Use of Surgical Wands in Neurosurgery

  • L. Zamorano
  • F. C. Vinas
  • Z. Jiang
  • F. G. Diaz
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 24)


Recent technological developments in neuroimaging and surgical techniques, including the use of interactive image-guided surgical procedures, have opened new frontiers in neurosurgery. Advances in imaging techniques have created the need for more precise navigational assistance, in order to approach image-defined lesions. Several methods that transform coordinates from imaging studies to the surgical field have been developed and used in intraoperative guidance systems.


Positron Emission Tomography Single Photon Emission Compute Tomography Surgical Instrument Stereotactic Frame Optical Encoder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams L, Krybus W, Meyer-Ebrecht D, et al (1990) Computer assisted surgery. IEEE Computer Graph Appl 10: 43–51CrossRefGoogle Scholar
  2. 2.
    Alpert NM, Bradshaw JF, Kennedy D, Correia JA (1990) The principal axes transformation: A method for image registration. J Nucl Med 31: 1717–1722PubMedGoogle Scholar
  3. 3.
    Bajcsy R, Lieberson R, Reivich M (1983) A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. J Comput Assist Tomogr 7: 618–625PubMedCrossRefGoogle Scholar
  4. 4.
    Barnett GH, Kormos DW, Steiner CP, Piraino D, Weisenberger J, Hajjar F, Wood Chris, McNally J (1993) Frameless stereotaxy using a sonic digitizing wand. Development and adaptation to the Picker ViStar Medical Imaging System. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 113–119Google Scholar
  5. 5.
    Barnett GH, Kormos DW, Steiner CP, Weisenberger J (1993) Use of a frameless, armless stereotactic wand for brain tumor localization with 2-D and 3-D neuroimaging. Neurosurgery 33: 674–678PubMedCrossRefGoogle Scholar
  6. 6.
    Brown RA, Roberts TS, Osborn AG (1980) Stereotaxic frame and computer software for CT-directed neurosurgical localization. Invest Radiol 15: 308–312PubMedCrossRefGoogle Scholar
  7. 7.
    Bucholz RD, Smith KR (1993) A comparision of sonic digitizers versus light emitting diode-based location. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS Publications Committee, Park Ridge, pp 179–200Google Scholar
  8. 8.
    Chen CT, Pelizzari CA, Chen GTY, et al (1988) Image analysis of PET data with the aid of CT and MR images. In: de Graaf CN, Viergever MA, (eds) Information processing in medical imaging, 10th ed. Plenum, New York, pp 601–611Google Scholar
  9. 9.
    Critchlow AJ (1985) Introduction to robotics. MacMillan, New YorkGoogle Scholar
  10. 10.
    Dann R, Hoford J, Kovacic S, et al (1988) Three-dimensional computerized brain atlas for elastic matching: Creation, and initial evaluation. Medical imaging II: Image formation, detection, processing, and interpretation. Proc SPIE 914: 600–608Google Scholar
  11. 11.
    Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29: 27–33PubMedCrossRefGoogle Scholar
  12. 12.
    Driller J, Frei EH (1987) A review of medical applications of magnet attraction and detection. J Med Eng Technol 11: 271–277PubMedCrossRefGoogle Scholar
  13. 13.
    Foley KT, Smith MM (1996) Image-guided spine surgery. Neurosurg Clin N Am 7: 171–186PubMedGoogle Scholar
  14. 14.
    Friets EM, Strohbehn JW, Hatch JF, Roberts DW (1989) A frameless stereotaxic operating microscope for neurosurgery. IEEE Trans Biomed Eng 36: 608–617PubMedCrossRefGoogle Scholar
  15. 15.
    Galloway RL Jr, Maciunas RJ (1993) An articulated arm for neurosurgical use. In: Maciunas RJ (ed) Interactive imaged-guided surgery. AANS, Park Ridge, pp 159–168Google Scholar
  16. 16.
    Glauser D, Flurry P, Piguet Y, Epitaux M, Favre J, Meuli RA, Frankhauser H, (1994) Robot CT guided stereotactic neurosurgery. Stereotact Funct Neurosurg 63: 93–98PubMedCrossRefGoogle Scholar
  17. 17.
    Goerss SJ, Kelly PJ, Kall BA, Alker GJ (1982) A computed tomographic stereotactic adaptation system. Neurosurgery 10: 375–379PubMedCrossRefGoogle Scholar
  18. 18.
    Golfinos JC, Fitzpatrick BC, Smith LR, Spetzler R (1995) Clinical use of a frameless stereotactic arm: Results of 325 cases. J Neurosurg 83: 197–205PubMedCrossRefGoogle Scholar
  19. 19.
    Guthrie BL, Adler JR (1991) Frameless stereotaxy: Computer interactive neurosurgery. In: Barrow DL (ed) Perspectives in neurological surgery. Quality Medical Publishing, St Louis, pp 1–19Google Scholar
  20. 20.
    Guthrie BL, Kaplan R, Florek D (1992) Stereotactic neurosurgical operating arm system. Stereotact Funct Neurosurg 58: 144–145CrossRefGoogle Scholar
  21. 21.
    Hassenbusch SJ, Anderson JS, Pillay PK (1991) Brain tumor resection aided with markers placed using stereotaxis guided by magnetic resonance imaging and computed tomography. Neurosurgery 28: 801–806PubMedCrossRefGoogle Scholar
  22. 22.
    Heilbrun PM, Koehler S, McDonald P, Peters W, Sieminov Y, Wiker C (1993) Implementation of a machine vision method for stereotactic localization and guidance. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 169–177Google Scholar
  23. 23.
    Heilbrun MP, Mc Donald P, Wiker C, Koehler S, Peters W (1992) Stereotactic localization and guidance using a machine vision technique. Stereotact Func Neurosurg 58: 94–98CrossRefGoogle Scholar
  24. 24.
    Hill DLG, Hawkes DJ, Crossman JE, Gleeson MJ, Cox TC, Braley EE, Strong AJ, Graves P (1991) Registration of MR and CT images for skull base surgery using point like anatomical features. Br J Radiol 64: 1030–1035PubMedCrossRefGoogle Scholar
  25. 25.
    Horstmann GA, Reinhardt HF (1994) Ranging accuracy test of the sonic microstereometric system. Neurosurgery 34: 754–755PubMedCrossRefGoogle Scholar
  26. 26.
    Jiang H, Robb RA, Holton KS (1992) A new approach to 3-D registration of multimodality medical images by surface matching. Visualization in bio-medical computing. Proc SPIE 1808: 196–213CrossRefGoogle Scholar
  27. 27.
    Junck L, Moen JG, Hutchins GD, Brown MB, Kuhl DE (1990) Correlation methods for the centering, rotation, and alignment of functional brain images. J Nucl Med 31:1220–1226PubMedGoogle Scholar
  28. 28.
    Kato A, Yoshimine T, Hayakawa T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H (1991) A frameless, armless navigational system for computer-assisted neurosurgery. J Neurosurg 74: 845–849PubMedCrossRefGoogle Scholar
  29. 29.
    Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J (1993) Ultrasound controlled neuronavigator-guided brain surgery. J Neurosurg 79: 36–42PubMedCrossRefGoogle Scholar
  30. 30.
    Krybus W, Knepper A, Adams L, et al (1991) Navigation support for surgery by means of optical position detection. Proceedings of the International Symposium CAR91 Computer Assisted radiology. Springer, Berlin Heidelberg New York Tokyo, pp 362–366Google Scholar
  31. 31.
    Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35: 153–160PubMedCrossRefGoogle Scholar
  32. 32.
    Leggett WB, Greenberg MM, Gannon WE, et al (1991) The viewing wand—a new system for three-dimensional CT correlated intraoperative localization. Curr Surg 48: 674–678Google Scholar
  33. 33.
    Leksell L, Jernberg B (1980) Stereotaxis and tomography: A technical note. Acta Neurochir (Wien) 52: 1–7CrossRefGoogle Scholar
  34. 34.
    Levin DN, Hu XP, Tan KK, Galhotra S, Pelizzari CA, Chen GT, Beck RN, Chen CT, Cooper MD (1989) The brain: integrated three dimensional display of MR and PET images. Rad 172: 783–789Google Scholar
  35. 35.
    Levin DN, Pelizzari CA, Chen GTY, Chen CT, Cooper MD (1988) Retrospective geometric correlation of MR, CT, and PET images. Radiology 169: 817–823PubMedGoogle Scholar
  36. 36.
    Mandava VR, Fitzpatrick JM, Maurer CR Jr, et al (1992) Registration of multimodal volume head images via attached markers. Medical imaging VI: Image processing. Proc SPIE 1652: 271–282CrossRefGoogle Scholar
  37. 37.
    Manwaring KH (1993) Intraoperative microendoscopy. In: Maciunas RJ (ed) Interactive imaged-guided surgery. AANS, Park Ridge, pp 217–232Google Scholar
  38. 38.
    Mosges R, Schlondorff G (1988) A new imaging method for intraoperative therapy control in skull base surgery. Neurosurg Rev 11: 245–247PubMedCrossRefGoogle Scholar
  39. 39.
    Nolte LP, Zamorano L, Jiang Z, Wang Q, Langlotz F, Berlemann U (1995) Image guided insertion of transpedicular screws: A laboratory set-up. Spine 20: 497–500PubMedCrossRefGoogle Scholar
  40. 40.
    Oikarinen J, Alakuijala J, Louhisalmi Y, et al (1993) The oulu neuronavigator system: Intraoperative ultrasonography in the verification of neurosurgical localization and visualization. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 233–246Google Scholar
  41. 41.
    Pelizzari CA, Chen GTY, Spelbring DR, et al (1989) Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13: 20–26PubMedCrossRefGoogle Scholar
  42. 42.
    Pelizzari CA, Tan KK, Levin DN, et al (1991) Interactive 3-D patient-image registration. In Colchester ACF, Hawkes DJ (eds) Information processing in medical imaging, 12th ed. New York, pp 132–141Google Scholar
  43. 43.
