Advertisement

Abstract

Cyclopeptide alkaloids are defined as basic compounds embodying an ansa structure, in which a 10- or 12-membered peptide type bridge spans the 1,3 or 1,4 positions of a benzene ring (1). They are widely distributed among plants of the Rhamnaceae family, but their occurrence has also been confirmed in representatives of Asteraceae, Celastraceae, Euphorbiaceae, Menispermaceae, Pandaceae, Rubiaceae, Sterculiaceae and Urticaceae. These compounds are found in leaves, stem bark, root bark and seeds. They often occur in minute amounts and as complex mixtures. The total yield from dried plant material is between 0.01 and 1% and depends on many factors such as the region of growth, the season of collection, the maturity of the plant used as well as the method of isolation (2–6).

Keywords

Stem Bark Total Synthesis Root Bark Hydrochloride Salt Common Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt, U., A. Lieberknecht, and E. Haslinger Peptide Alkaloids in “The Alkaloids”. A. Brossi (Ed.), Academic Press, New York, Vol. 26, p. 299 (1985).Google Scholar
  2. 2.
    Tschesche, R., and E.U. Kaussmann: The Cyclopeptide Alkaloids in “The Alkaloids”. R.H.F. Manske (Ed.), Academic Press, New York, Vol. 15, Chapter 4, p. 165 (1975).Google Scholar
  3. 3.
    Tschesche, R.: Cyclopeptide Alkaloids Containing a Styrylamine Ring Unit. Hetero-cycles, 4, 107 (1976).Google Scholar
  4. 4.
    Shah, A.H., and V.B. Pandey: Progress in the Chemistry of Cyclopeptide Alkaloids Containing a Styrylamine Unit. J. Chem. Soc. Pak., 7, 363 (1985).Google Scholar
  5. 5.
    Bhat, K.L., and M.M. Joullié: Cyclopeptide Alkaloids. J. Chem. Educ, 64, 21 (1987).Google Scholar
  6. 6.
    Joullié, M.M., and R.F. Nutt: Cyclopeptide Alkaloids in “Alkaloids: Chemical and Biological Perspectives”. S. W. Pelletier (Ed.), Wiley, New York, Vol. 3, p. 113 (1984).Google Scholar
  7. 7.
    Warnhoff, E.W.: Peptide Alkaloids. Fortschr. Chem. Org. Naturst., 28, 162 (1970).Google Scholar
  8. 8.
    Broadbent, T.A., and E.G. Paul: Carbon-13 Nuclear Magnetic Resonance in Alkaloid Chemistry. Heterocycles, 20, 863 (1983).Google Scholar
  9. 9.
    Païs, M., J. Mainil, and R. Goutarel: Les Adouétines X, Y et Z, Alcaloïdes du Waltheria americana L. (Sterculiacées). Ann. Pharm. Fr., 21, 139 (1963).Google Scholar
  10. 10.
    Menard, E.L., J.M. Müller, A.F. Thomas, S.S. Bhatnagar, and N.J. Dastoor: Über die Inhaltstoffe von Zizyphus oenoplia MILL. 1. Mitteilung: Isolierung der Inhaltstoffe. Helv. Chim. Acta, 46, 1801 (1963).Google Scholar
  11. 11.
    Païs, M., F.-X. Jarreau, X. Lusinchi, and R. Goutarel: Alcaloïdes Peptidiques, III (I). Pandamine et Pandaminine, Alcaloïdes du Panda oleosa Pierre (Pandacées). Ann. Chim., 1, 83 (1966).Google Scholar
  12. 12.
    Gonzalez Sierra, M., O.A. Mascaretti, F.J. Diaz, and E.A. Rúveda: The Stereochemistry of the ß-Hydroxyleucine Unit of Frangulanine. J. Chem. Soc., Chem. Commun., 915 (1972).Google Scholar
  13. 13.
    Marchand, J., M. Païs, and F.-X. Jarreau: Étude par spectrométrie de RMN de quelques acides α-aminés β-hydroxylés et de leur éthers. Bull. Soc. Chim. Fr., 10, 3742 (1971).Google Scholar
  14. 14.
    Marchand, J., F. Rocciiiccioli, M. Païs, and F.-X. Jarreau: Alcaloïdes peptidiques. IX(1). Détermination de la configuration relative du fragment ß-hydroxyleucine de la iasiodine B par la synthèse stéréospécifique des thréo et érythro-ß-(p-tolyloxy)-leucines. Bull. Soc. Chim, Fr., 12, 4699 (1972).Google Scholar
  15. 15.
    Morel, A.F., R.V.F. Bravo, F.A.M. Reis, and E.A. Rúveda: Peptide Alkaloids of Scutia buxifolia. Phytochemistry, 18, 473 (1979).Google Scholar
  16. 16.
    Païs, M., F.-X, Jarreau, M. Gonzalez Sierra, O.A. Mascaretti, E.A. Rúveda, C.-J. Chang, E.W. Hagaman, and E. Wenkert: Carbon-13 NMR Analysis of Cyclic Peptide Alkaloids. Phytochemistry, 18, 1869 (1979).Google Scholar
  17. 17.
    Medina, E., and G. Spiteller: Über Inhaltsstoffe von Melochia pyramidata L. Liebigs Ann. Chem., 538 (1981).Google Scholar
  18. 18.
    Tschesche, R., and E. Ammermann: Scutianin-C,-D und-E, drei weitere Cyclopep-tidalkaloidc aus Scutia buxifolia Reiss. Chem. Ber., 107, 2274 (1974).Google Scholar
  19. 19.
    Tschesche, R., and D. Hillebrand: Scutianin-G, ein weiteres Cyclopeptidalkaloid aus Scutia buxifolia. Phytochemistry, 16, 1817 (1977).Google Scholar
  20. 20.
    Tschesche, R., D. Hillebrand, and I.R.C. Bick: Pubescine A, a Cyclopeptide Alkaloid from Discaria pubescens. Phytochemistry, 19, 1000 (1980).Google Scholar
  21. 21.
    Takai, M., K.-I. Kawai, Y. Ogihara, Y. Iitaka, and S. Shibata: X-ray Analysis of Tri N-methylfrangulanine Methiodide. J. Chem. Soc., Chem. Commun., 653 (1974).Google Scholar
  22. 22.
    Takai, M., Y. Ogihara, Y. Iitaka, and S. Shibata: Peptides in Higher Plants. I. The Conformation of Frangulanine Chem. Pharm. Bull., 23, 2256 (1975).Google Scholar
  23. 23.
    Kirfel, A., G. Will, R. Tschesche, and H. Wilhelm: Die Kristallstruktur des Mauritins-A. Z. Naturforsch., Teil B, 31, 279 (1976).Google Scholar
  24. 24.
    Païs, M., X. Monseur, X. Lusinchi, and R. Goutarel: Alcaloïdes peptidiques. II.-Structure de la pandamine, alcaloïde du Panda oleosa Pierre (Pandacées). Bull. Soc. Chim. Fr., 817 (1964).Google Scholar
  25. 25.
    Tschesche, R., R. Welters, and H.-W. Fehlhaber: Scutianin, ein cyclisches Peptid-Alkaloid aus Scutia buxifolia Reiss. Chem. Ber., 100, 323 (1967).Google Scholar
  26. 26.
    Tschesche, R., J. Rheingans, H.-W. Fehlhaber, and G. Legler: Integerressin und Integerrenin, zwei Peptid-Alkaloide aus Ceanothus integerrimus Hook. et Arn. Chem. Ber., 100, 3924 (1967).Google Scholar
  27. 27.
    Tschesche, R., H. Last, and H.-W. Fehlhaber: Frangulanin, ein Peptid-Alkaloid aus Rhamnus frangula L. Chem. Ber., 100, 3937 (1967).Google Scholar
  28. 28.
    Fehlhaber, H.-W.: Massenspektrometrische Strukturermittlung von Peptid-Alkaloi-den. Z. Anal. Chem., 235, 91 (1968).Google Scholar
  29. 29.
    Païs, M., J. Marchand, G. Ratle, and F.-X. Jarreau: Alcaloïdes peptidiques. VI (1).-L’ hymenocardine, alcaloïde de 1’ Hymenocardia acida Tul. (Hymenocardiacées). Bull. Soc. Chim. Fr., 2979 (1968).Google Scholar
  30. 30.
    Tschesche, R., L. Behrendt, and H.-W. Fehlhaber: Aralionin, ein Peptid-Alkaloid aus Araliothamnus vaginatus Perrier. Chem. Ber., 102, 50 (1969).Google Scholar
  31. 31.
    Boulvin, G., R. Ottinger, M. Paîs, and G. Chiurdoglu: Alcaloïdes Peptidiques. IX (1). La Canthiumine, Alcaloïde du Canthium euryoides Bull. (Rubiacées). Bull. Soc. Chim. Belges, 78, 583 (1969).Google Scholar
  32. 32.
    Tschesche, R., L. Frohberg, and H.-W. Fehlhaber: Aralionin-B, ein Nebenalkaloid aus Araliothamnus vaginata Perrier. Chem. Ber., 103, 2501 (1970).Google Scholar
  33. 33.
    Mascaretti, O.A., V.M. Merkuza, G.E. Ferraro, and E.A. Rúveda: Peptide Alkaloids of Discaria longispina. Phytochemistry, 11, 1133 (1972).Google Scholar
  34. 34.
    Tschesche, R., E.U. Kaussmann, and H.-W. Fehlhaber: Alkaloide aus Rhamnaceen, XI. Amphibin-A, ein cyclisches Peptidalkaloid aus Zizyphus amphibia A. Cheval. Tetrahedron Lett., 9, 865 (1972).Google Scholar
  35. 35.
    Tschesche, R., H. Wilhelm, and H.-W. Fehlhaber: Alkaloide aus Rhamnaceen, XIV. Mauritin-A und Mauritin-B, zwei Peptidalkaloide aus Zizyphus mauritiana Lam. Tetrahedron Lett., 26, 2609 (1972).Google Scholar
  36. 36.
    Tschesche, R., E.U. Kaussmann, and H.-W. Fehlhaber: Alkaloide aus Rhamnaceen, XIII. Amphibin-B,-C,-D und-E, vier Peptidalkaloide aus Zizyphus amphibia A. Cheval. Chem. Ber., 105, 3094 (1972).Google Scholar
  37. 37.
    Tschesche, R., S.T. David, J. Uhlendorf, und H.-W. Fehlhaber: Alkaloide aus Rhamnaceen, XV Mucronin-D, ein weiteres cyclisches Peptid-Alkaloid aus Zizyphus mucronata Willd. Chem. Ber., 105, 3106 (1972).Google Scholar
  38. 38.
    Tschesche, R., E.U. Kaussmann, and G. Eckhardt: Alkaloide aus Rhamnaceen, XVI. Über die Struktur des Zizyphins-A. Tetrahedron Lett., 28, 2577 (1973).Google Scholar
  39. 39.
    Wani, M.C., H.L. Taylor, and M.E. Wall: Plant Antitumour Agents. XII. Texensine, a new Peptide Alkaloid from Colubrina texensis. Tetrahedron Lett., 47, 4675 (1973).Google Scholar
  40. 40.
    Tschesche. R., I. Khokhar, C. Spilles, G. Eckhardt, and B.K. Cassels: Alkaloide aus Rhamnaceen, XXVI. Zizyphin-F und-G, neue Cyclopeptidalkaloide aus Zizyphus oenoplia Mill. Tetrahedron Lett., 34, 2941 (1974).Google Scholar
  41. 41.
    Tschesche, R., C. Spilles, and G. Eckhardt: Alkaloide aus Rhamnaceen, XVIII. Amphibin-F,-G und-H, weitere Peptidalkaloide aus Zizyphus amphibia A. Cheval. Chem. Ber., 107, 686 (1974).Google Scholar
  42. 42.
    Tschesche, R., H. Wilhelm, E.U. Kaussmann, and G. Eckhardt: Alkaloide aus Rhamnaceen, XVII. Mauritin-C,-D,-E und-F; neue Peptidalkaloide aus Zizyphus mauritiana Lam. Liebigs Ann. Chem., 1694 (1974).Google Scholar
  43. 43.
    Tschesche, R., M. Elgamal, G.A. Miana, and G. Eckhardt: Alkaloids from Rham-naceae-XXVI. Nummularine-D,-E and-F, new Cyclopeptide Alkaloids from Zizyphus nummularia. Tetrahedron, 31, 2944 (1975).Google Scholar
  44. 44.
    Kapadia, G.J., Y.N. Shukla, J.F. Morton, and H.A. Lloyd: New Cyclopeptide Alkaloids from Melochia tomentosa. Phytochemistry, 16, 1431 (1977).Google Scholar
  45. 45.
    Lagarias, J.C., D. Goff, F.K. Klein, and H. Rapoport: Cyclopeptide Alkaloids. Phencyclopeptines from the Polymorphic Species Ceanothus integerrimus. J. Nat. Prod., 42, 220 (1979).Google Scholar
  46. 46.
    Lagarias, J.C., D. Goff, and H. Rapoport: Cyclopeptide Alkaloids. Phencyclopeptines from Ceanothus sanguineus. J. Nat. Prod., 42, 663 (1979).Google Scholar
  47. 47.
    Morel, A.F., R. Herzog, J. Biermann, and W. Vœlter: Ein neues Peptidalkaloid aus Discaria febrifuga Mart. Z. Naturforsch., Teil B, 39, 1825 (1984).Google Scholar
  48. 48.
    Morel, A.F., R. Herzog, and W. Vœlter: Discarin-E, ein neues Peptidalkaloid aus Discaria febrifuga Mart. Chimia, 39, 98 (1985).Google Scholar
  49. 49.
    Shah, A.H., V.B. Pandey, G. Eckhardt, and R. Tschesche: Sativanine-E, a new 13-membered Cyclopeptide Alkaloid containing a Short Side-Chain, from Zizyphus sativa. J. Nat. Prod., 48, 555 (1985).Google Scholar
  50. 50.
    Shah, A.H., G. Eckhardt, and R. Tschesche: Mass Spectrometric Fragmentation of Sativanine-A and-B. J. Chem. Soc. Pak., 7, 79 (1985).Google Scholar
  51. 57.
    Shah, A.H., V.B. Pandey, G. Eckhardt, and R. Tschesche: A 13-membered Cyclopeptide Alkaloid from Zizyphus sativa. Phytochemistry, 24, 2765 (1985).Google Scholar
  52. 52.
    Shah, A.H., V.B. Pandey, G. Eckhardt, and R. Tschesche: An N-Formyl Cyclopeptide Alkaloid from the bark of Zizyphus sativa. Phytochemistry, 24, 2768 (1985).Google Scholar
  53. 53.
    Bhakuni, R.S., Y.N. Shukla, and R.S. Thakur: Cyclopeptide Alkaloids from Melochia corchorifolia. Phytochemistry, 26, 324 (1987).Google Scholar
  54. 54.
    Shah, A.H., M.A. Al-yahya, S. Devi, and V.B. Pandey: Sativanine-K: An Additional N-Formyl Cyclopeptide Alkaloid from Zizyphus sativa. Phytochemistry, 26, 1230 (1987).Google Scholar
  55. 55.
    Vœlter, W., A.F. Morel, A.-U. Rahman, and M.M. Qureshi: Studies on the Peptide Alkaloids of Discaria febrifuga. Z. Naturforsch., Teil B, 42, 467 (1987).Google Scholar
  56. 56.
    Pandey, V.B., Y.C. Tripathi, S. Devi, J.P. Singh, and A.H. Shah: A Cyclopeptide Alkaloid from the bark of Zizyphus rugosa. Phytochemistry, 27, 1915 (1988).Google Scholar
  57. 57.
    Shah, A.H., R.M.A. Khan, S.K. Maurya, and V.P. Singh: Nummularine-S: A Cyclopeptide Alkaloid from stem bark of Zizyphus nummularia. Phytochemistry, 28, 305 (1989).Google Scholar
  58. 58.
    Ghedira, K., R. Chemli, B. Richard, J.-M. Nuzillard, M. Zeches, and L. Le Men-olivier: Two Cyclopeptide Alkaloids from Zizyphus lotus. Phytochemistry, 32, 1591 (1993).Google Scholar
  59. 59.
    Abu-Zarga, M., S. Sabri, A. Al-aboudi, M. Salehajaz, N. Sultana, and Atta-ur-rahman: New Cyclopeptide Alkaloids from Zizyphus lotus. J. Nat. Prod., 58, 504 (1995).Google Scholar
  60. 60.
    Stonard, R.J., and R.J. Andersen: Celenamides A and B, Linear Peptide Alkaloids from the Sponge Cliona celata. J. Org. Chem., 45, 3687 (1980).Google Scholar
  61. 61.
    Stonard, R.J., and R.J. Andersen: Linear Peptide Alkaloids from the Sponge Cliona celata (Grant). Celenamides C and D. Can. J. Chem., 58, 2121 (1980).Google Scholar
  62. 62.
    Marchand, J., M. Païs, X. Monseur, and F.-X. Jarreau: Alcaloïdes peptidiques-VII. Les Lasiodines A et B, Alcaloides du Lasiodiscus marmoratus C.H. Wright (Rham-nacées). Tetrahedron, 25, 937 (1969).Google Scholar
  63. 63.
    Han, B.H., M.H. Park, and Y.N. Han: Cyclic Peptide and Peptide Alkaloids from seeds of Zizyphus vulgaris. Phytochemistry, 29, 3315 (1990).Google Scholar
  64. 64.
    Gonzalez Sierra, M., O.A. Mascaretti, V.M. Merkuza, E.L. Tosti, and E.A. Rúveda: Peptide Alkaloids of Scutia buxifolia. Phytochemistry, 13, 2865 (1974).Google Scholar
  65. 65.
    Shah, A.H., G.A. Miana, and V.B. Pandey: Cyclopeptide Alkaloids. Cyclization of the Open Side Chain in Nummularine-B into Imidazolidinone Ring. J. Chem. Soc. Pak., 7, 341 (1985).Google Scholar
  66. 66.
    Tschesche, R., M. Elgamal, and G. Eckhardt: Alkaloide aus Rhamnaceen, XXVIII. Nummularin-G,-H und-K, weitere Peptidalkaloide aus Zizyphus nummularia. Chem. Ber., 110, 2649 (1977).Google Scholar
  67. 67.
    Tschesche, R., A.H. Shah, and G. Eckhardt: Sativanine-A and Sativanine-B, Two New Cyclopeptide Alkaloids from the Bark of Zizyphus sativa. Phytochemistry, 18, 702 (1979).Google Scholar
  68. 68.
    Singh, B., and V.B. Pandey: An N-Formyl Cyclopeptide Alkaloid from Zizyphus nummularia bark. Phytochemistry, 38, 271 (1995).Google Scholar
  69. 69.
    Chugtai, M.I.D., I. Khokhar, and A. Ahmad: Isolation, Purification and Structural Determination of Alkaloids from the Flowers of Sphaeranthus indicus. Sci. Int. (Lahore), 4, 151 (1992).Google Scholar
  70. 70.
    Han, B.H., M.H. Park, and J.H. Park: Chemical and Pharmacological Studies on Sedative Cyclopeptide Alkaloids in Some Rhamnaceae Plants. Pure Appl. Chem., 61, 443 (1989).Google Scholar
  71. 71.
    Barboni, L., P. Gariboldi, E. Torregiani, and L. Verotta: Cyclopeptide Alkaloids from Zizyphus mucronata. Phytochemistry, 35, 1579 (1994).Google Scholar
  72. 72.
    Shah, A.H., V.B. Pandey, J.P. Singh, K.N. Singh, and G. Eckhardt: Sativanine-G, a Cyclopeptide Alkaloid from Zizyphus sativa. Phytochemistry, 23, 2120 (1984).Google Scholar
  73. 73.
    Pandey, V.B., and S. Devi: Biologically Active Cyclopeptide Alkaloids from Rhamnaceae Plants. Planta Med., 56, 649 (1990).Google Scholar
  74. 74.
    Shah, A.H., V.B. Pandey, G. Eckhardt, and G.A. Miana: Tscheschamine — A new Cyclopeptide Alkaloid from the Bark of Zizyphus sativa Gaertn. Heterocycles, 27, 2777 (1988).Google Scholar
  75. 75.
    Ghedira, K., R. Chemli, C. Caron, J.-M. Nuzillard, M. Zeches, and L. Le Men-olivier: Four Cyclopeptide Alkaloids from Zizyphus lotus. Phytochemistry, 38, 767 (1995).Google Scholar
  76. 76.
    Tschesche, R., G.A. Miana, and G. Eckhardt: Alkaloide aus Rhamnaceen, XXV. Nummularin-A,-B und-C, drei neue 13gliedrige Peptidalkaloide aus Zizyphus nummularia. Chem. Ber., 107, 3180 (1974).Google Scholar
  77. 77.
    Devi, S., V.B. Pandey, J.P. Singh, and A.H. Shah: Peptide Alkaloids from Zizyphus Species. Phytochemistry, 26, 3374 (1987).Google Scholar
  78. 78.
    Tripathi, Y.C., S.K. Maurya, V.P. Singh, and V.B. Pandey: Cyclopeptide Alkaloids from Zizyphus rugosa bark. Phytochemistry, 28, 1563 (1989).Google Scholar
  79. 79.
    Shah, A.H., G.A. Miana, S. Devi, and V.B. Pandey: Sativanine-H: A new Alkaloid from the Bark of Zizyphus sativa. Planta Med., 52, 500 (1986).Google Scholar
  80. 80.
    Dwivedi, S.P.D., V.B. Pandey, A.H. Shah, and G. Eckhardt: Cyclopeptide Alkaloids from Zizyphus nummularia. J. Nat. Prod., 50, 235 (1987).Google Scholar
  81. 81.
    Shah, A.H., V.B. Pandey, G. Eckhardt, and R. Tschesche: Sativanine-C: A Cyclopeptide Alkaloid from the Bark of Zizyphus sativa. Phytochemistry, 23, 931 (1984).Google Scholar
  82. 82.
    Pandey, V.B., J.P. Singh, K.K. Seth, A.H. Shah, and G. Eckhardt: Cyclopeptide Alkaloids from Zizyphus nummularia. Phytochemistry, 23, 2118 (1984).Google Scholar
  83. 83.
    Shah, A.H., G.A. Miana, V.B. Pandey, R. Wagner, and R. Tschesche: Alkaloide aus Rhamnaceen, 36: 1H-NMR-Spektroskopische Untersuchungen an Nummularin-B. J. Chem. Soc. Pak., 7, 37 (1985).Google Scholar
  84. 84.
    Tschesche, R., I. Khokhar, H. Wilhelm, and G. Eckhardt: Jubanin-A und Jubanin-B, neue Cyclopeptidalkaloide aus Zizyphus jujuba. Phytochemistry, 15, 541 (1976).Google Scholar
  85. 85.
    Pandey, V.B., S. Devi, J.P. Singh, and A.H. Shah: Cyclopeptide Alkaloids from Zizyphus xylopyra. J. Nat. Prod., 49, 939 (1986).Google Scholar
  86. 86.
    Pailer, M., E. Haslinger, and E. Zbiral: Die Konstitution des Peptidalkaloides Zizyphinin (aus Zizyphus oenoplia Mill.). Monatsh. Chem., 100, 1608 (1969).Google Scholar
  87. 87.
    Cassels, B.K., G. Eckhardt, E.U. Kaussmann, and R. Tschesche: Cyclopeptide Alkaloids of Zizyphus oenoplia. Tetrahedron, 30, 2461 (1974).Google Scholar
  88. 88.
    Abdel-galil, F.M., and M.A. El-jissry: Cyclopeptide Alkaloids from Zizyphus spina-christi. Phytochemistry, 30, 1348 (1991).Google Scholar
  89. 89.
    Tschesche, R., C. Spilles, and G. Eckhardt: Alkaloide aus Rhamnaceen, XXII. Amphibin-I, ein neues Alkaloid aus Zizyphus amphibia A. Cheval. Chem. Ber., 107, 1329 (1974).Google Scholar
  90. 90.
    Zbiral, E., E.L. Menard, and J.M. Müller: Über die Inhaltstoffe von Zizyphus oenoplia MILL. 2. Mitteilung: Zur Konstitutionsermittlung des Zizyphins. Helv. Chim. Acta, 48, 404 (1965).Google Scholar
  91. 91.
    Haslinger, E., and W. Robien: NMR Spectroscopic Studies on Peptide Alkaloids 1H and 13C Spectra of Zizyphin A and Frangulanin. Monatsh. Chem., 113, 95 (1982).Google Scholar
  92. 92.
    Hindenlang, D.M., M. Shamma, G.A. Miana, A.H. Shah, and B.K. Cassels: The 13C-NMR Spectra of Cyclopeptide Alkaloids. Liebigs Ann. Chem., 41, 447 (1980).Google Scholar
  93. 93.
    Yu, C., Y.-Y. Tseng, and S.-S. Lee: Calculating Three-dimensional Molecular Structure of Paliurine B from Atom-Atom Distance and Restrained Energy Minimization. Biochim. Biophys. Acta, 1156, 334 (1993).Google Scholar
  94. 94.
    Miana, G.A., and A.H. Shah: Isolation of Jubanine-A,-B and Mauritine-C from the Root Bark of Zizyphus nummularia. Fitoterapia, 56, 363 (1985).Google Scholar
  95. 95.
    Pandey, V.B., S.P.D. Dwivedi, A.H. Shah, and G. Eckhardt: Nummularine-O, a Cyclopeptide Alkaloid from Zizyphus nummularia. Phytochemistry, 25, 2690 (1986).Google Scholar
  96. 96.
    Servis, R.E., A.I. Kosak, R. Tschesche, E. Frohberg, and H.-W. Fehlhaber: Peptide Alkaloids from Ceanothus americanus L. (Rhamnaceae). J. Am.Chem. Soc., 91, 5619 (1969).Google Scholar
  97. 97.
    Warnhoff, E.W., S.K. Pradhan, and J.C.N. Ma: Ceanothus Alkaloids. I. Isolation, Separation and Characterization. Can. J. Chem., 43, 2594 (1965).Google Scholar
  98. 98.
    Gournelis, D.: Iridoïdes et Alcaloïdes de Plectronia odorata Benth. et Hook. (Rubiacées). Thèse de Doctorat, Université René Descartes, Paris, pp. 62–67 and 127–128 (1988).Google Scholar
  99. 99.
    Gournelis, D., A.-L. Skaltsounis, F. Tillequin, M. Koch, J. Pusset, and S. Labarre: Plantes de Nouvelle-Calédonie, CXXI. Iridoïdes et Alcaloïdes de Plectronia odorata. J. Nat. Prod., 52, 306 (1989).Google Scholar
  100. 100.
    Marchand, J., X. Monseur, and M. Païs: Alcaloïdes Peptidiques, VII (5). — Les Myrianthines A, B et C., Alcaloïdes du Myrianthus arboreus P. Beauv. (Urticacées). Ann. Pharm. Fr., 26, 771 (1968).Google Scholar
  101. 101.
    Takai, M., Y. Ogihara, and S. Shibata: New Peptide Alkaloids from Hovenia dulcis and H. tomentella. Phytohemistry, 12, 2985 (1973).Google Scholar
  102. 102.
    Tschesche, R., and H. Last: Alkaloide aus Rhamnaceen, V. Franganin und Frangu-folin, zwei weitere Peptid-Alkaloide aus Rhamnus frangula L. Tetrahedron Lett., 25, 2993 (1968).Google Scholar
  103. 103.
    Bhakuni, R.S., Y.N. Shukla, and R.S. Thakur: Melochicorine, a Pseudooxindole Alkaloid from Melochia corchorifolia. Phytochemistry, 30, 3159 (1991).Google Scholar
  104. 104.
    Bishay, D.W., Z. Kowalewski, and J.D. Phillipson: Peptide and Tetrahydroisoquino-line Alkaloids from Euonymus europaeus. Phytochemistry, 12, 693 (1973).Google Scholar
  105. 105.
    Digel, M., A.F. Morel, H. Layer, J. Biermann, and W. Vœlter: Peptidalkaloide aus Discaria febrifuga Mart. Hoppe-Seyler’s Z. Physiol. Chem., 364, 1641 (1983).Google Scholar
  106. 106.
    Shah, A.H., A.M. Ageel, M. Tariq, J.S. Mossa, and M.A. Al-yahya: Chemical Constituents of the Stem Bark of Zizyphus spina-christi. Fitoterapia, 57, 452 (1986).Google Scholar
  107. 107.
    Tschesche, R., und I. Reutel: Alkaloide aus Sterculiaceen, I. Über Peptidalkaloide aus Melochia corchorifolia. Tetrahedron Lett., 35, 3817 (1968).Google Scholar
  108. 108.
    Païs, M., J. Marchand, F.-X. Jarreau, and R. Goutarel: Alcaloïdes Peptidiques. V.-Structures des Adouétines X, Y, Y′ et Z, Alcaloïdes du Waltheria americana L. (Sterculiacées). Bull. Soc. Chim. Fr., 3, 1145 (1968).Google Scholar
  109. 109.
    Chang, C.-J., E.W. Hagaman, E. Wenkert, M. Gonzalez sierra, O.A. Mascaretti, V.M. Merkuza, and E.A. Rúveda: PMR Spectral Analysis of Some Peptide Alkaloids. Phytochemistry, 13, 1273 (1974).Google Scholar
  110. 110.
    Haslinger, E.: Zur Konformation von Frangulanin. Untersuchung mit Hilfe der 13C-und 1H-NMR-Spektroskopie. Tetrahedron, 34, 685 (1978).Google Scholar
  111. 111.
    Haslinger, E.: Partiell relaxierte 1H-NMR-Spektren von Frangulanin. Monatsh. Chem., 109, 523 (1978).Google Scholar
  112. 112.
    Haslinger, E., and W. Robien: Protonen-Spin-Gitter-Relaxation und interne Beweglichkeit von Molekülen. Monatsh. Chem., 110, 1011 (1979).Google Scholar
  113. 113.
    Machado, E.C., A.A. Filho, A.F. Morel, and F. Delle monache: Four Cyclopeptide Alkaloids from Discaria longispina. J. Nat. Prod., 58, 548 (1995).Google Scholar
  114. 114.
    Warnhoff, E.W., J.C.N. Ma, and P. Reynolds-warnhoff: Ceanothine-B, a Naturally Occurring Oxazacyclononadiene. J. Am. Chem. Soc., 87, 4198 (1965).Google Scholar
  115. 115.
    Servis, R.E., and A.I. Kosak: A Revised Structure of Ceanothine-B. J. Am. Chem. Soc, 90, 4179 (1968).Google Scholar
  116. 116.
    Klein, F.K., and H. Rapoport: The Structure of Ceanothine-B. J. Am. Chem. Soc., 90, 3576 (1968).Google Scholar
  117. 117.
    Tschesche, R., D. Hillebrand, H. Wilhelm, E. Ammermann, and G. Eckhardt: Hysodricanin-A, Mauritin-H, Scutianin-F und Aralionin-C, vier weitere Cyclo-peptidalkaloide aus Zizyphus, Scutia und Araliothamnus. Phytochemistry, 16, 1025 (1977).Google Scholar
  118. 118.
    Menezes, A.S., M.A. Mostardeiro, N. Zanatta, and A.F. Morel: Scutianine-J, a Cyclopeptide Alkaloid Isolated from Scutia buxifolia. Phytochemistry, 38, 783 (1995).Google Scholar
  119. 119.
    Merkuza, V.M., M. Gonzalez sierra, O.A. Mascaretti, E.A. Rúveda, C.-J. Chang, and E. Wenkert: Peptide Alkaloids of Discaria longispina and Scutia buxifolia. Phytochemistry, 13, 1279 (1974).Google Scholar
  120. 120.
    Arbain, D., and W.C. Taylor: Cyclopeptide Alkaloids from Antidesma montana, Phytochemistry, 33, 1263 (1993).Google Scholar
  121. 121.
    Klein, F.K., and H. Rapoport: Ceanothus Alkaloids. Americine. J. Am. Chem. Soc., 90, 2398 (1968).Google Scholar
  122. 122.
    Tschesche, R., E. Ammermann, and H.-W. Fehlhaber: Alkaloide aus Rhamnaceen, X. Scutianin-B, ein weiteres Peptidalkaloid aus Scutia buxifolia Reiss. Tetrahedron Lett., 46, 4405 (1971).Google Scholar
  123. 123.
    Tschesche, R., I. Khokhar, C. Spilles, and M. Von Radloff: Peptide Alkaloids from Zizyphus spina-christi. Phytochemistry, 13, 1633 (1974).Google Scholar
  124. 124.
    Tschesche, R., A.H. Shah, V.B. Pandey, J.P. Singh, M. Von Radloff, and G. Eckhardt: Alkaloids of Rhamnaceae. Pharmazie, 36, 511 (1981).Google Scholar
  125. 125.
    Silva, M., D.S. Bhakuni, P.G. Sammes, M. Païs, and F.-X. Jarreau: A new Peptide Alkaloid from Discaria crenata. Phytochemistry, 13, 861 (1974).Google Scholar
  126. 126.
    Tschesche, R., E. Frohberg, and H.-W. Fehlhaber: Alkaloide aus Rhamnaceen, IV. Integerrin, ein weiteres Peptid-Alkaloid aus Ceanothus integerrimus Hook et Arn. Tetrahedron Lett., 11, 1311 (1968).Google Scholar
  127. 127.
    Herzog, R., A.F. Morel, J. Biermann, and W. Vcelter: Discarin-H, ein neues Peptidalkaloid aus Discaria febrifuga. Chem.-Ztg., 108, 406 (1984).Google Scholar
  128. 128.
    Morel, A.F., E.C. Machado, and L.A. Wessjohann: Cyclopeptide Alkaloids of Discaria febrifuga (Rhamnaceae). Phytochemistry, 39, 431 (1995).Google Scholar
  129. 129.
    Herzog, R., A.F. Morel, J. Biermann, and W. Vcelter: Ein neues Peptidalkaloid aus Discaria febrifuga Mart. Hoppe-Seyler’s Z. Physiol. Chem., 365, 1351 (1984).Google Scholar
  130. 130.
    Bailleul, F., and P. Delaveau: La Féretine, Alcaloïde Peptidique du Feretia apo-danthera Del. (Rubiacées). C. R. Acad. Sci. Paris, Série C., 279, 949 (1974).Google Scholar
  131. 131.
    Païs, M., J. Marchand, X. Monseur, F.-X. Jarreau, and R. Goutarel: Alcaloïdes Peptidiques. Structure de 1’ hymenocardine, alcaloïde de 1’ Hymenocardia acida Tul. (Euphorbiacées). C. R. Acad. Sci. Paris, Série C., 264, 1409 (1967).Google Scholar
  132. 132.
    Tschesche, R., S.T. David, R. Zerbes, M. Von Radloff, E.U. Kaussmann, and G. Eckhardt: Alkaloide aus Rhamnaceen, XIX. Mucronin-E,-F,-G und-H sowie Abyssenin-A,-B und-C, weitere 15gliedrige Cyclopeptidalkaloide. Liebigs Ann. Chem., 1915 (1974).Google Scholar
  133. 133.
    Fehlhaber, H.-W., J. Uhlendorf, S.T. David, and R. Tschesche: Alkaloide aus Rhamnaceen, XII. Mucronin-A,-B und-C, Peptid-Alkaloide eines neuen Strukturtyps aus Zizyphus mucronata. Liebigs Ann. Chem., 759, 195 (1972).Google Scholar
  134. 134.
    Chughtai, M.I.D., I. Khokhar, and F. Tahira: Cyclopeptide-Alkaloids from the Leaves of Zizyphus jujuba. Pak. J. Sci., 30, 136 (1978).Google Scholar
  135. 135.
    Chughtai, M.I.D., I. Khokhar, A. Ahmad, U. Ghani, and M. Anwar: Studies in Medicinal Plants of Pakistan-Part I: Alkaloids from the Leaves of Cocculus villosus. Pak. J. Sci. Res., 31, 79 (1979).Google Scholar
  136. 136.
    Chughtai, M.I.D., I. Khokhar, A. Ahmad, I. Ahmad, and A. Rehman: Studies in Medicinal Plants of Pakistan-II. Alkaloids from the Leaves of Cocculus villosus. Pak. J. Sci. Res., 31, 237 (1979).Google Scholar
  137. 137.
    Schmidt, U.: Synthesis of Cyclopeptides from Plants, Fungi and Sea Animals. Pure Appl. Chem., 58, 295 (1986).Google Scholar
  138. 138.
    Lipshutz, B.H., B. Huff, K. Mccarthy, S.M.J. Mukarram, and W. Vaccaro: A Non-Peptidal Approach to the Cyclopeptide Alkaloids via Oxazolophane Intermediates. Abstr. Pap. Am. Chem. Soc., 193, 84 (1987).Google Scholar
  139. 139.
    Flanagan, D.M., K.L. Bhat, and M.M. Joullié: Synthesis of Dipeptides Related to Cyclopeptide Alkaloids. J. Prakt. Chem., 329, 915 (1987).Google Scholar
  140. 140.
    Flanagan, D.M., and M.M. Joullié: Observations on the Stereochemical Outcome of the Ugi Four-Component Condensation. Synth. Commun., 19, 1 (1989).Google Scholar
  141. 141.
    Heffner, R.J., and M.M. Joullié: Studies Directed Toward the Total Synthesis of 14-Membered Cyclopeptide Alkaloids: Synthesis of a Cyclic Precursor to Nummu-larine-F. Tetrahedron Lett., 30, 7021 (1989).Google Scholar
  142. 142.
    Bowers, M.M., P. Carroll, and M.M. Joullié: Model Studies Directed Toward the Total Synthesis of 14-Membered Cyclopeptide Alkaloids: Synthesis of Prolyl Peptides via a Four-Component Condensation. J. Chem. Soc., Perkin Trans. I, 5, 857 (1989).Google Scholar
  143. 143.
    Heffner, R.J., and M.M. Joullié: Studies Directed Toward a Total Synthesis of 14-Membered Cyclopeptide Alkaloids: Synthesis of a Cyclic Precursor to Nummu-larine-F. Abstr. Pap. Am. Chem. Soc., 200, 175 (1990).Google Scholar
  144. 144.
    Flanagan, D.M., and M.M. Joullié: Studies Directed Toward the Total Synthesis of 14-Membered Cyclopeptide Alkaloids: Synthesis of a Linear Precursor to Nummu-larine-F. Synth. Commun., 20, 459 (1990).Google Scholar
  145. 145.
    Lipshutz, B.H., B.E. Huff, K.E. Mccarthy, T.A. Miller, S.M.J. Mukarram, T.J. Siahaan, W.D. Vaccaro, H. Webb and A.M. Falick: Oxazolophanes as Masked Cyclopeptide Alkaloid Equivalents: Cyclic Peptide Chemistry Without Peptide Couplings. J. Am. Chem. Soc., 112, 7032 (1990).Google Scholar
  146. 146.
    Williams, L., Z. Zhang, X. Ding, and M.M. Joullié: A Practical Stereoselective Synthesis of (2S, 3S )-3-Hydroxyleucine. Tetrahedron Lett., 36, 7031 (1995).Google Scholar
  147. 147.
    Schmidt, U., and U. Schanbacher: Total Synthesis of Mucronin B. Angew. Chem. Int. Ed. Engl., 22, 152 (1983).Google Scholar
  148. 148.
    Schmidt, U., A. Lieberknecht, H. Bökens, and H. Griesser: Total Synthesis of Zizyphine A. Synthesis of Peptide Alkaloids. 8. Amino Acids and Peptides. 40. J. Org. Chem., 48, 2680 (1983).Google Scholar
  149. 149.
    Schmidt, U., H. Bökens, A. Lieberknecht, and H. Griesser: Synthesis of Peptide Alkaloids-III. Amino Acids and Peptides-XXXII. Synthesis of Dihydro-Zizyphine A and B. Tetrahedron Lett., 22, 4949 (1981).Google Scholar
  150. 150.
    Nutt, R.F., K.-M. Chen, and M.M. Joullié: Synthesis of Dihydromauritine A, a Reduced Cyclopeptide Alkaloid. J. Org. Chem., 49, 1013 (1984).Google Scholar
  151. 151.
    Schmidt, U., A. Lieberknecht, H. Griesser, and J. Häusler: Synthesis of Dihydro-zizyphin G. Angew. Chem. Int. Ed. Engl., 20, 281 (1981).Google Scholar
  152. 152.
    Schmidt, U., A. Lieberknecht, H. Griesser, and J. Häusler: Totalsynthese von 9,10-Dihydrozizyphin G. Liebigs Ann. Chem., 2153 (1982).Google Scholar
  153. 153.
    Schmidt, U., and J. Wild: Total Synthesis of Hexaacetylcelenamide A. Angew. Chem. Int. Ed. Engl., 23, 991 (1984).Google Scholar
  154. 154.
    Blanpin, O., M. Païs, and M.A. Quevauviller: Etude Pharmacodynamique de 1’ Adouétine Z, Alcaloïde du Waltheria americana L. (Sterculiacées). Ann. Pharm. Fr., 21, 147 (1963).Google Scholar
  155. 155.
    Han, B.H., and M.H. Park: Alkaloids are the Sedative Principles of the Seeds of Zizyphus vulgaris var.spinosus. Arch. Pharmacal. Res., 10, 203 (1987).Google Scholar
  156. 156.
    Han, B.H., and M.H. Park: Sedative Activity and the Active Components of Zizyphus Fructus. Arch. Pharmacal. Res., 10, 208 (1987).Google Scholar
  157. 157.
    Baig, M.A., D.V. Banthorpe, A.A. Colemn, M.D. Tampion, J. Tampion, and J.J. White: Accumulation of Tetrapeptide Precursors of Macrocyclic Alkaloids by Callus of Ceanothus americanus. Phytochemistry, 34, 171 (1993).Google Scholar
  158. 158.
    Khokhar, I., and A. Ahmad: Spectrometric Studies on a New 13-Membered Cyclopeptide Alkaloid from Zizyphus oenoplia. Mill. J. Nat. Sci. Math., 36, 171 (1994).Google Scholar
  159. 159.
    Khokhar, I., and A. Ahmad: Spectrometric Studies on a New 13-Membered Cyclopeptide Alkaloid from Zizyphus oenoplia. Pak. J. Sci., 45, 54 (1993).Google Scholar
  160. 160.
    Dongo, E., J.F. Ayafor, B.L. Sondengam, and J.D. Connolly: A New Peptide Alkaloid from Canthium anorldianum. J. Nat. Prod., 52, 840 (1989).Google Scholar
  161. 161.
    Hennig, P., A. Morel, and W. Vœlter: Discarin-I, ein neues Peptidalkalid aus Discaria febrifuga Martius. Z. Naturforsch., Teil B, 41, 1180 (1986).Google Scholar
  162. 162.
    Auvin, C., F. Lezenven, A. Blond, I. Augeven-bour, J.-L. Pousset, B. Bodo, and J. Camara: Mucronine J, a 14-Membered Cyclopeptide Alkaloid from Zizyphus mucronata. J. Nat. Prod., 59, 676 (1996).Google Scholar
  163. 163.
    Heffner, R.J., J. Jiang, and M. Joullié: Total Synthesis of ( — )-Nummularine-F. J. Am. Chem. Soc., 114, 10181 (1992).Google Scholar
  164. 164.
    Park, M.H., D.-Y. Suh, and B.H. Han: Absolute Configuration of a Cyclopeptide Alkaloid, Sanjoinine-G1, from Zizyphus vulgaris var. spinosus. Phytochemistry, 43, 701 (1996).Google Scholar
  165. 165.
    Jossang, A., A. Zahir, and D. Diakite: Mauritine J, a Cyclopeptide Alkaloid from Zizyphus mauritiana. Phytochemistry, 42, 565 (1996).Google Scholar
  166. 166.
    Schmidt, U., M. Zäh, and A. Lieberknecht: The Total Synthesis of Frangulanine. J. Chem. Soc., Chem. Commun., 1002 (1991).Google Scholar
  167. 167.
    Han, B.H., Y.C. Kim, M.K. Park, J.H. Park, H.J. Go, H.O. Yang, D.-Y. Suh, and Y.-H. Kang: Total Synthesis of Sanjoinine-G1. Heterocycles, 41, 1909 (1995).Google Scholar
  168. 168.
    Shu, J.H., T. Laïb, J. Chastanet, and R. Beugelmans: A Novel Strategy Towards the Total Synthesis of Cyclopeptide Alkaloids. Angew. Chem. Int. Ed. Engl., 35, 2517 (1996).Google Scholar
  169. 169.
    Maurya, S.K., D.P. Pandey, J.P. Singh, and V.B. Pandey: Pharmazie, 50, 372 (1995).Google Scholar
  170. 170.
    Itokawa, H., K. Takeya, Y. Hitotsuyanagi, and H. Morita: Macrocyclic Peptide Alkaloids from Plants in “The Alkaloids: Chemistry and Pharmacology”. G.A. Cordell (Ed.), Academic Press, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto, Vol. 49, chapter 4, p. 301 (1997).Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • D. C. Gournelis
    • 1
  • G. G. Laskaris
    • 2
  • R. Verpoorte
    • 2
  1. 1.Laboratory of Pharmacognosy, Department of PharmacyAristotelian University of ThessalonikiThessalonikiGreece
  2. 2.Division of PharmacognosyLeiden/Amsterdam Center for Drug ResearchLeidenThe Netherlands

Personalised recommendations