Three-Dimensional Super-Resolving Confocal Scanning Laser Fluorescent Microscopy

  • Ibrahim Akduman
  • Jan Grochmalicki
  • Roy Pike


Super-resolution in scanning microscopy has been suggested recently [1]–[3] by using specially designed optical masks and two integrating detectors in place of the single pinhole and detector of a conventional confocal arrangement. The resolving power of such a microscope is significantly improved over the standard confocal one. The method provides an optical implementation of a data inversion algorithm based on singular-system theory.


Point Spread Function Spectral Weight Singular Function Fredholm Equation Scanning Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Walker, J.G., Pike, E.R., Davies, R.E., Young, M.R., Brakenhoff, G.J., Bertero, M.: Superresolving Scanning Optical Microscopy using Holographic Optical Processing. J. Opt. Soc. Am. 10 (1993), 59–64CrossRefGoogle Scholar
  2. [2]
    Bertero, M., Boccacci, P., Davies, R.E., Malfanti, F., Pike, E.R., Walker, J.G.: Superresolution in confocal scanning microscopy: IV. Theory of Data Inversion by the use of Optical Masks. Inverse Probi. 8 (1992), 1–23MATHCrossRefGoogle Scholar
  3. [3]
    Young, M.R., Jiang, S.H., Davies, R.E., Walker, J.G., Pike, E.R., Bertero, M.: Experimental confirmation of super-resolution in coherent confocal scanning microscopy using optical masks. J. Microsc. 165 (1992), 131–138CrossRefGoogle Scholar
  4. [4]
    Grochmalicki, J., Pike, R.E., Walker, J.G., Bertero, M., Boccacci, P., Davies, R.E.: Superresolving masks for incoherent scanning microscopy. J. Opt. Soc. Am. 10 (1993), 1074–1077CrossRefGoogle Scholar
  5. [5]
    Bertero, M., Boccacci, P., Défrise, M., De Mol, C., Pike, E.R.: Superresolution in confocal scanning microscopy: II. The incoherent case. Inverse Probi. 5 (1989), 441–461CrossRefGoogle Scholar
  6. [6]
    Richards, B. and Wolf, E.,: Electromagnetic diffraction in optical systems: II. Structure of the image field in aplanatic system. Proc. Roy. Soc. (London) A253 (1959), 358–379Google Scholar
  7. [7]
    Papoulis, A.,: Systems and transforms with applications in Optics. McGraw-Hill (1968). Chapter 5: Hankel TransformsGoogle Scholar
  8. [8]
    Fettis, H.E.: Lommel-type integrals involving three Bessel functions. J. Math. and Phys. 36 (1957), 88–95MathSciNetMATHGoogle Scholar
  9. [9]
    Creffield, C. E., Klepfish, E. G., Pike, E. R. and S Sarkar Spectral weight function for the half-filled Hubbard model: a singular value decomposition approach. Physical Review Letters, 75 (1995), 517–520CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1997

Authors and Affiliations

  • Ibrahim Akduman
    • 1
  • Jan Grochmalicki
    • 1
  • Roy Pike
    • 1
  1. 1.Physics DepartmentKing’s College LondonLondonUK

Personalised recommendations