Skip to main content

Potential Role of in vitro 1H Magnetic Resonance Spectroscopy in the Definition of Malignancy Grading of Human Neuroepithelial Brain Tumours

  • Conference paper
Advances in Stereotactic and Functional Neurosurgery 12

Part of the book series: Acta Neurochirurgica Supplements ((STEREOTACTIC,volume 68))

Abstract

The increasing sensitivity of neuro-imaging in the diagnosis of brain expanding lesions is not directly related to biopathological specificity and new technological approaches are under study. In particular Magnetic Resonance Spectroscopy (MRS) allows evaluation of some biochemical pathways whose metabolic alterations may be correlated with the nature and malignancy grading of primary brain tumours.

In the present study the author performed an in vitro high field 1H MRS (9.4 and 14.1 T) analysis of specimens obtained from stereotactic biopsy or microsurgical removal of primary brain tumours. Different samples derived from heterogeneous areas and/or infiltrated perilesional regions were examined.

This study was principally focused on malignancy grading of gliomas and its correlation with the ratio (R) between the resonance band arising from choline containing compounds (between 3.14 and 3.35 ppm) and the total creatine signal (3.0 ppm). Analyses allowed significant discrimination between astrocytomas (R = 2.4 ± 0.6) and glioblastoma (GBM) (R= 4.4 ± 1.3) [p < 0.002]; however the results did not allow discrimination between differentiated and anaplastic astrocytomas.

The GBM showed the largest spread of values corresponding to their higher level of tissue heterogeneity and de-differentiation.

Studies on non astrocytic brain tumours indicated that even higher R values were exhibited by oligodendrogliomas, even in well differentiated forms (p < 0.02 with respect to GBM).

Moreover, preliminary observations indicated that signals arising from other metabolites may also contribute to a differential diagnosis of different oncotypes. Among these glycine appears particularly relevant, since higher levels were measured for this amino acid in GBM with respect to both astrocytomas and oligodendrogliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpinelli G, Carapella CM, Palombi L, Raus L, Caroli F, Podo F (1996) Differentiation of glioblastoma multiforme from astrocytomas by in vitro H-MRS analysis of human brain tumors. Anticancer Res 16: 1559–1564

    PubMed  CAS  Google Scholar 

  2. Carpinelli G, Podo F, Di Vito M, Proietti E, Gessani S, Belardelli F (1984) Modulations of glycerophosphorylcholine and phosphorylcholine in Friend erythroleukemia cells upon in vitroinduced erythroid differentiation: 31P NMR study. FEBS Lett 176: 88–92

    Article  PubMed  CAS  Google Scholar 

  3. Davidoff RA, Shank RP, Graham LT, Aprison MH, Werman R (1967) Is glycine a neurotransmitter? Nature 214: 680–683

    Article  PubMed  CAS  Google Scholar 

  4. de Certaines JD, Larsen VA, Podo F, Carpinelli G, Briot O, Henriksen O (1993) In vivo 31P MRS of experimental tumors: Review paper. NMR Biomed 6: 345–365

    Article  PubMed  Google Scholar 

  5. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized high resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9: 79–93

    Article  PubMed  CAS  Google Scholar 

  6. Gill S, Thomas DGT, Van Bruggen N, Gadian DG, Peden CJ, Bell JD, Cox IJ, Menon DK, Iles RA, Bryant DJ, Coutts GA (1990) Proton MR spectroscopy of intracranial tumors: in vivo and in vitro studies. J Comput Assist Tomogr 14: 497–504

    Article  PubMed  CAS  Google Scholar 

  7. Henn FA (1976) Neurotransmission and glial cells: a functional relationship? J Neurosci Res 2: 271–282

    Article  PubMed  CAS  Google Scholar 

  8. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325: 529–531

    Article  PubMed  CAS  Google Scholar 

  9. Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1994) Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35: 606–614

    Article  PubMed  CAS  Google Scholar 

  10. Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1993) Proton magnetic resonance spectroscopy of astrocytic tumors: an in vitro study. Neurol Med Chir (Tokyo) 33: 350–359

    Article  CAS  Google Scholar 

  11. Kleihues P, Burger PC, Scheithauer BW (1993) Histological typing of tumours of the central nervous system. WHO Blue Book, 2nd ed. Springer, Berlin Heidelberg New York Tokyo, pp 1–37

    Google Scholar 

  12. Kohl RL, Perez-Polo JR, Quay WB (1980) Effect of methionine, glycine and serine hydroximethyltranspherase activity in rat glioma and human neuroblastoma cells. J Neurosci Res 5: 271–280

    Article  PubMed  CAS  Google Scholar 

  13. Leach M, Le Moyec L, Podo F (1992) MRS of Tumours: basic principles. In: de Certaines JD, Bovée WMMJ, Podo F (eds) MR spectroscopy in biology and medicine. Pergamon, London, pp 295–344

    Google Scholar 

  14. Lowry OH, Rosebrough NJ, Lewis Farr A, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  15. Negendank W, Sauter R, Brown TR, Evelhoch JL, Falini A, Gotsis ED, Heerchap A, Kamada K, Lee BCP, Mengeot MM, Moser E, Padavic-Shaller KA, Sanders JA, Spraggins TA, Stillman AE, Terwey B, Vogl TJ, Wicklow K, Zimmerman RA (1996) Proton magnetic resonance spectroscopy in patients with glial tumor: a multicenter study. J Neurosurgery 84: 449–458

    Article  CAS  Google Scholar 

  16. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5: 303–324

    Article  PubMed  CAS  Google Scholar 

  17. Nicklas WJ, Browning ET (1988) Amino acid metabolism in glial cells: homeostatic regulation of intra-and extracellular milieu by C6 glioma cells. J Neurochem 30: 163–171

    Google Scholar 

  18. Podo F, Carpinelli G, Di Vito M, Giannini M, Proietti E, Fiers W, Gresser I, Belardelli F (1987) Nuclear magnetic resonance analysis of tumor necrosis factor-induced alteration of phospholipid metabolites and pH in Friend leukemia cell tumors and fibrosarcomas in mice. Cancer Res 47: 6481–6489

    PubMed  CAS  Google Scholar 

  19. Sato K, Yoshida S, Fujiwara K, Tada K, Tohyama M (1991) Glycine cleavage system in astrocytes. Brain Res 567: 64–70

    Article  PubMed  CAS  Google Scholar 

  20. Schiffer D and Vigliarli MC (1993) Prognostic factors in oligodendrogliomas. Crit Rev Neurosurg 3: 59–65

    Google Scholar 

  21. Segebarth CM, Balériaux DF, Luyten PT, Den Hollander JA (1990) Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H-NMR spectroscopic imaging. Magn Reson Med 13: 62–76

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu H, Kumabe T, Tominaga T, Kayama T, Hara K, Ono Y, Sato K, Arai N, Fujiwara S, Yoshimoto T (1996) Noninvasive evaluation of malignancy of brain tumors with proton MR spectroscopy. Am J Neuroradiol 17: 737–747

    PubMed  CAS  Google Scholar 

  23. Tohyama T, Lee VMY, Trojanowski J (1993) Co-expression of low molecular weight neurofilament protein and glial fibrillary acidic protein in established human glioma cell lines. Am J Pathol 142: 823–892

    Google Scholar 

  24. Usenius JP, Vainio P, Hernesniemi J, Kauppinen RA (1994) Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem 63: 1538–1543

    Article  PubMed  CAS  Google Scholar 

  25. von Deimling A, Louis DN, Schramm J, Wiestier OD (1994) Astrocytic gliomas: characterization on a molecular genetic basis. Ree Res Cancer Res 135: 33–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. B. Ostertag D. G. T. Thomas A. Bosch B. Linderoth G. Broggi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this paper

Cite this paper

Carapella, C.M., Carpinelli, G., Knijn, A., Raus, L., Caroli, F., Podo, F. (1997). Potential Role of in vitro 1H Magnetic Resonance Spectroscopy in the Definition of Malignancy Grading of Human Neuroepithelial Brain Tumours. In: Ostertag, C.B., Thomas, D.G.T., Bosch, A., Linderoth, B., Broggi, G. (eds) Advances in Stereotactic and Functional Neurosurgery 12. Acta Neurochirurgica Supplements, vol 68. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6513-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6513-3_24

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7341-1

  • Online ISBN: 978-3-7091-6513-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics