Gradient and Newton-Kantorovich Methods for Microwave Tomography

  • Christian Pichot
  • Pierre Lobel
  • Laure Blanc-Féraud
  • Michel Barlaud
  • Kamal Belkebir
  • Jean-Manuel Elissalt
  • Jean-Michel Geffrin


The development of reconstruction algorithms for Active Microwave Imaging, with applications in the medical domain or for non-destructive testing [1], and more generally for electromagnetic and acoustic imaging [2], has gained much interest during the last decade. The first generation of algorithms was based on Diffraction Tomography [2–5], which is a generalization of classical X-ray Computed Tomography, by taking into account diffraction effects. The scattered field data are filtered, mapped onto the Ewald sphere in k-space and inverse transformed. These algorithms provide quasi real-time approximate reconstructions of the polarization current density distribution (qualitative imaging). For a weak scatterer (Born or Rytov approximations), they also yield the complex permittivity distribution (quantitative imaging). They have been used and tested on experimental imaging systems such as a 2.45 GHz planar microwave camera [6], a 2.33 GHz circular microwave scanner [7, 8], and a broad frequency band microwave sensor [1], yielding valuable qualitative images, although artifacts are present for strong and/or inhomogeneous scatterers [6].


Conjugate Gradient Tikhonov Regularization Scattered Field Microwave Imaging Test Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.Ch. Bolomey and Ch. Pichot. Microwave tomography: from theory to practical imaging systems. Int. J. Imaging System Technology, 2:144–156, 1990.CrossRefGoogle Scholar
  2. 2.
    W. Tabbara, B. Duchêne, Ch. Pichot, D. Lesselier, L. Chommeloux, and N. Joachimowicz. Diffraction tomography: contribution of the analysis of some applications in microwaves and ultrasonics. Inverse Problems, 4:305–331, 1988.MathSciNetCrossRefGoogle Scholar
  3. 3.
    A.J. Devaney. Geophysical diffraction tomography. IEEE Trans. Geosci. Remote Sensing, GE-22:3–13, 1984.CrossRefGoogle Scholar
  4. 4.
    Ch. Pichot, L. Jofre, G. Peronnet, and J. Ch. Bolomey. Active microwave imaging of inhomogeneous bodies. IEEE Transactions on Antennas and Propagation, AP-33:416–425, 1985.CrossRefGoogle Scholar
  5. 5.
    K.J. Langenberg. Introduction to the special issue on inverse problems. Wave Motion, 11:99–112, 1989.MATHCrossRefGoogle Scholar
  6. 6.
    J.Ch. Bolomey, Ch. Pichot, and G. Gaboriaud. Planar microwave imaging camera for biomedical applications: Critical and prospective analysis of reconstruction algorithms. Radio Science, 26(2):541–549, 1991.CrossRefGoogle Scholar
  7. 7.
    L. Jofre, M.S. Hawley, A. Broquetas, E. de los Reyes, M. Ferrando, and R. Elias-Fusté. Medical imaging with a microwave tomographic scanner. IEEE Transactions on Biomedical Engineering, BME-37:303–312, 1990.CrossRefGoogle Scholar
  8. 8.
    A. Broquetas, J. Romeu, J.M. Rius, A.R. Elias-Fusté, A. Cardama, and L. Jofre. Cylindrical geometry: a further step in active microwave imaging. IEEE Transactions on Microwave Theory and Techniques, MTT-39:836–844, 1991.CrossRefGoogle Scholar
  9. 9.
    A. Roger. Newton-kantorovitch algorithm applied to an electromagnetic inverse problem. IEEE Transactions on Antennas and Propagation, AP-29(2):232–238, March 1981.MathSciNetCrossRefGoogle Scholar
  10. 10.
    M.M. Ney, A.M. Smith, and S.S. Stuchly. A solution of electromagnetic imaging using pseudoinverse transformation. IEEE Transactions on Medical Imaging, MI-3:155–162, 1984.CrossRefGoogle Scholar
  11. 11.
    Y.M. Wang and W.C. Chew. An iterative solution of two-dimensional electromagnetic inverse scattering problem. Int. J. Imag. Syst., 1:100–108, 1989.CrossRefGoogle Scholar
  12. 12.
    J. P. Hugonin, N. Joachimowicz, and Ch. Pichot. Quantitative reconstruction of complex permittivity distributions by means of microwave tomography. In P. C. Sabatier, editor, Inverse Methods in Action, pages 302–311. Springer-Verlag, Berlin, 1990.CrossRefGoogle Scholar
  13. 13.
    W.C. Chew and Y.M. Wang. Reconstruction of two-dimensional permittivity distribution using the distorded Born iterative method. IEEE Transactions on Medical Imaging, MI-9(2):218–225, 1990.CrossRefGoogle Scholar
  14. 14.
    S. Caorsi, G.L. Gragnagni, and M. Pastorino. Two-dimensional microwave imaging by a numerical inverse scattering solution. IEEE Transactions on Microwave Theory and Techniques, MTT-38:981–989, 1990.CrossRefGoogle Scholar
  15. 15.
    L. Garnero, A. Franchois, J. P. Hugonin, Ch. Pichot, and N. Joachimowicz. Microwave imaging: complex permittivity reconstruction by simulated annealing. IEEE Transactions on Microwave Theory and Techniques, MTT-39:1801–1807, 1991.CrossRefGoogle Scholar
  16. 16.
    N. Joachimowicz, Ch. Pichot, and J. P. Hugonin. Inverse scattering: an iterative numerical method for electromagnetic imaging. IEEE Transactions on Antennas and Propagation, AP-39:1742–1751, 1991.CrossRefGoogle Scholar
  17. 17.
    R.E. Kleinman and P.M. van den Berg. A modified gradient method for twodimensional problems in tomography. J. Comput. Appl. Math., 42:17–35, 1992.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    K. Belkebir, R. Kleinman, and Ch. Pichot. Microwave Imaging — Location and Shape Reconstruction from Multifrequency Scattering Data. To appear in IEEE Transactions on Microwave Theory and Techniques, MTT-45(4), April 1997.Google Scholar
  19. 19.
    A. Franchois and Ch. Pichot. Microwave Imaging — Complex Permittivity Reconstruction with a Levenberg-Marquardt Method. To appear in IEEE Trans. on Antennas and Propagation, AP-45(2), February 1997.Google Scholar
  20. 20.
    P. Lobel, R. Kleinman, Ch. Pichot, L. Blanc-Féraud, and M. Barlaud. Conjugate gradient method for solving inverse scattering with experimental data. IEEE Antennas & Propagation Magazine, 38(3):48–51, June 1996.CrossRefGoogle Scholar
  21. 21.
    R.E. Kleinman and P.M. van den Berg. An extended range-modified gradient technique for profile inversion. Radio Science, 28(5):877–884, October 1993.CrossRefGoogle Scholar
  22. 22.
    R.E. Kleinman and P.M. van den Berg. Two-dimensional location and shape reconstruction. Radio Science, 29:1157–1169, 1994.CrossRefGoogle Scholar
  23. 23.
    K. Belkebir, J.M. Elissalt, J.M. Geffrin, and Ch. Pichot. Newton-Kantorovich and Modified Gradient Inversion Algorithms Applied to Ipswich Data. IEEE Antennas & Propagation Magazine, 38(3):41–44, June 1996.CrossRefGoogle Scholar
  24. 24.
    P. Lobel, L. Blanc-Féraud, Ch. Pichot, and M. Barlaud. A new regularization scheme for inverse scattering. To appear in Inverse Problems, 12, April 1997.Google Scholar
  25. 25.
    P. Lobel, Ch. Pichot, L. Blanc-Féraud, and M. Barlaud. Conjugate Gradient Algorithm With Edge-Preserving Regularization for Image Reconstruction from Experimental Data. In IEEE A P-S/URSI International Symposium, volume 1, pages 644–647, Baltimore, Maryland, USA, July 1996.Google Scholar
  26. 26.
    S. Geman and D.E. Mc Clure. Bayesian image analysis: an application to single photon emission tomography. In Proc. Statist. Comput. Sect., pages 12–18, Washington DC, 1985. Amer. Statist. Assoc.Google Scholar
  27. 27.
    S. Geman and G. Reynolds. Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-14(3):367–383, March 1992.CrossRefGoogle Scholar
  28. 28.
    A. Pranchois and Ch. Pichot. Generalized cross validation applied to a Newtontype algorithm for microwave tomography. In M. A. Fiddy Ed., editor, Proc. Inverse Problems in Scattering and Imaging, pages 232–240, San Diego, July 1992.Google Scholar
  29. 29.
    E. Polak and G. Ribière. Note sur la convergence de méthodes de directions conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle, R1(16):35–43, 1969.Google Scholar
  30. 30.
    M.S. Berger. Nonlinearity and functional analysis — Lectures on nonlinear problems in mathematical analysis, chapter 2, pages 84–89. Pure and applied mathematics. Academic Press, 1970.Google Scholar
  31. 31.
    R. Acar and C.R. Vogel. Analysis of bounded variation penalty methods for illposed problems. Inverse Problems, 10(6):1217–1229, December 1994.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    P.M. van den Berg and R.E. Kleinman. A total variation enhanced modified gradient algorithm for profile reconstruction. Inverse Problems, 11:L5–L10, 1995.MATHCrossRefGoogle Scholar
  33. 33.
    T. Hebert and R. Leahy. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors. IEEE Transactions on Medical Imaging, MI-8(2):194–202, June 1989.CrossRefGoogle Scholar
  34. 34.
    P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-12(7):629–639, July 1990.CrossRefGoogle Scholar
  35. 35.
    P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Deterministic Edge-Preserving Regularization in Computed Imaging. To appear in IEEE Trans. Image Processing, IP-6(2), February 1997.Google Scholar
  36. 36.
    L. Blanc-Féraud, P. Charbonnier, G. Aubert, and M. Barlaud. Nonlinear image processing: Modeling and fast algorithm for regularization with edge detection. In Proc. IEEE-ICIP, pages 474–477, Washington, USA, October 1995.Google Scholar
  37. 37.
    G. Aubert and L. Lazaroaia. A variational method in image recovery. Research Note 423, Laboratoire Jean-Alexandre Dieudonné, June 1995. To appear in SIAM Journal of Num. Anal. (November 1997).Google Scholar
  38. 38.
    P. Lobel, L. Blanc-Féraud, Ch. Pichot, and M. Barlaud. Technical development for an edge-preserving regularization method in inverse scattering. Research Note 95-73, Laboratoire Informatique Signaux et Systèmes de Sophia Antipolis, December 1995.Google Scholar
  39. 39.
    J.W. Strohbehn and E.B. Douple. Hyperthermia and cancer therapy: A review of biomedical engineering contributions and challenges. IEEE Transactions on Biomedical Engineering, BME-31:779–787, 1984.CrossRefGoogle Scholar
  40. 40.
    G.C. van Rhoon, A.G. Vasser, P.M. van den Berg, and H.S. Reinhold. Evaluation of ring capacitor plates for regional deep heating. Int. J. Hyperthermia, 4(2):133–142, 1988.CrossRefGoogle Scholar
  41. 41.
    A.A.C. De Leeuw, J. Mooibroek, and J.J.W. Lagendijk. Specific absorption rate steering by patient positioning in the ‘Coaxial TEM’ system: phantom investigation. Int. J. Hyperthermia, 7(4):605–611, 1991.CrossRefGoogle Scholar
  42. 42.
    M. G. Coté. Automated Swept-Angle Bistatic Scattering Measurements Using Continuous Wave Radar. IEEE Transactions on Instrumentation and Measurement, IM-41(2):185–192, April 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • Christian Pichot
    • 1
  • Pierre Lobel
    • 2
  • Laure Blanc-Féraud
    • 2
  • Michel Barlaud
    • 2
  • Kamal Belkebir
    • 3
  • Jean-Manuel Elissalt
    • 3
  • Jean-Michel Geffrin
    • 3
  1. 1.Laboratoire d’Electronique, Antennes et TélécommunicationsUniversité de Nice-Sophia Antipolis/CNRSValbonneFrance
  2. 2.Laboratoire Informatique, Signaux et Systèmes de Sophia AntipolisUniversité de Nice-Sophia Antipolis/CNRSValbonneFrance
  3. 3.Laboratoire des Signaux et SystèmesCNRS/ESEGif-sur-YvetteFrance

Personalised recommendations