Inverse Obstacle Scattering with Modulus of the Far Field Pattern as Data

  • Rainer Kress
  • William Rundell


For the two-dimensional inverse scattering problem for a sound-soft or perfectly conducting obstacle we may distinguish between uniqueness results on three different levels. Consider the scattering of a plane wave u i(x) = e ikx·d (with wave number k > 0 and direction d of propagation) by an obstacle D, that is, a bounded domain D ⊂ IR2 with a connected boundary ∂D. Then the total wave u is given by the superposition u = u i + u s of the incident wave u i and the scattered wave u s and obtained through the solution of the Helmholtz equation
$$\bigtriangleup u+k^{2} u = \textup{0 in IR}^{2} \setminus \bar{D}$$
subject to the Dirichlet boundary condition
$$u = \textup{0 on }\partial D$$
and the Sommerfeld radiation condition
$$\underset{r\rightarrow \infty} {\textup{lim}}\sqrt{r}\left ( \frac{\partial u^{s}}{\partial r}-iku^{s} \right )= 0, r = \left | x \right |$$
, uniformly with respect to all directions. The exterior Dirichlet problem (1)–(3) has a unique solution provided the boundary ∂D is of class C 2 (see [1, 2]).


Scattered Wave Field Pattern Inverse Scattering Problem Frechet Derivative Newton Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. Wiley-Interscience Publication, New York 1983.MATHGoogle Scholar
  2. 2.
    Colton, D., and Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, Berlin Heidelberg New York 1992.MATHGoogle Scholar
  3. 3.
    Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Hanke, M., Hettlich, F. and Scherzer, O.: The Landweber Iteration for an Inverse Scattering Problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3 Part C, Vibration Control, Analysis, and Identification, ( Wang et. al., eds) 909–915. The American Society of Mechanical Engineers, New York, 1995.Google Scholar
  5. 5.
    Hanke, M., Neubauer, A. and Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Hettlich, F.: An iterative method for the inverse scattering problem from soundhard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis, ( Mahrenholz & Mennicken, eds), Akademie Verlag, Berlin, 1996.Google Scholar
  7. 7.
    Hettlich, F., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering. Inverse Problems 12, 251–266 (1996).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Kirsch, A.: The domain derivative and two applications in inverse scattering theory. Inverse Problems 9, 81–96 (1993).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kirsch, A.: Numerical algorithms in inverse scattering theory, In: Ordinary and Partial Differential Equations, Vol. IV, ( Jarvis & Sleeman, eds) Pitman Research Notes in Mathematics 289, 93–111, Longman, London 1993.Google Scholar
  10. 10.
    Kress, R.: A Newton method in inverse obstacle scattering, In: Inverse Problems in Engineering Mechanics, ( Bui et al, eds) 425–432, Balkema, Rotterdam 1994.Google Scholar
  11. 11.
    Kress, R.: Integral equation methods in inverse obstacle scattering, Engineering Anal. with Boundary Elements 15, 171–179 (1995)CrossRefGoogle Scholar
  12. 12.
    Kress, R., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering, Inverse Problems 10, 1145–1157 (1994).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • Rainer Kress
    • 1
  • William Rundell
    • 2
  1. 1.Institut für Numerische und Angewandte MathematikUniversität GöttingenGöttingenGermany
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA

Personalised recommendations