    Reinhardt H, Meyer H, Amrein E (1988) A computer assisted device for the intraoperative CT correlated localization of brain tumors. Eur Surg Res 20: 51–58PubMedCrossRefGoogle Scholar
  44. 44.
    Reinhardt HF, Horstmann GA, Gratzl O (1993) Sonic stereometry in micro-surgical procedures for deep-seated brain tumors and vascular malformations. Neurosurgery 32: 51–57PubMedCrossRefGoogle Scholar
  45. 45.
    Ritter RC, Grady MS, Howard III MA, Gillies GT (1996) Magnetic stereotaxis: Computer-assisted image-guided remote movements of implants in the brain. In: Taylor RH, Lavalle S, Burdea GC (eds) Computer integrated surgery. Cambridge, MIT, pp 365–369Google Scholar
  46. 46.
    Roberts DW, Strohbehn JW, Friets EM, Kettenberger J, Hartov A (1989) The stereotactic operating microscope: Accuracy, refinement, and clinical experience. Acta Neurochir (Wien) [Suppl] 46: 112–114CrossRefGoogle Scholar
  47. 47.
    Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549PubMedCrossRefGoogle Scholar
  48. 48.
    Salcman M (1993) Intrinsic cerebral neoplasms. In: Apuzzo M (ed) Brain surgery complication avoidance and management. Churchill Livingstone, New York, pp 379–461Google Scholar
  49. 49.
    Schlondorff G, Mosges R, Meyer-Ebrecht D, Krybus W, Adams L (1989) CAS-computer-assisted surgery. HNO 37: 187–190PubMedGoogle Scholar
  50. 50.
    Sekhar LN, Goel A (1993) General considerations on skull base surgery. In: Apuzzo M (ed) Brain surgery complication: Avoidance and management. Churchill Livingstone, New York, pp 2167–2174Google Scholar
  51. 51.
    Takizawa T (1993) Neurosurgical navigation using a noninvasive stereo-adapter. Surg Neurol 40: 1–6CrossRefGoogle Scholar
  52. 52.
    Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme, New YorkGoogle Scholar
  53. 53.
    Tan KK, Grzeszuk R, Levin DN, Pelizzari CA, Chen GT, Erickson RK, Johnson D, Dohrmann GJ (1993) A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration. J Neurosurg 79: 296–303PubMedCrossRefGoogle Scholar
  54. 54.
    Vinas FC, Zamorano L, Lis-Planells M, Buciuc R, Diaz FG (1997) Interactive intraoperative localization during the resection of intraventricular lesions. Min Invas Neurosurg 39: 65–70CrossRefGoogle Scholar
  55. 55.
    Watanabe E (1993) The neuronavigator: A potentiometer-based localizing arm system. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 135–147Google Scholar
  56. 56.
    Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K (1991) Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 28: 792–800PubMedCrossRefGoogle Scholar
  57. 57.
    Young RF (1987) Application of robotics to stereotactic surgery. Neurol Res 9: 123–128PubMedGoogle Scholar
  58. 58.
    Zamorano L, Nolte LP, Kadi AM, Jiang Z (1994) Interactive intraoperative localization using an infrared-based system. Stereotact Funct Neurosurg 63: 84–88PubMedCrossRefGoogle Scholar
  59. 59.
    Zamorano L, Lis-Planells M, Jiang Z, Nolte LP, Kadi AM, Diaz FG (1996) Vascular malformations of the brain: Surgical management using interactive image guidance. Neurosurg Clin North Am 7: 201–214Google Scholar
  60. 60.
    Zamorano L, Nolte L, Jiang C, Kadi M (1993) Image-guided neurosurgery: frame based versus frameless approaches. Neurosurgical Operative Atlas 3: 402–422Google Scholar
  61. 61.
    Zamorano L, Nolte L, Kadi M, Jiang Z (1993) Interactive intraoperative localization using an infrared-based system. Neuro Res 15: 290–298Google Scholar
  62. 62.
    Zamorano L, Nolte L, Kadi M, Jiang Z (1993) Modification of stereotactic frame guidance arcs using optical encoder verniers. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 97–103Google Scholar
  63. 63.
    Zamorano L, Vinas FC, Buciuc R, Jiang Z, Li H, Diaz FG (1997) Use of an open stereotactic ring for neurosurgery procedures. Min Invas Neurosurg 40: 79–82CrossRefGoogle Scholar
  64. 64.
    Zamorano L, Vinas FC, Buciuc R, Diaz FG (1997) Advanced neurosurgical navigation using a robotic microscope integrated with an infrared-based system. In: Trmaki N, Ehrra K (eds) Computer-assisted neurosurgery. Springer TokyoGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • L. Zamorano
    • 1
  • F. C. Vinas
    • 1
  • Z. Jiang
    • 1
  • F. G. Diaz
    • 1
  1. 1.Department of NeurosurgeryWayne State UniversityDetroitUSA

Personalised recommendations