Skip to main content

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 24))

Abstract

Recent technological developments in neuroimaging and surgical techniques, including the use of interactive image-guided surgical procedures, have opened new frontiers in neurosurgery. Advances in imaging techniques have created the need for more precise navigational assistance, in order to approach image-defined lesions. Several methods that transform coordinates from imaging studies to the surgical field have been developed and used in intraoperative guidance systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams L, Krybus W, Meyer-Ebrecht D, et al (1990) Computer assisted surgery. IEEE Computer Graph Appl 10: 43–51

    Article  Google Scholar 

  2. Alpert NM, Bradshaw JF, Kennedy D, Correia JA (1990) The principal axes transformation: A method for image registration. J Nucl Med 31: 1717–1722

    PubMed  CAS  Google Scholar 

  3. Bajcsy R, Lieberson R, Reivich M (1983) A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. J Comput Assist Tomogr 7: 618–625

    Article  PubMed  CAS  Google Scholar 

  4. Barnett GH, Kormos DW, Steiner CP, Piraino D, Weisenberger J, Hajjar F, Wood Chris, McNally J (1993) Frameless stereotaxy using a sonic digitizing wand. Development and adaptation to the Picker ViStar Medical Imaging System. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 113–119

    Google Scholar 

  5. Barnett GH, Kormos DW, Steiner CP, Weisenberger J (1993) Use of a frameless, armless stereotactic wand for brain tumor localization with 2-D and 3-D neuroimaging. Neurosurgery 33: 674–678

    Article  PubMed  CAS  Google Scholar 

  6. Brown RA, Roberts TS, Osborn AG (1980) Stereotaxic frame and computer software for CT-directed neurosurgical localization. Invest Radiol 15: 308–312

    Article  PubMed  CAS  Google Scholar 

  7. Bucholz RD, Smith KR (1993) A comparision of sonic digitizers versus light emitting diode-based location. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS Publications Committee, Park Ridge, pp 179–200

    Google Scholar 

  8. Chen CT, Pelizzari CA, Chen GTY, et al (1988) Image analysis of PET data with the aid of CT and MR images. In: de Graaf CN, Viergever MA, (eds) Information processing in medical imaging, 10th ed. Plenum, New York, pp 601–611

    Google Scholar 

  9. Critchlow AJ (1985) Introduction to robotics. MacMillan, New York

    Google Scholar 

  10. Dann R, Hoford J, Kovacic S, et al (1988) Three-dimensional computerized brain atlas for elastic matching: Creation, and initial evaluation. Medical imaging II: Image formation, detection, processing, and interpretation. Proc SPIE 914: 600–608

    Google Scholar 

  11. Drake JM, Joy M, Goldenberg A, Kreindler D (1991) Computer and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery 29: 27–33

    Article  PubMed  CAS  Google Scholar 

  12. Driller J, Frei EH (1987) A review of medical applications of magnet attraction and detection. J Med Eng Technol 11: 271–277

    Article  PubMed  CAS  Google Scholar 

  13. Foley KT, Smith MM (1996) Image-guided spine surgery. Neurosurg Clin N Am 7: 171–186

    PubMed  CAS  Google Scholar 

  14. Friets EM, Strohbehn JW, Hatch JF, Roberts DW (1989) A frameless stereotaxic operating microscope for neurosurgery. IEEE Trans Biomed Eng 36: 608–617

    Article  PubMed  CAS  Google Scholar 

  15. Galloway RL Jr, Maciunas RJ (1993) An articulated arm for neurosurgical use. In: Maciunas RJ (ed) Interactive imaged-guided surgery. AANS, Park Ridge, pp 159–168

    Google Scholar 

  16. Glauser D, Flurry P, Piguet Y, Epitaux M, Favre J, Meuli RA, Frankhauser H, (1994) Robot CT guided stereotactic neurosurgery. Stereotact Funct Neurosurg 63: 93–98

    Article  PubMed  Google Scholar 

  17. Goerss SJ, Kelly PJ, Kall BA, Alker GJ (1982) A computed tomographic stereotactic adaptation system. Neurosurgery 10: 375–379

    Article  PubMed  CAS  Google Scholar 

  18. Golfinos JC, Fitzpatrick BC, Smith LR, Spetzler R (1995) Clinical use of a frameless stereotactic arm: Results of 325 cases. J Neurosurg 83: 197–205

    Article  PubMed  CAS  Google Scholar 

  19. Guthrie BL, Adler JR (1991) Frameless stereotaxy: Computer interactive neurosurgery. In: Barrow DL (ed) Perspectives in neurological surgery. Quality Medical Publishing, St Louis, pp 1–19

    Google Scholar 

  20. Guthrie BL, Kaplan R, Florek D (1992) Stereotactic neurosurgical operating arm system. Stereotact Funct Neurosurg 58: 144–145

    Article  Google Scholar 

  21. Hassenbusch SJ, Anderson JS, Pillay PK (1991) Brain tumor resection aided with markers placed using stereotaxis guided by magnetic resonance imaging and computed tomography. Neurosurgery 28: 801–806

    Article  PubMed  CAS  Google Scholar 

  22. Heilbrun PM, Koehler S, McDonald P, Peters W, Sieminov Y, Wiker C (1993) Implementation of a machine vision method for stereotactic localization and guidance. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 169–177

    Google Scholar 

  23. Heilbrun MP, Mc Donald P, Wiker C, Koehler S, Peters W (1992) Stereotactic localization and guidance using a machine vision technique. Stereotact Func Neurosurg 58: 94–98

    Article  CAS  Google Scholar 

  24. Hill DLG, Hawkes DJ, Crossman JE, Gleeson MJ, Cox TC, Braley EE, Strong AJ, Graves P (1991) Registration of MR and CT images for skull base surgery using point like anatomical features. Br J Radiol 64: 1030–1035

    Article  PubMed  CAS  Google Scholar 

  25. Horstmann GA, Reinhardt HF (1994) Ranging accuracy test of the sonic microstereometric system. Neurosurgery 34: 754–755

    Article  PubMed  CAS  Google Scholar 

  26. Jiang H, Robb RA, Holton KS (1992) A new approach to 3-D registration of multimodality medical images by surface matching. Visualization in bio-medical computing. Proc SPIE 1808: 196–213

    Article  Google Scholar 

  27. Junck L, Moen JG, Hutchins GD, Brown MB, Kuhl DE (1990) Correlation methods for the centering, rotation, and alignment of functional brain images. J Nucl Med 31:1220–1226

    PubMed  CAS  Google Scholar 

  28. Kato A, Yoshimine T, Hayakawa T, Hayakawa T, Tomita Y, Ikeda T, Mitomo M, Harada K, Mogami H (1991) A frameless, armless navigational system for computer-assisted neurosurgery. J Neurosurg 74: 845–849

    Article  PubMed  CAS  Google Scholar 

  29. Koivukangas J, Louhisalmi Y, Alakuijala J, Oikarinen J (1993) Ultrasound controlled neuronavigator-guided brain surgery. J Neurosurg 79: 36–42

    Article  PubMed  CAS  Google Scholar 

  30. Krybus W, Knepper A, Adams L, et al (1991) Navigation support for surgery by means of optical position detection. Proceedings of the International Symposium CAR91 Computer Assisted radiology. Springer, Berlin Heidelberg New York Tokyo, pp 362–366

    Google Scholar 

  31. Kwoh YS, Hou J, Jonckheere EA, Hayati S (1988) A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng 35: 153–160

    Article  PubMed  CAS  Google Scholar 

  32. Leggett WB, Greenberg MM, Gannon WE, et al (1991) The viewing wand—a new system for three-dimensional CT correlated intraoperative localization. Curr Surg 48: 674–678

    Google Scholar 

  33. Leksell L, Jernberg B (1980) Stereotaxis and tomography: A technical note. Acta Neurochir (Wien) 52: 1–7

    Article  CAS  Google Scholar 

  34. Levin DN, Hu XP, Tan KK, Galhotra S, Pelizzari CA, Chen GT, Beck RN, Chen CT, Cooper MD (1989) The brain: integrated three dimensional display of MR and PET images. Rad 172: 783–789

    CAS  Google Scholar 

  35. Levin DN, Pelizzari CA, Chen GTY, Chen CT, Cooper MD (1988) Retrospective geometric correlation of MR, CT, and PET images. Radiology 169: 817–823

    PubMed  CAS  Google Scholar 

  36. Mandava VR, Fitzpatrick JM, Maurer CR Jr, et al (1992) Registration of multimodal volume head images via attached markers. Medical imaging VI: Image processing. Proc SPIE 1652: 271–282

    Article  Google Scholar 

  37. Manwaring KH (1993) Intraoperative microendoscopy. In: Maciunas RJ (ed) Interactive imaged-guided surgery. AANS, Park Ridge, pp 217–232

    Google Scholar 

  38. Mosges R, Schlondorff G (1988) A new imaging method for intraoperative therapy control in skull base surgery. Neurosurg Rev 11: 245–247

    Article  PubMed  CAS  Google Scholar 

  39. Nolte LP, Zamorano L, Jiang Z, Wang Q, Langlotz F, Berlemann U (1995) Image guided insertion of transpedicular screws: A laboratory set-up. Spine 20: 497–500

    Article  PubMed  CAS  Google Scholar 

  40. Oikarinen J, Alakuijala J, Louhisalmi Y, et al (1993) The oulu neuronavigator system: Intraoperative ultrasonography in the verification of neurosurgical localization and visualization. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 233–246

    Google Scholar 

  41. Pelizzari CA, Chen GTY, Spelbring DR, et al (1989) Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 13: 20–26

    Article  PubMed  CAS  Google Scholar 

  42. Pelizzari CA, Tan KK, Levin DN, et al (1991) Interactive 3-D patient-image registration. In Colchester ACF, Hawkes DJ (eds) Information processing in medical imaging, 12th ed. New York, pp 132–141

    Google Scholar 

  43. Reinhardt H, Meyer H, Amrein E (1988) A computer assisted device for the intraoperative CT correlated localization of brain tumors. Eur Surg Res 20: 51–58

    Article  PubMed  CAS  Google Scholar 

  44. Reinhardt HF, Horstmann GA, Gratzl O (1993) Sonic stereometry in micro-surgical procedures for deep-seated brain tumors and vascular malformations. Neurosurgery 32: 51–57

    Article  PubMed  CAS  Google Scholar 

  45. Ritter RC, Grady MS, Howard III MA, Gillies GT (1996) Magnetic stereotaxis: Computer-assisted image-guided remote movements of implants in the brain. In: Taylor RH, Lavalle S, Burdea GC (eds) Computer integrated surgery. Cambridge, MIT, pp 365–369

    Google Scholar 

  46. Roberts DW, Strohbehn JW, Friets EM, Kettenberger J, Hartov A (1989) The stereotactic operating microscope: Accuracy, refinement, and clinical experience. Acta Neurochir (Wien) [Suppl] 46: 112–114

    Article  CAS  Google Scholar 

  47. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549

    Article  PubMed  CAS  Google Scholar 

  48. Salcman M (1993) Intrinsic cerebral neoplasms. In: Apuzzo M (ed) Brain surgery complication avoidance and management. Churchill Livingstone, New York, pp 379–461

    Google Scholar 

  49. Schlondorff G, Mosges R, Meyer-Ebrecht D, Krybus W, Adams L (1989) CAS-computer-assisted surgery. HNO 37: 187–190

    PubMed  CAS  Google Scholar 

  50. Sekhar LN, Goel A (1993) General considerations on skull base surgery. In: Apuzzo M (ed) Brain surgery complication: Avoidance and management. Churchill Livingstone, New York, pp 2167–2174

    Google Scholar 

  51. Takizawa T (1993) Neurosurgical navigation using a noninvasive stereo-adapter. Surg Neurol 40: 1–6

    Article  Google Scholar 

  52. Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme, New York

    Google Scholar 

  53. Tan KK, Grzeszuk R, Levin DN, Pelizzari CA, Chen GT, Erickson RK, Johnson D, Dohrmann GJ (1993) A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration. J Neurosurg 79: 296–303

    Article  PubMed  CAS  Google Scholar 

  54. Vinas FC, Zamorano L, Lis-Planells M, Buciuc R, Diaz FG (1997) Interactive intraoperative localization during the resection of intraventricular lesions. Min Invas Neurosurg 39: 65–70

    Article  Google Scholar 

  55. Watanabe E (1993) The neuronavigator: A potentiometer-based localizing arm system. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 135–147

    Google Scholar 

  56. Watanabe E, Mayanagi Y, Kosugi Y, Manaka S, Takakura K (1991) Open surgery assisted by the neuronavigator, a stereotactic, articulated, sensitive arm. Neurosurgery 28: 792–800

    Article  PubMed  CAS  Google Scholar 

  57. Young RF (1987) Application of robotics to stereotactic surgery. Neurol Res 9: 123–128

    PubMed  CAS  Google Scholar 

  58. Zamorano L, Nolte LP, Kadi AM, Jiang Z (1994) Interactive intraoperative localization using an infrared-based system. Stereotact Funct Neurosurg 63: 84–88

    Article  PubMed  CAS  Google Scholar 

  59. Zamorano L, Lis-Planells M, Jiang Z, Nolte LP, Kadi AM, Diaz FG (1996) Vascular malformations of the brain: Surgical management using interactive image guidance. Neurosurg Clin North Am 7: 201–214

    CAS  Google Scholar 

  60. Zamorano L, Nolte L, Jiang C, Kadi M (1993) Image-guided neurosurgery: frame based versus frameless approaches. Neurosurgical Operative Atlas 3: 402–422

    Google Scholar 

  61. Zamorano L, Nolte L, Kadi M, Jiang Z (1993) Interactive intraoperative localization using an infrared-based system. Neuro Res 15: 290–298

    CAS  Google Scholar 

  62. Zamorano L, Nolte L, Kadi M, Jiang Z (1993) Modification of stereotactic frame guidance arcs using optical encoder verniers. In: Maciunas RJ (ed) Interactive image-guided neurosurgery. AANS, Park Ridge, pp 97–103

    Google Scholar 

  63. Zamorano L, Vinas FC, Buciuc R, Jiang Z, Li H, Diaz FG (1997) Use of an open stereotactic ring for neurosurgery procedures. Min Invas Neurosurg 40: 79–82

    Article  CAS  Google Scholar 

  64. Zamorano L, Vinas FC, Buciuc R, Diaz FG (1997) Advanced neurosurgical navigation using a robotic microscope integrated with an infrared-based system. In: Trmaki N, Ehrra K (eds) Computer-assisted neurosurgery. Springer Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Zamorano, L., Vinas, F.C., Jiang, Z., Diaz, F.G. (1998). Use of Surgical Wands in Neurosurgery. In: Cohadon, F., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 24. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6504-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6504-1_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7339-8

  • Online ISBN: 978-3-7091-6504-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics