Three-Dimensional Super-Resolving Confocal Scanning Laser Fluorescent Microscopy

  • Ibrahim Akduman
  • Jan Grochmalicki
  • Roy Pike


Super-resolution in scanning microscopy has been suggested recently [1]–[3] by using specially designed optical masks and two integrating detectors in place of the single pinhole and detector of a conventional confocal arrangement. The resolving power of such a microscope is significantly improved over the standard confocal one. The method provides an optical implementation of a data inversion algorithm based on singular-system theory.


Point Spread Function Spectral Weight Singular Function Fredholm Equation Scanning Position 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Walker, J.G., Pike, E.R., Davies, R.E., Young, M.R., Brakenhoff, G.J., Bertero, M.: Superresolving Scanning Optical Microscopy using Holographic Optical Processing. J. Opt. Soc. Am. 10 (1993), 59–64CrossRefGoogle Scholar
  2. [2]
    Bertero, M., Boccacci, P., Davies, R.E., Malfanti, F., Pike, E.R., Walker, J.G.: Superresolution in confocal scanning microscopy: IV. Theory of Data Inversion by the use of Optical Masks. Inverse Probi. 8 (1992), 1–23MATHCrossRefGoogle Scholar
  3. [3]
    Young, M.R., Jiang, S.H., Davies, R.E., Walker, J.G., Pike, E.R., Bertero, M.: Experimental confirmation of super-resolution in coherent confocal scanning microscopy using optical masks. J. Microsc. 165 (1992), 131–138CrossRefGoogle Scholar
  4. [4]
    Grochmalicki, J., Pike, R.E., Walker, J.G., Bertero, M., Boccacci, P., Davies, R.E.: Superresolving masks for incoherent scanning microscopy. J. Opt. Soc. Am. 10 (1993), 1074–1077CrossRefGoogle Scholar
  5. [5]
    Bertero, M., Boccacci, P., Défrise, M., De Mol, C., Pike, E.R.: Superresolution in confocal scanning microscopy: II. The incoherent case. Inverse Probi. 5 (1989), 441–461CrossRefGoogle Scholar
  6. [6]
    Richards, B. and Wolf, E.,: Electromagnetic diffraction in optical systems: II. Structure of the image field in aplanatic system. Proc. Roy. Soc. (London) A253 (1959), 358–379Google Scholar
  7. [7]
    Papoulis, A.,: Systems and transforms with applications in Optics. McGraw-Hill (1968). Chapter 5: Hankel TransformsGoogle Scholar
  8. [8]
    Fettis, H.E.: Lommel-type integrals involving three Bessel functions. J. Math. and Phys. 36 (1957), 88–95MathSciNetMATHGoogle Scholar
  9. [9]
    Creffield, C. E., Klepfish, E. G., Pike, E. R. and S Sarkar Spectral weight function for the half-filled Hubbard model: a singular value decomposition approach. Physical Review Letters, 75 (1995), 517–520CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • Ibrahim Akduman
    • 1
  • Jan Grochmalicki
    • 1
  • Roy Pike
    • 1
  1. 1.Physics DepartmentKing’s College LondonLondonUK

Personalised recommendations