Advertisement

Naturally Occurring 6-Substituted 5,6-Dihydro-α-Pyrones

  • L. A. Collett
  • M. T. Davies-Coleman
  • D. E. A. Rivett
Part of the Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products book series (FORTCHEMIE (closed), volume 75)

Abstract

6-Substituted derivatives of 5,6-dihydro-α-pyrones (dihydropyran-2ones or more specifically 2H-dihydropyran-2-ones) occur widely in nature, particularly in plants and bacteria. They possess an α, β unsaturated-δ-ring (1) with an alkyl, alkenyl or aryl substituent at C-6 and occasionally a varied substitution pattern around the ring. Many of these compounds are biologically active, exhibiting phytotoxicity, cytotoxicity against tumour cells and antifungal or antimicrobial activity.

Keywords

Circular Dichroism Spectrum Absolute Configuration Total Synthesis Stereoselective Synthesis Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davies-Coleman, M.T., and D.E.A. Rivett: Naturally Occurring 6-Substituted 5,6-dihydro-α-pyrones. Fortschr. Chem. organ. Naturstoffe, 55, 1 (1989).Google Scholar
  2. 2.
    Dickinson, J.M.: Microbial Pyran-2-ones and Dihydropyran-2-ones. Nat. Prod. Reports, 10, 71 (1993).Google Scholar
  3. 3.
    Nagumo, S.T., T. Toyonaga, T. Inoue, and M. Nagai: New Glucosides of a 4-Hydroxy-5-methylcoumarin and a Dihydro-α-pyrone from Gerbera jamesonii hybrida. Chem. Pharm. Bull. (Japan), 37, 2621 (1989).Google Scholar
  4. 4.
    Snatzke, G.: Circular Dichroism and Optical Rotatory Dispersion — Principles and Application to the Investigation of the Stereochemistry of Natural Products. Angew. Chem. Internat. Edit., 7, 14 (1968).Google Scholar
  5. 5.
    Ayer, W.A., and J.S. Racok: The Metabolites of Talaromyces flavus: Part 2. Biological Activity and Biosynthetic Studies. Can. J. Chem., 68, 2095 (1990).Google Scholar
  6. 6.
    Sato, T.: Synthesis of Parasorbic Acid, the Component of Sorbus aukuparia. Heterocycles, 24, 2133 (1986).Google Scholar
  7. 7.
    Eicher, T., R. Graf, and R. Pick: Improved Synthesis of Racemic Parasorbic Acid. Arch. Pharmaz., 319, 91 (1986).Google Scholar
  8. 8.
    Procter, G., A.T. Russell, P.J. Murphey, T.S. Tan, and A.N. Mather: Epoxy-silanes in Organic Synthesis. Tetrahedron, 44, 3953 (1988).Google Scholar
  9. 9.
    Stevenson, R., and J.V. Weber: Synthesis of (±)-Parasorbic acid and (±)-Massoia-lactone from Meldrum’s acid. J. Nat. Prod., 51, 1215 (1988).Google Scholar
  10. 10.
    Gopalan, A.S., and H.K. Jacobs: Synthesis of S(+)-Parasorbic Acid and S(+)-2-Tridecanol Acetate. Tetrahedron Letters, 31, 5575 (1990).Google Scholar
  11. 11.
    Hoeyer, T., A. Kjaer, and J. Lykkestedt: A Convenient Synthesis of Homochiral δ-Alkylated αß-Unsaturated δ-Lactones. Coll. Czech. Chem. Comm., 56, 1042 (1991).Google Scholar
  12. 12.
    Shao, L., T. Seki, H. Kawano, and M. Saburi: Asymmetric Hydrogenation of Methyl 3,5-Dioxohexanoate Catalysed by Ruthenium-binap Complex: A Short Step Asymmetric Synthesis of Dihydro-6-methyl-2H-pyran-2-one. Tetrahedron Letters, 32, 7699 (1991).Google Scholar
  13. 13.
    Bernard, R., and D. Ghiringhelli: Synthesis of Enantiomerically Pure (S)-5,6-dihydro-and (S)tetrahydro-6-methyl-2H-pyran-2-one. Gazz. chim. ital., 122, 395 (1992).Google Scholar
  14. 14.
    Robin, S., and F. Huet: Preparation of Lactones with Several Ring Sizes via the Same Intermediate. Tetrahedron Letters, 34, 2945 (1993).Google Scholar
  15. 15.
    Tiedemann, R., F. Narjes, and E. Schumann: 3-Methoxy-l-phenylthio-l-propene as d1/d3 Synthon: Application to an Asymmetric Synthesis of (S)-(+)-Parasorbic acid. Synlett, 594 (1994).Google Scholar
  16. 16.
    Buchanan, M.S., T. Hashimoto, S. Takaoka, and Y. Asakawa: (+)-Osmundalactone, γ-Lactones and Spiromentins from the Fungus Paxillus atrotomentosus. Phytochem., 40, 1251 (1995).Google Scholar
  17. 17.
    Sugiyama, T., T. Murayama, K. Yamashita, and T. Oritani: Synthesis of Chiral Aspyrone, a Multi-functional Dihydropyranone Antibiotic. Biosci. Biotechnol. Biochem., 59, 1921 (1995).Google Scholar
  18. 18.
    Hill, A.M., A. Jacobs, and J. Staunton: Investigation of the Stereochemistry of the Tri-and Tetra-ketide Hydroxyacyl Intermediates in the Biosynthesis of the Polyketide Aspyrone in Aspergillus melleus using Deuterium Labelling and Deuterium NMR Spectroscopy. Chem. Commun. 859 (1995).Google Scholar
  19. 19.
    Brian, P.W., P.J. Curtis, H.G. Hemming, C.H. Unwin, and J.M. Wright: Alternaric acid, a Biologically Active Metabolic Product of the Fungus Alternaria solani. Nature, 164, 534 (1949).Google Scholar
  20. 20.
    Tabuchi, H., and A. Ichihara: Stereochemistry of Alternaric Acid; Synthesis of the C(9)-C(14) Fragment. Tetrahedron Letters, 33, 4933 (1992).Google Scholar
  21. 21.
    Tabuchi, H., T. Hamamoto, S. Miki, T. Tejima, and A. Ichihara: Total Synthesis of Alternaric Acid. Tetrahedron Letters, 34, 2327 (1993).Google Scholar
  22. 22.
    Tabuchi, H., and A. Ichihara: Structures and Stereochemistries of New Compounds Related to Alternaric Acid. J. Chem. Soc. (London) Perkin Trans. 1, 125 (1994).Google Scholar
  23. 23.
    Tabuchi, H., O. Hideaki, and I. Akitami: Biosynthetic study of Alternaric Acid: Isolation of Plausible Biosynthetic Intermediates and Origins of the Hydrogen and Oxygen Atoms. J. Chem. Soc. (London) Perkin Trans. 1, 2833 (1994).Google Scholar
  24. 24.
    Ohtani, I., T. Kusumi, Y. Kashman, and H. Kakisawa: Highfield FT NMR Application of Mosher’s Method. The Absolute Configuration of Marine Terpenoids. J. Amer. Chem. Soc., 113, 4092 (1991).Google Scholar
  25. 25.
    Hamada, T., T. Kusumi, M.O. Ishitsuka, and H. Kakisawa: Structures and Absolute Configurations of New Lobane Diterpenoids from the Okinawan Soft Coral Sinularia flexibilis. Chem. Letters, 33 (1992).Google Scholar
  26. 26.
    Kusani, T., T. Hamada, M.O. Ishitsuka, I. Ohtani, and H. Kakisawa: Elucidation of the Relative and Absolute Stereochemistry of Lobatriene, a Marine Diterpene, by a Modified Mosher’s Method. J. Organ. Chem. (USA), 57, 1033 (1992).Google Scholar
  27. 27.
    Tsuda, M., H. Shigemori, M. Ishibashi, T. Sasaki, and J. Kobayashi: Luffariolides A-E, New Cytotoxic Sesterpenes from the Okinawan Marine Sponge Luffariella sp. J. Organ. Chem. (USA), 57, 3503 (1992).Google Scholar
  28. 28.
    Hareau-Vittini, G., and P.J. Kocienski: A Synthesis of (3S,4R)-Luffariolide. Synlett 893 (1995).Google Scholar
  29. 29.
    Ichimoto, I., K. Machiya, M. Kirihata, and H. Ueda: Stereoselective Synthesis of Podoblastine and their Antiblast Activity. J. Pesticide Sci., 13, 605 (1988).Google Scholar
  30. 30.
    Mori, Y., H. Kageyawa, and M. Suzuki: Synthesis of (-)-Tarchonanthus Lactone, a Syn-1,3-polyol-derived α,ß-Unsaturated δ-Lactone. Chem. Pharm. Bull. (Japan), 38, 2574 (1990).Google Scholar
  31. 31.
    Solladie, G., and L. Gressot-kempf: Chiral Sulfoxides in Asymmetric Synthesis: Enantioslective Synthesis of (-)(5S,7R)-Tarchonanthus Lactone. Tetrahedron Asymmetry, 1, 2371 (1996).Google Scholar
  32. 32.
    Asoaka, M., S. Hayashibe, S. Sonoda, and H. Takei: Synthesis and Utilization of Optically Active 2-Substituted 4-(Trimethylsilyl)cyclopentanones: Synthesis of (-)-Massoialactone and (+)-ß-Cuparenone. Tetrahedron Letters, 31, 4761 (1990).Google Scholar
  33. 33.
    Bennett, F., D.W. Knight, and G. Fenton: Total Synthesis of Natural (+)-(4R,6R)-4-Hydroxy-6-pentylvalerolactone and of (-)-(6R)-Massoialactone. J. Chem. Soc. (London) Perkin 1, 1543 (1991).Google Scholar
  34. 34.
    Romeyice, Y., M. Keller, H. Kluge, S. Grabley, and P. Hamman: Enantioselective Synthesis of δ-Lactones from Streptenol A, a Chiral Building Block from Strepto-myces. Tetrahedron, 47, 3335 (1991).Google Scholar
  35. 35.
    Bonini, C., P. Pucci, R. Racioppi, and L. Viggiani: Enzyme Catalysed Lactonization of 3,5-Dihydroxy Esters: Enantioselective Synthesis of Naturally Occurring 3-Hydroxy-5-decanolide, (-)-Massoialactone and 3-Hydroxy-5-eicosanolide. Tetrahedron Asymmetry, 3, 29 (1992).Google Scholar
  36. 36.
    Takano, S., M. Sietoh, and K. Ogasawara: An Enantiospecific Route to (6R)-Massoialactone and (4R,6R)-(+)-4-Hydroxy-6-pentylvalerolactone. Tetrahedron Asymmetry, 3, 533 (1992).Google Scholar
  37. 37.
    Yu, L., and Z. Wang: Enantioselective Synthesis of 6R(-)-Massoialactone (from Mannitol). Chinese Chemical Letters 4, 1 (1993).Google Scholar
  38. 38.
    Venkatasubbaiah, R., C.G. Van Dyke, and W.S. Chilton: Phytotoxins Produced by Pestalotiopsis oenotherae. Phytochem., 30, 1471 (1991).Google Scholar
  39. 39.
    Honda, T., A. Okuyama, T. Hayakawa, H. Kondoh, and M. Tsubuki: A Stereoselective Synthesis of (±)-Pestalotin. Chem. Pharm. Bull. (Japan), 39, 1866 (1991).Google Scholar
  40. 40.
    Zhang, J., and D.R. Curran: Stereoselective Synthesis of 1,2-Diols by the Cycload-ditive Strategy: Total Synthesis of (±)-Exobrevicomin and (±) and (-)-Pestalotin. J. Chem. Soc. (London) Perkin Trans. 1, 2627 (1991).Google Scholar
  41. 41.
    Hagiwara, H., K. Kimura, and H. Uda: High Diastereoselection in the Aldol Reaction of the Bistrimethylsilyl Enol Ether of Methyl Acetoacetate with 2-Benzyloxy-hexanal: Synthesis of (-)-Pestalotin. J. Chem. Soc. (London) Perkin Trans. 1, 693 (1992).Google Scholar
  42. 42.
    Kirihata, M., K. Ohta, I. Ichimoto, and H. Ueda: Total Synthesis of (65, 1′S, 2′R)-6-(l,2-Dihydroxypentyl)-4-methoxy-5,6-dihydropyran-2-one (LL-P880ß) and its C6-Epimer, a Fungal Metabolite from Penicillium sp. Agric. Biol. Chem., 54, 5401 (1990).Google Scholar
  43. 43.
    Kirihata, M., Y. Kamihisa, I. Ichimoto, and H. Ueda: Stereoselective Synthesis of (6R, 1′R, 2′S)- and (6S, 1′R, 2′S)-LL-P880ß, Stereoisomers of the Fungal Metabolite from Penicillium strains. Chem. Express 7, 837 (1992).Google Scholar
  44. 44.
    Kirihata, M., M. Ohe, I. Ichimoto, and H. Ueda: Stereoselective Synthesis of Unnatural Stereoisomers of LL-P880ß and LL-P880ß, Pestalotin Analogs from Penicillium sp. Biosci. Biotechnol. Biochem., 56, 1825 (1992).Google Scholar
  45. 45.
    Masaki, Y., T. Imaeda, and M. Kawai: Highly Stereoselective Synthesis and Structural Confirmation of a Fungal Metabolite LL-P880ß. Chem. Pharm. Bull. (Japan), 42, 179 (1994).Google Scholar
  46. 46.
    Koshino, H., T. Yoshihara, M. Okuno, S. Sakamura, A. Tajimi, and T. Shimanuki: Gamahonolides A, B, and Gamahorin, Novel Antifungal Compounds from Stromata of Epichloe typhina on Phleum pratense. Biosci. Biotechnol. Biochem., 56, 1096 (1992).Google Scholar
  47. 47.
    Dale, J.A., and H.S. Mosher: Nuclear Magnetic Resonance Enantiomer Reagents. Configurational Correlations via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methylmandelate, and α-Methoxy-α-trifluoromethyl-phenylacetate (MTPA) Esters. J. Amer. Chem. Soc., 95, 512 (1973).Google Scholar
  48. 48.
    Trost, B.M., J.L. Belletire, S. Godleski, G.S. Ponticello, S.L. Varga, and J.P. Springer: On the use of the O-methylmandelate Ester for the Establishment of the Absolute Configuration of Secondary Alcohols. J. Organ. Chem. (USA), 51, 2370 (1986).Google Scholar
  49. 49.
    Davies-Coleman, M.T., and D.E.A. Rivett: An α-Pyrone from Syncolostemon densiflorus. Phytochem., 35, 1590 (1994).Google Scholar
  50. 50.
    Collett, L.A., M.T. Davies-coleman, D.E.A. Rivett, S.E. Drewes, and M.M. Horn: Absolute Configuration of α-Pyrones from Cryptocarya latifolia and Syncolostemon densiflorus. Phytochem., 4, 935 (1997).Google Scholar
  51. 51.
    Rychnovsky, S.D., and D.J. Skalitzky: Stereochemistry of Alternating Polyol Chains: NMR Analysis of 1,3-Diol Acetonides. Tetrahedron, 31, 945 (1990).Google Scholar
  52. 52.
    Jefford, C.W., and M.C. Moulin: The Synthesis of Boronolide. Helv. Chim Acta, 74, 336 (1991).Google Scholar
  53. 53.
    Nagano, H., and H. Yasui: Synthesis of (+)-Boronolide from D-glucose. Chemistry Letters, 1045 (1992).Google Scholar
  54. 54.
    Honda, T., S. Horiuchi, H. Mizutani, and K. Kanai: Enantiocontrolled Synthesis of (+)-Boronolide. J. Organ. Chem. (USA), 61, 4944 (1996).Google Scholar
  55. 55.
    Drewes, S.E., B.M. Sehlapelo, M.M. Horn, R. Scott-shaw, and R. Sandor: 5,6-Dihydro-α-pyrones and Two Bicyclic Tetrahydro-α-pyrone Derivatives from Crypto-carya latifolia. Phytochem., 38, 1427 (1995).Google Scholar
  56. 56.
    Horn, M.M.: M.Sc. thesis, University of Natal, Pietermaritzburg, South Africa, 1996.Google Scholar
  57. 57.
    Shing, T.K.M., H.C. Tsui, and Z.H. Zhou: Enantiospecific Syntheses of (+)-Gonio-fufurone, (+)-7-epi-Goniofufurone, (+)-Goniobutenolide A, (-)-Goniobutenolide B, (+)-Goniopyrone, (+)-Altholactone, (+)-Goniotriol, and (+)-7-Acetylgoniotriol. J. Organ. Chem. (USA), 60, 3121 (1995).Google Scholar
  58. 58.
    Fang, X.P., J.E. Anderson, C.J. Chang, P.E. Fanwick, and J.L. Mclaughlin: Novel Bioactive Styryl-lactones: Goniopyrone, and δ-Acetylgoniotriol from Goniothala-mus giganteus (Annonaceae). X-Ray Molecular Structure of Goniofufurone and of Goniopyrone. J. Chem. Soc. (London) Perkin Trans. 1, 1655 (1990).Google Scholar
  59. 59.
    Nakata, T., T. Suenaga, K. Nakashima, and T. Oishi: Total Synthesis of Natural Products having 1,3-syn-Polyol. δ-Lactone of (2Z,5S,7S,9R,11R)-Tetra-hydroxyhex-acos-2-enoic Acid and 4,6,8,10,12,14,16,18,20-all-syn-Nonamethoxy-1-pentacosene. Tetrahedron Letters, 30, 6529 (1989).Google Scholar
  60. 60.
    Ishibashi, H., H. Nakatani, T.S. So, T. Fujita, M. Ikeda: Alkylative Lactonization of γ,δ-Unsaturated Esters with α-Chlorosulfides. A Concise Synthesis of the Mono-terpene Lactone from Chrysanthemum flosculosum. Heterocycles, 31, 215 (1990).Google Scholar
  61. 61.
    Amarasekara, A.S., and A. Hassner: Stereospecific Synthesis and Stereochemical Structure Confirmation of Dumetorine. Tetrahedron Letters, 28, 3151 (1987).Google Scholar
  62. 62.
    Krivobok, S., F. Thomasson, F. Seigle-murandi, R. Steiman, and C. Bottex-gau-thier: 6-Allyl-5,6-dihydro-5-hydroxypyran-2-one, Lactone Produced by a New Drechslera species: Specified 1H and 13C NMR assignments, Mutagenic and Immunomodulating Testings. Pharmazie, 49, 605 (1994).Google Scholar
  63. 63.
    Krasnoff, S.B., and S. Gupta: Identification of the Antibiotic Phomalactone from the Entomopathogenic Fungus Hirsutella thompsonii var. synnematosa. J. Chem. Ecol., 20, 293 (1994).Google Scholar
  64. 64.
    Honda, T., T. Kametani, K. Kanai, Y. Tatsuzaki, and T. Tsubuki: Enantioselective Syntheses of (+)-Acetylphomalactone and (6R)-(+)-Goniothalamin. J. Chem. Soc. (London), Perkin Trans. 1, 1733 (1990).Google Scholar
  65. 65.
    Yang, Z.C., X.B. Jiang, Z.M. Wang, and W.S. Zhou: Total Synthesis of (+)-Asperlin, (+)-Acetylphomalactone and (5S,6S,7R,8S)-Asperlin Based on the Kinetic Resolution of 2-Furylmethanols. J. Chem. Soc (London) Perkin Trans. 1, 317 (1997).Google Scholar
  66. 66.
    Shing, T.K.M., and M. Aloui: The Stereochemistry of the Epoxypropyl Side-chain of Asperlin. Chem. Commun., 1525 (1988).Google Scholar
  67. 67.
    Shing, T.K.M., and M. Aloui: Enantiospecific Synthesis of the (6R,7S)-Diastereo-isomer of Asperlin. Canad. J. Chem., 68, 1035 (1990).Google Scholar
  68. 68.
    Ramesh, S., and R.W. Frank: Total Synthesis of (+)-Asperlin. Tetrahedron Asymmetry, 1, 137 (1990).Google Scholar
  69. 69.
    Masaki, Y. T. Imaeda, H. Oda, A. Itoh, and M. Shiro: Total Synthesis of (+)-Asperlin Starting with (S,S)-Tartaric Acid. Chem. Letters, 1209 (1992).Google Scholar
  70. 70.
    Honda, T., N. Sano, and K. Kanai: Synthesis of (+)-Asperlin. Heterocycles, 41, 425 (1995).Google Scholar
  71. 71.
    Grove, J.F.: Phomopsolide A and B, Tiglic Esters of Two 6-Substituted 5,6-Dihydro-5-hydroxy-pyran-2-ones. J. Chem. Soc. (London) Perkin Trans. 1, 865 (1985).Google Scholar
  72. 72.
    Noshita, T., T. Sugiyama, K. Yamashita, and T. Oritani: Total Synthesis of Natural (+)-Phomopsolide B, an Antifeedant Against Elm Bark Beetle. Biosci. Biotechnol. Biochem., 58, 740 (1994).Google Scholar
  73. 73.
    O’connor, B., and G. Just: Syntheses of Argentilactone and Goniothalamin. Tetrahedron Letters, 27, 5201 (1986).Google Scholar
  74. 74.
    Carretero, J.J., and L. Ghosez: A Practical Route towards αß-Unsaturated δ-Lactones based on a [3 + 3] Strategy. Synthesis of (-)-Argentilactone. Chem. Letters, 29, 2059 (1988).Google Scholar
  75. 75.
    Rahman, S.S., B.J. Wakefield, S.M. Roberts, and M.D. Dowle: Intramolecular Nucleophilic Addition to Photochemically Generated Ketones as a Versatile Route to Lactones and Lactams: Synthesis of a Mosquito Pheromone, Goniothalamin, Argentilactone and the Streptomyces L-factor. Chem. Commun., 303 (1989).Google Scholar
  76. 76.
    Chidambaram, N., K. Satyanarayana, and S. Chandrasekaran: A General Approach to the Synthesis of 5,6-Dihydro-2(2H)pyranones: Simple Synthesis of (+)-Argenti-lactone and (±)-Goniothalamin. Tetrahedron Letters, 30, 2429 (1989).Google Scholar
  77. 77.
    Tsubuki, M., K. Kanai, and T. Honda: Enantioselective Synthesis of 6-Substituted 5,6-Dihydro-a-pyranones, (+)-Goniothalamin and (-)-Argentilactone. Heterocycles, 35, 281 (1993).Google Scholar
  78. 78.
    Matsuda, M., Y. Endo, S. Fushiya, T. Endo, and S. Nozoe: Cytotoxic 6-Substituted 5,6-Dihydro-2H-pyran-2-ones from a Brazilian Medicinal Plant, Chorisia crispiflora. Heterocycles, 38, 1229 (1994).Google Scholar
  79. 79.
    Van Puyvelde, L., S. Dube, E. Uwimana, C. Uwera, R.A. Domisse, E. Lesmans, O. Van Schoor, and A.J. Vlietinch: New α-Pyrones from Iboza riparia. Phytochem., 18, 1215 (1979).Google Scholar
  80. 80.
    Davies-Coleman, M.T., and D.E.A. Rivett: Structure of the 5,6-Dihydro-α-pyrone, Umaravumbolide. Phytochem., 38, 791 (1995).Google Scholar
  81. 81.
    Pereda-Mirando, R., L. Hernandez, M.J. Villavicencio, M. Novello, P. Ibarra, H. Chai, and J.M. Pezzuto: Structure and Stereochemistry of Pectinolides A-C, Novel Antimicrobial and Cytotoxic 5,6-Dihydro-α-pyrones from Hyptis pectinata. J. Nat. Prod., 56, 583 (1993).Google Scholar
  82. 82.
    De Vivar, A., P. Vidales, and A.L. Perez: An Aliphatic δ-Lactone from Hyptis urticoides. Phytochem., 30, 2417 (1991).Google Scholar
  83. 83.
    Davies-Coleman, M.T., and D.E.A. Rivett: 5,6-Dihydro-α-pyrones from Syncolos-temon parviflorus. Phytochem., 41, 1085 (1996).Google Scholar
  84. 84.
    Pereda-Miranda, R., M. Garcia, and G. Delgado: Structure and Stereochemistry of Four α-Pyrones from Hyptis oblongifolia. Phytochem., 29, 2971 (1990).Google Scholar
  85. 85.
    Aycard, J.P., F. Kini, B. Kam, E.M. Gaydou, and R. Faure: Isolation and Identification of Spicigera Lactone: Complete 1H and 13C Assignments using Two-dimensional NMR Experiments. J. Nat. Prod., 56, 1171 (1993).Google Scholar
  86. 86.
    Almtorp, G.T., A.C. Hazell, and K.B.G. Torsell: A Lignan and Pyrone and Other Constituents from Hyptis capitata. Phytochem., 30, 2753 (1991).Google Scholar
  87. 87.
    Lu, G.H., F.P. Wang, J.M. Pezzuto, T.C.M. Tamm, I.D. Williams, and C.T. Che: 10-Epiolguine from Rabdosia ternifolia. J. Nat. Prod., 60, 425 (1997).Google Scholar
  88. 88.
    Collett, L.A.: MSc thesis, Rhodes University, Grahamstown, South Africa, 1997.Google Scholar
  89. 89.
    Drewes, S.E., M.M. Horn, and C.S. Wijewardene: α-Pyrone from Cryptocarya latifolia — A Structural Isomer of Umuravumbolide. Phytochem., 41, 333 (1996).Google Scholar
  90. 90.
    Yoshida, T., K. Koizumi, Y. Kawamura, K. Matsumoto, and H. Itazaki: Lactone with Immunosuppresive Activity and its Manufacture with Streptomyces prunicolor. European Patent 560389 (1993).Google Scholar
  91. 91.
    Kobayashi, S., K. Tsuchiya, T. Harada, M. Nishide, T. Kurokawa, T. Nakagawa, N. Shimada, and K. Kobayashi: Pironetin, a Novel Plant Growth Regulator Produced by Streptomyces sp. NK 10958. 1. Taxonomy, Production, Isolation and Preliminary Characterization. J. Antibiot., 47, 697 (1994).Google Scholar
  92. 92.
    Kobayashi, S., K. Tsuchiya, T. Kurokawa, T. Nakagawa, and N. Shimada: Pironetin, a Novel Plant Growth Regulator Produced by Streptomyces sp. NK 10958. II. Structural, Elucidation. J. Antibiot., 47, 703 (1994).Google Scholar
  93. 93.
    Yasui, K., Y. Tamura, T. Nakatani, K. Kawada, and M. Ohtani: Total Synthesis of (-)-PA-48153C, a Novel Immunosuppressive 2-Pyranone Derivative. J. Organ. Chem. (USA), 60, 7567 (1995).Google Scholar
  94. 94.
    Needham, J., R.J. Andersen, and M.T. Kelly: Oncorhyncolide, A Novel Metabolite of a Bacterium Isolated from Seawater. Tetrahedron Letters, 32, 315 (1991).Google Scholar
  95. 95.
    Lichtenthaler, F.W., J. Dinges, and F. Yoshimasa: ACRL Toxin I: Convergent Total Synthesis of its 3-Methyl Enol Ether from D-Glucose. Angew. Chem. Int. Ed. Engl., 30, 1339 (1991).Google Scholar
  96. 96.
    Amemiya, M., T. Someno, R. Sawa, H. Naganawa, M. Ishizuka, and T. Takeuchi: Cytostatin, a Novel Inhibitor of Cell Adhesion to Components of Extracellular Matrix Produced by Streptomyces sp. MJ654-NF4. J. Antibiot., 47, 541 (1994).Google Scholar
  97. 97.
    Ohkuma, H., N. Naruse, Y. Nishiyama, T. Tsuno, Y. Hoshino, Y. Sawada, M. Konishi, and T. Oki: Sultriecin, a New Antifungal and Antitumor Antibiotic from Streptomyces roseiscleroticus. Production, Isolation, Structure and Biological Activity. J. Antibiot., 45, 1239 (1992).Google Scholar
  98. 98.
    Hosokawa, N., H. Iinuma, H. Naganawa, M. Hamada, T. Takeuchi, T. Itoh, and M. Hori: A New Antibiotic, Structurally Related to Leptomycin A, Flattens the Morphology of V-rasts NRK Cells. J. Antibiot., 46, 676 (1993).Google Scholar
  99. 99.
    Abe, K., M. Yoshida, H. Naoki, S. Horinouchi, and T. Beppu: Leptolstatin from Streptomyces sp. SAM1595, a New Gap Phase-specific Inhibitor of the Mammalian Cell Cycle. II. Physico-chemical Properties, and Structure. J. Antibiot., 46, 735 (1993).Google Scholar
  100. 100.
    Kohama, T., T. Nakamura, T. Kinoshita, I. Kaneko, and A. Shiraishi: Novel Microbial Metabolites of the Phoslactomycins Family Induce Production of Colony-stimulating Factors by Bone Marrow Stromal Cells. II. Isolation, Physicochemical Properties and Structure Determination. J. Antibiot., 46, 1512 (1993).Google Scholar
  101. 101.
    Gerth, K., D. Schummer, G. Hoefle, H. Irschik, and H. Reichenbach: A New Antifungal Compound from Sorangium cellulosum (Myxobacteria). Production, Physico-Chemical and Biological Properties. J. Antibiot., 48, 973 (1995).Google Scholar
  102. 102.
    Schummer, D., K. Gerth, H. Reichenbach, and G. Hoefle: Ratjadone: A New Antifungal Metabolite from Sorangium cellulosum. Liebigs Ann. Chem. 685 (1995).Google Scholar
  103. 103.
    Merlin, P., J.C. Braekman, D. Daloze, J.M. Pasteels, and A. Dejean: New C26 δ-Lactones from the Dufour’s Gland of the Urticating Ant Tetramorium aculeatum. Experientia, 48, 111 (1992).Google Scholar
  104. 104.
    Warning, U., J. Yakupovic, D. Friedrich, V. Castro, and F. Bohlmann: Further Seco-Labdanes from Hebeclinum macrophyllum. Phytochem., 26, 2335 (1987).Google Scholar
  105. 105.
    Zdero, C., F. Bohlmann, and R.M. King: Secolabdanes from Tamaulipa azurea and Constituents from other Eupatorieae. Phytochem., 31, 155 (1992).Google Scholar
  106. 106.
    Hasam, C.M., M.A. Hussain, M.Y. Mia, and M.A. Rashid: Goniothalamin from Goniothalamus sesquipedalis. Fitotherapia, 66, 378 (1995).Google Scholar
  107. 107.
    Ahmad, F.B., W.A. Tukol, S. Omar, and A.M. Sharif: 5-Acetylgoniothalamin, a Styryldihydropyrone from Goniothalamus uvaroides. Phytochem., 30, 2430 (1991).Google Scholar
  108. 108.
    Goh, S.H., G.C.L. Ee, C.H. Chuah, and T.C.W. Mak: 5ß-Hydroxygoniothalamin, a Styrylpyrone Derivative from Goniothalamus dolichocarpus (Annonaceae). Nat. Prod. Letters, 5, 255 (1995).Google Scholar
  109. 109.
    Fang, X.P., J.E. Anderson, C.J. Chang, J.L. Mclaughlin, and P.E. Fanwick: TWO New Styryl Lactones, 9-Deoxygoniopyrone and 7-Epigoniofufurone, from Goniothalamus giganteus. J. Nat. Prod., 54, 1034 (1991).Google Scholar
  110. 110.
    Wu, Y.C., C.Y. Duh, F.R. Chang, G.Y. Chang, S.K. Wang, J.J. Chang, D.R. Mcphail, A.T. Mcphail, and K.H. Lee: The Crystal Structure and Cytotoxicity of Goniodiol-7-monoacetate from Goniothalamus amuyon. J. Nat. Prod., 54, 1077 (1991).Google Scholar
  111. 111.
    Wu, Y.C., F.R. Chang, C.Y. Duh, S.K. Wang, and T.S. Wu: Cytotoxic Styrylpyrones of Goniothalamus amuyon. Phytochem., 31, 2851 (1992).Google Scholar
  112. 112.
    Alkofahi, A., W.W. Ma, A.T. Mckenzie, S.R. Bryn, and J.L. Mclaughlin: Goniotriol from Goniothalamus. giganteus. J. Nat. Prod., 52, 1371 (1989).Google Scholar
  113. 113.
    Goh, S.H., G.C.L. Ee, C.H. Chuah, and C. Wei: Styrylpyrone Derivatives from Goniothalamus dolichocarpus. Austral. J. Chem., 48, 199 (1995).Google Scholar
  114. 114.
    Hasan, C.M., M.Y. Mia, M.A. Rashid, and J.D. Connolly: 5-Acetoxyisogoniotha-lamin Oxide, an Epoxystyryl Lactone from Goniothalamus sesquipedalis. Phytochem., 37, 1763 (1994).Google Scholar
  115. 115.
    Grazca, T., and V. Jager: Synthesis of Natural and Unnatural Enantiomers of Goniofufurone and its 7-Epimers from D-Glucose. Application of Palladium(II)-Catalyzed Oxycarbonylation of Unsaturated Polyols. Synthesis, 1359 (1994).Google Scholar
  116. 116.
    Mu, Q., C.M. Li, H.J. Zhang, Y. Wu, and H.D. Sun: A New Styryllactone Compound from Goniothalamus leiocarpus. Chinese Chemical Letters, 7, 617 (1996).Google Scholar
  117. 117.
    Yang, Z.C., and W.S. Zhou: Total synthesis of Goniodiol 8-Monoacetate from Cinnamyl Alcohol. Chem. Commun., 743 (1995).Google Scholar
  118. 118.
    Surivet, J.P., J. Gore, and J.M. Vatele: Enantioselective Synthesis of (+)-Goniodiol and its Naturally Occurring Acetylated Analogs. Tetrahedron, 52, 14877 (1996).Google Scholar
  119. 119.
    Yang, Z.C., and W.S. Zhou: Asymmetric Total Synthesis of (+)-Goniotriol and (+)-Goniofufurone. Tetrahedron, 51, 1429 (1995).Google Scholar
  120. 120.
    Shing, T.K.M., and J.G. Gillhouley: Enantiospecific Synthesis of (+)-Altholactone and its Three Stereoisomers. Tetrahedron, 50, 8685 (1994).Google Scholar
  121. 121.
    Somfai, P.: An Enantioselective Total Synthesis of (+)-Altholactone from Diethyl L-Tartrate. Tetrahedron, 50, 11315 (1994).Google Scholar
  122. 122.
    Yang, Z.C., and W.S. Zhou: Asymmetric Total Synthesis of (+)-Goniopyrone and (+)-9-Deoxygoniopyrone. Chinese J. Chem, 14, 152 (1996).Google Scholar
  123. 123.
    Friesen, R.W., and S. Bissada: Total Synthesis of (±)9-Deoxygoniopyrone. Tetrahedron Letters, 35, 5615 (1994).Google Scholar
  124. 124.
    Colegate, M.C., L.B. Din, K.M. Salleh, M.W. Samsudin, B.W. Skelton, K. Tadano, A.H. White, and Z. Zakaria: (+)-Isoaltholactone: A Furanopyrone Isolated from Goniothalamus species. Phytochem., 29, 1701 (1990).Google Scholar
  125. 125.
    Friesen, R.W., and C. Vanderwal: Total Synthesis of (±)-Dihydrokawain-5 ol. Regioselective Monoprotection of Vicinal Syn-Diols Derived from the Iodocyclo-functionalization of Allenic Alcohols. J. Organ. Chem. (USA), 61, 9103 (1996).Google Scholar
  126. 126.
    Mori, Y., and H. Furukawa: Synthesis of Cryptocaryolactone, a 1, 3-Polyol-derived Unsaturated Lactone. Chem. Pharm. Bull. (Japan), 42, 2161 (1994).Google Scholar
  127. 127.
    Drewes, S.E., M.M. Horn, and R. Scott-shaw: α-Pyrones and Their Derivatives from Two Cryptocarya species. Phytochem., 40, 321 (1995).Google Scholar
  128. 128.
    Sehlapelo, B.M., S.E. Drewes, and R. Scott-shaw: A 6-Substituted 5,6-Dihydro-α-pyrone from Two Species of Cryptocarya. Phytochem., 37, 847 (1994).Google Scholar
  129. 129.
    Drewes, S.E., M.M. Horn, and S. Mawi: Cryptocarya liebertiana and Ocotea bullata — Their Phytochemical Relationship. Phytochem., 44, 437 (1997).Google Scholar
  130. 130.
    Fu, X., T. Sevenet, A. Hamid, A. Hadi, F. Remy, and M. Pais: Kurzilactone from Cryptocarya kurzii. Phytochem., 33, 1272 (1993).Google Scholar
  131. 131.
    Zdero, C., F. Bohlmann, and G.M. Mungai: Clerodanes, Secoclerodanes, Geranyl Geraniol Derivatives and Unusual Sesquiterpenes from Conyza hypoleuca. Phytochem., 30, 575 (1991).Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • L. A. Collett
    • 1
  • M. T. Davies-Coleman
    • 1
  • D. E. A. Rivett
    • 1
  1. 1.Department of ChemistryRhodes UniversityGrahamstownSouth Africa

Personalised recommendations