 Geophysical Inverse Theory (Princeton: U Press)MATHGoogle Scholar
  17. [17]
    Plato R and Vainikko G 1990 Numerische Mathematik 57 63–79MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Sabatier P C 1987 in Tomography and inverse problems ed P C Sabatier (Bristoh: Hilger) pp 471–667Google Scholar
  19. [19]
    Snieder R 1991 Inverse Problems 7 409–433MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • A. K. Louis
    • 1
  1. 1.Fachbereich MathematikUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations