Skip to main content

Abstract

The explicit inverse problems in nondestructive testing range from material characterization to defect imaging, and, as such, they exhibit a large bandwidth of complexity: Material characterization should be quantitative, thus accounting for nonlinearities of the underlying physical phenomena as well as for the nonlinearity of the inverse problem, whereas defect imaging might already be sufficiently solved if the location, the size and the orientation of a defect has been determined. As a matter of fact, the latter task can be accomplished with rather simple inverse algorithms, which rely on the linearization of the elastic and/or electromagnetic wave inverse scattering problem. Nevertheless, in particular in safety relevant applications like nuclear power generation, aircraft and/or bridge testing, one is interested to extract the maximum amount of information from the data utilizing all a priori knowledge of the physical model under concern, for instance with regard to the propagation characteristics of the defect embedding medium or with regard to the polarization of the wave mode. In that sense, some recent fundamental improvements of linear diffraction tomographic inverse scattering have been made, which will be summarized and commented upon in the present article. In addition, a novel philosophy of computer aided nondestructive testing will be discussed, which comes under the alias ULIAS: Ultrasonic Inspection Applying Simulation. The key idea is to support the assessment of the output of existing imaging algorithms with simulations applying numerical techniques to compute wave propagation and scattering for the testing problem under concern; the resulting synthetic data supply a testbed for the inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Langenberg, T. Weiland: Direkte numerische Lösung der Maxwellschen Gleichungen und der elastodynamischen Bewegungsgleichungen, Anlage 1 und 2. Final Report of a Research Project funded by the German Research Foundation (DFG), Kassel and Darmstadt 1996

    Google Scholar 

  2. R. Marklein: Numerische Verfahren zur Modellierung von akustischen, elektromagnetischen, elastischen und piezoelektrischen Wellenausbreitungsproblemen im Zeitbereich basierend auf der Finiten Integrationstechnik (FIT). Ph.D. Thesis, University of Kassel, Kassel, Germany 1997

    Google Scholar 

  3. K.J. Langenberg, P. Fellinger, R. Marklein, P. Zanger, K. Mayer, T. Kreutter: Inverse Methods and Imaging. In: Evaluation of Materials and Structures by Quantitative Ultrasonics (Ed.: J.D. Achenbach). Springer-Verlag, Vienna 1993

    Google Scholar 

  4. K.J. Langenberg: Applied Inverse Problems. In: Basic Methods of Tomography and Inverse Problems (Ed.: P.C. Sabatier). Adam Hilger, Techno House, Bristol 1987

    Google Scholar 

  5. V. Schmitz, M. Kröning, K.J. Langenberg: Quantitative NDT by Three-Dimensional Image Reconstruction. In: Proc. 22nd International Symposium on Acoustical Imaging (Eds.: P. Tortoli, L. Masotti). Plenum Press, New York 1996

    Google Scholar 

  6. J. Pitkänen, P. Kauppinen, H. Jeskanen, V. Schmitz: Evaluation of Ultrasonic Indications by Using PC-Based Synthetic Aperture Focusing Technique (PC-SAFT). International Conference on Computer Methods and Inverse Problems in Nondestructive Testing and Diagnostics, 21.-24.11.1995, Minsk, Belarus

    Google Scholar 

  7. W. Müller, G. Schäfer, K. Hoppstädter: European Stainless Steel Round Robin Test Inspection of 15 CCSS Samples Using the Line Synthetic Aperture Focusing Technique (L-SAFT) at the IzfP. Report 851115-E of the Fraunhofer Institute for Nondestructive Testing (IzfP), Saarbrücken 1985

    Google Scholar 

  8. W. Müller: Untersuchung eines Turbinenwellenstückes mit LSAFT. Report 860112-E of the Fraunhofer Institute for Nondestructive Testing (IzfP), Saarbrücken 1986

    Google Scholar 

  9. W. Müller: Wiederkehrende Prüfung ausgesuchter Schweißnahtbereiche am NH3-Reaktor C702 mit SAFT. Report 940107-E of the Fraunhofer Institute for Nondestructive Testing (IzfP), Saarbrücken 1994

    Google Scholar 

  10. A. Rosenfeld, A.C. Kak: Digital Picture Processing, Vol. 1 and 2. Academic Press, Orlando 1982

    Google Scholar 

  11. R. Dändlicker, K. Weiss: Reconstruction of the Three-dimensional Refractive Index from Scattered Waves. Optics Comm. 1 (1970) 323

    Article  Google Scholar 

  12. A.T. Devaney: A Filtered Backpropagation Algorithm for Diffraction Tomography. Ultrasonic Imaging 4 (1982) 336

    Article  Google Scholar 

  13. A.T. Devaney: A Computer Simulation Study of Diffraction Tomography. IEEE Trans. Biomed. Eng. BME-30 (1983) 377

    Article  Google Scholar 

  14. K. Mayer, R. Marklein, K.J. Langenberg, T. Kreutter: Three-dimensional Imaging System based on Fourier Transform Synthetic Aperture Focusing Technique. Ultrasonics 28 (1990) 241

    Article  Google Scholar 

  15. R.P. Porter: Diffraction-Limited Scalar Image Formation with Holograms of Arbitrary Shape. J. Opt. Soc. Am. 60 (1970) 1951

    Article  Google Scholar 

  16. K.J. Langenberg: Introduction to the Special Issue on Inverse Problems. Wave Motion 11 (1989) 99

    Article  MATH  Google Scholar 

  17. K.J. Langenberg, M. Brandfaß, K. Mayer, T. Kreutter, A. Brüll, P. Fellinger, D. Huo: Principles of Microwave Imaging and Inverse Scattering. EARSeL Advances in Remote Sensing 2 (1993) 163

    Google Scholar 

  18. M. Bartsch et al.: Solution of Maxwell’s Equations. Computer Physics Communications 72 (1992) 22

    Article  MathSciNet  Google Scholar 

  19. MAFIA User Guide, Release 3.1, CST GmbH, Darmstadt, Germany 1991

    Google Scholar 

  20. P. Fellinger, R. Marklein, K.J. Langenberg, S. Klaholz: Numerical Modeling of Elastic Wave Propagation and Scattering with EFIT — Elastodynamic Finite Integration Technique. Wave Motion 21 (1995) 47

    Article  MATH  Google Scholar 

  21. A.T. de Hoop: Handbook of Radiation and Scattering of Waves. Academic Press, London 1995

    Google Scholar 

  22. R. Marklein, K.J. Langenberg, S. Klaholz, J. Kostka: Ultrasonic Modeling of Real-Life NDT Situations: Applications and Further Developments. In: Review of Progress of Quantitative NDE, Vol. 15 (Eds.: D.O. Thompson, D.E. Chimenti). Plenum Press, New York 1996, pp. 57–64

    Chapter  Google Scholar 

  23. R. Marklein, K.J. Langenberg, R. Bärmann, M. Brandfaß: Ultrasonic and Electromagnetic Wave Propagation and Inverse Scattering. In: Review of Progress of Quantitative NDE, Vol. 15 (Eds.: D.O. Thompson, D.E. Chimenti). Plenum Press, New York 1996, pp. 1839–1846

    Chapter  Google Scholar 

  24. K. Helbig: Foundations of Anisotropy for Exploration Seismics. Pergamon, Trowbridge 1994

    Google Scholar 

  25. R. Marklein, K.J. Langenberg, T. Kaczorowski: Electromagnetic and Elastodynamic Point Source Excitation of Unbounded Homogeneous Anisotropic Media. Radio Science (1996) (accepted for publication)

    Google Scholar 

  26. M. Spies: Elastic Waves in Homogeneous and Layered Transversely Isotropic Media: Plane Waves and Gaussian Packets. A General Approach. J. Acoust. Soc. Am. 95 (1994) 1748

    Google Scholar 

  27. K.J. Langenberg, M. Brandfaß, A. Fritsch, B. Potzkai: Linearized 3D Electromagnetic Vector Wave Inversion. In: Three-Dimensional Electromagnetics (Eds.: M. Oristaglio, B. Spies). Investigations in Geophysics Series, Society of Exploration Geophysicists, 1996 (to be published)

    Google Scholar 

  28. K.J. Langenberg, M. Brandfaß, P. Fellinger, T. Gurke, T. Kreutter: A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering within the Kirchhoff or Born Approximation. In: Radar Target Imaging (Eds.: W.-M. Boerner, H. Überall). Springer-Verlag, Berlin 1994

    Google Scholar 

  29. M. Brandfaß: Inverse Beugungstheorie elektromagnetischer Wellen: Algorithmen und numerische Realisierung. Ph.D. Thesis, University of Kassel, Kassel, Germany 1996

    Google Scholar 

  30. R. Marklein, K. Mayer, K.J. Langenberg: Modeling and Imaging with ULIAS: Ultrasonic Inspection Applying Simulation. In: Review of Progress of Quantitative NDE, Vol. 16 (Eds.: D.O. Thompson, D.E. Chimenti). Plenum Press, New York 1997 (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Langenberg, K.J. et al. (1997). Applied Inversion in Nondestructive Testing. In: Engl, H.W., Louis, A.K., Rundell, W. (eds) Inverse Problems in Medical Imaging and Nondestructive Testing. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6521-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6521-8_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83015-4

  • Online ISBN: 978-3-7091-6521-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics