The in vivo Metabolic Investigation of Brain Gliomas with Positron Emission Tomography

  • J. M. Derlon
Part of the Advances and Technical Standards in Neurosurgery book series (NEUROSURGERY, volume 24)


Despite the major contribution it provides to practical neurooncolgy, morphological imaging by CT-scanner or magnetic resonance imaging techniques (MRI) is not always able to give definite answers about the histology of the tumor, its prognosis, or to predict early the response to therapy. Stereotactic biopsy usually provides a histopathological diagnosis and sometimes allows a grading of anaplasia; but most often this information is relevant only for a limited area within the tumor. In addition, biopsies cannot be performed repeatedly during the clinical follow-up of the patient and they do not always afford an individual assessment of the evolution of the tumor nor of the presumed sensitivity to any eventual therapeutic intervention. On the other hand, it is obvious that parameters which are closely related to tumor growth are not readily identified by radiological or histological investigations since most are biochemical, pharmacological or genetic in nature. Positron emission tomography (PET) affords a simultaneous in vivo measurement of some of these parameters, both within the tumor and in the surrounding, presumably healthy, brain.


Positron Emission Tomography Brain Tumor Single Photon Emission Computerize Tomography Positron Emission Tomography Study Comput Assist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe Y, Matsuzawa T, Fujiwara T, Fukuda H, Itoh M, Yamada K, Yamaguchi K, Sata T, Ito T (1986) Assessment of radiotherapeutic effects on experimental tumors using 18F-fluoro-2-deoxy-D-glucose. Eur J Nucl Med 12: 325–328PubMedGoogle Scholar
  2. 2.
    Alavi JB, Alavi A, Goldberg HI, Dann R, Hickey W, Reivich M (1987) Sequential computerized tomography and positron emission tomography studies in a patient with malignant glioma. Nucl Med Commun 8: 457–468PubMedGoogle Scholar
  3. 3.
    Alavi JB, Alvi A, Chawluc J, Kushner M, Powe J, Hickey W, Reivich M (1988) Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 62: 1074–1078PubMedGoogle Scholar
  4. 4.
    Albert KF, Forsting M, Sartor K, Adams HP, Wilson CB, Kunze S, Saloman M (1994) Early post-operative magnetic resonance imaging after resection of malignant glioma—objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34: 45–91PubMedGoogle Scholar
  5. 5.
    Ashdown BC, Boyko OB, Uglietta JP, Friedman HS, Hockenberger B, Oakes WJ, Fuller GN (1993) Postradiation cerebellar necrosis mimicking tumor: MR appearance. J Comput Assist Tomogr 17: 124–126PubMedGoogle Scholar
  6. 6.
    Beaney RP (1984) Positron emission tomography in the study of human tumors. Semin Nucl Med 14(4): 324–341PubMedGoogle Scholar
  7. 7.
    Beaney RP, Brooks DJ, Leenders KL, Thomas DGT, Jones T, Holnan KE (1985) Blood flow and oxygen utilisation in the contralateral cortex of patients with untreated intracranial tumour as studied by positron emission tomography, with observation on the effect of decompressive surgery. J Neurol Neurosurg Psychiatry 48: 310–319PubMedGoogle Scholar
  8. 8.
    Bergstrom M, Collins VP, Ehrin E, Ericson K, Ericson L, Greitz T, Halldin C, Von Hoist H, Langstrom B, Lija A, Lundovist H, Nagren K (1983) Discreapancies in brain tumor extent as shown by computed tomography and positron emission tomography using (68GA) EDTA, (11C) glucose, and (11C) methionine, J Comp Assist Tomogr 7: 1062–1066Google Scholar
  9. 9.
    Bergstrom M, Ericson K, Hagenfeld L, Mosskin M, Von Hoist H, Noren G, Eriksson L, Ehrin E, Johnstrom P (1987a) PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comput Assist Tomogr 11: 208–213PubMedGoogle Scholar
  10. 10.
    Bergstrom M, Lundqvist H, Ericson K, Lilja A, Johnstrom P, Langstrom B, Von-Host H, Eriksson L, Blomqvist G (1987b) Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol 28: 225–229PubMedGoogle Scholar
  11. 11.
    Bergstrom M, Muhr C, Ericson K, Lundqvist H, Lilja A, Eriksson L, Blomqvist G, Langstrom B, Johnstrom P (1987c) The normal pituitary examined with PET and methyl-11 C-L-methionine and methyl-11C-D-methionine. Neuroradiology 29: 221–225PubMedGoogle Scholar
  12. 12.
    Bergstrom M, Muhr C, Lundberg PO, Gee AD, Fasth KJ, Langstrom B (1987d) Rapid decrease in amino acid metabolism in prolactin-secreting pituitary adenomas after bromocriptine treatment: A PET study. J Comput Assist Tomogr 11: 815–819PubMedGoogle Scholar
  13. 13.
    Bergstrom M, Muhr C, Lundberg PO, Bergstrom K, Lungsvist H, Antoni G, Fasth KJ, Langstrom B (1987e) Amino acid distribution and metabolism in pituitary adenomas using positron emission tomography with D-11C-methionine and L-11C-methionine. J Comput Assist Tomogr 11: 384–389PubMedGoogle Scholar
  14. 14.
    Berlinguet L, Begin N, Babineau LM (1962) Autoradiographic studies of the distribution of 1-aminocyclopentane-carboxylic acid in normal and cancerous mice. Can J Biochem Physiol 40: 1111–1114PubMedGoogle Scholar
  15. 15.
    Bisi G, Sciagra R, Santoro GM, Rossi V, Fazzini PF (1995) Technicium-99m-sestamibi imaging with nitrate infusion to detect vialbe hibernating myocardium and predict postrevascularization recovery. J Nucl Med 36: 1994–2000PubMedGoogle Scholar
  16. 16.
    Black KL, Ikezaki K, Toga AW (1989) Imaging of brain tumors using peripheral benzodiazepine receptor ligands. J Neurosurg 71: 113–118PubMedGoogle Scholar
  17. 17.
    Blasberg RG (1994) Prediction of brain tumor therapy response by PET. J Neurooncol 22: 281–286PubMedGoogle Scholar
  18. 18.
    Bolster JM Vaarlburg W, Elsinga PH, Ishiwata K, Vissering H, Voldring MG (1986) The preparation of 11C-carboxylic labelled L-methionine for measuring protein synthesis rates. J Label Comput Radiopharmaceut 23: 1081–1082Google Scholar
  19. 19.
    Born R, Eicholtz-Wirth H (1981) Effect of different physiological conditions on the action of Adriamycin on Chinese hamster cells in vitro. Brit J Cancer 44: 241–246PubMedGoogle Scholar
  20. 20.
    Brooks RA (1982) Alternative formula for glucose utilization using labeled deoxyglucose. J Nucl Med 23: 538–530PubMedGoogle Scholar
  21. 21.
    Brooks DJ, Beaney RP, Lammertsma AA, Leenders KL, Horlock PL, Kensett MJ, Marshall J, Thomas DG, Jones T (1984) Quantitative measurement of blood-brain barrier permeability using Rubidium-82 and positron emission tomography. J Cerb Blood Flow Metab 4: 535–545Google Scholar
  22. 22.
    Brooks DJ, Beaney RP, Lammerstma AA, Herold S, Turton DR, Luthra SK, Frackowiak RSJ, Thomas DG, Marshall J, Jones T (1986a) Glucose transport across the blood-brain barrier in normal human subjects and patients with cerebral tumors studied using (11C)3-0-methyl-D-glucose and positron emission tomography. J Cereb Blood Flow Metab 6: 230–239PubMedGoogle Scholar
  23. 23.
    Brooks DJ, Beaney RP, Lammertsma AA, Turton DR, Marshall J, Thomas DG, Jones T (1986b) Studies on regional cerebral haematocrit and blood flow in patients with cerebral tumours using positron emission tomography. Microvasc Res 31: 267–276PubMedGoogle Scholar
  24. 24.
    Brooks DJ, Beaney RP, Thomas DGT, Marshall J, Jones T (1986c) Studies on regional cerebral pH in patients with cerebral tumours using continuous inhalation of 11CO2 and positron emission tomography. J Cereb Blood Flow Metab 6: 529–535PubMedGoogle Scholar
  25. 25.
    Brooks RA, Hatazawa J, Di Chiro G, Larson SM, Fishbein DS (1987) Human cerebral glucose metabolism determined by positron emission tomography: a revisit. J Cereb Blood Flow Metab 7: 427–432PubMedGoogle Scholar
  26. 26.
    Busch H, Davis JR, Honig GR, Anderson DC, Nair PV, Nyhan WL (1959) The uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res 19: 1030–1039PubMedGoogle Scholar
  27. 27.
    Bustamante E, Morris HP, Pedersen PL (1978) Hexokinase: the direct link between mitochondrial and glycolytic reactions in rapidly growing cancer cells. Adv Exp Med Bill 92: 363–380Google Scholar
  28. 28.
    Bustany P, Chatel M, Derlon JM, Darcel F, Sgouropoulos P, Soussaline F, Syrota A (1986) Brain tumor protein synthesis and histological grades: A study by positron emission tomography (PET) with C 11-L-methionine. J Neurooncol 3: 397–404PubMedGoogle Scholar
  29. 29.
    Ceccarini C, Eagle H (1971) pH as a determinant of cellular growth and contact inhibition. Proc Natl Acad Sci USA 68: 229–233PubMedGoogle Scholar
  30. 30.
    Chandrasoma P, Smith M, Apusso M (1989) Stereotactic biopsy in the diagnosis of brain masses: comparison of results of biopsy and resected surgical specimen. Neurosurgery 24: 160–165PubMedGoogle Scholar
  31. 31.
    Chi-Kwan Y, Budinger TF (1981) Evaluation of blood brain barrier permeability changes in rhesus monkeys and man using Rb-82 and positron emission tomography. J Comput Assist Tomogr 5: 792–799Google Scholar
  32. 32.
    Chi-Kwan Y, Yano Y, Budinger TF, Friedland RP, Derenzo SE, Huesman RH, O’Brien HA (1982) Brain tumor evaluation using Rb-82 and positron emission tomography. J Nucl Med 23: 532–537Google Scholar
  33. 33.
    Christman D, Crawford EJ, Friedkin M, Wolf APP (1972) Detection of DNA synthesis in intact organisms with positron-emitting methyl-(11C) thymidine. Proc Natl Acad Sci USA 69: 988–992PubMedGoogle Scholar
  34. 34.
    Coenen HH, Kling P, Stocklin G (1989) Cerebral metabolism of L-(2-18F) Fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 30: 1367–1372PubMedGoogle Scholar
  35. 35.
    Coleman RE, Hoffman JM, Hanson MW, Sostman HD, Clifford-Schold S (1991) Clinical application of PET for the evaluation of brain tumors. J Nucl Med 32: 616–622PubMedGoogle Scholar
  36. 36.
    Comar D, Cartron JC, Mazière M, Marazano (1976) Labelling and metabolism of methionine-methyl-C 11. Eur J Nucl Med 1: 11–14PubMedGoogle Scholar
  37. 37.
    Conway T, Diksic M (1988) Synthesis of “no-carrier-added” carbon-11 SarCNU: The sarcosinamide analog of the chemotherapeutic agent BCNU. J Nucl Med 29: 1957–1960PubMedGoogle Scholar
  38. 38.
    Daumas-Duport C (1992) Histological grading of gliomas. Curr Opin Neurol Neurosurg 5: 924–931PubMedGoogle Scholar
  39. 39.
    De La Paz RL, Patronas NJ, Brooks RA, Smith BH, Kornblith PL, Milam H, Di Chriro G (1983) Positron emission tomography study of suppression of gray matter glucose utilisation by brain tumors. AJNR 4: 826–829Google Scholar
  40. 40.
    De Witte O, Hildebrand J, Luxen A, Goldman S (1994a) Acute effect of BCNU on glucose metabolism in brain and glioblastoma. J Neurooncol 21: 4Google Scholar
  41. 41.
    De Witte O, Hildebrand J, Luxen A, Goldman S (1994b) Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 74: 2836–2842PubMedGoogle Scholar
  42. 42.
    Dean BI, Drayer BP, Bird CR, Flom RA, Hodak JA, Coons SW, Carey RE (1990) Gliomas: classification with MR imaging. Radiology 174: 411–415PubMedGoogle Scholar
  43. 43.
    Delbeke D, Meyerowitz C, Lapidus RL, Maciunas RJ, Jenning MT, Moots PL, Kessler RM (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195: 47–52PubMedGoogle Scholar
  44. 44.
    Derlon JM, Bourdet C, Bustany P, Chatel M, Theron J, Darcel F, Syrota A (1989) (11C)L-methionine uptake in gliomas. Neurosurgery 25: 720–728PubMedGoogle Scholar
  45. 45.
    Derlon JM, Petit-Taboué MC, Dauphin F, Courtheoux P, Chapon F, Creissard P, Darcel F, Houtteville JP (1994) The in vivo metabolic assessment of benign brain gliomas with PET: different patterns and their implications. J Neurooncol 21: 1Google Scholar
  46. 46.
    Derlon JM, Petit-Taboue MC, Chapon F, Beaudouin V, Noel MH, Creveuil C, Courtheoux P, Houtteville JP (1997) The in vivo metabolic pattern of low grade brain gliomas; a PET study with 18F-fluorodeoxyglucose and 11C-L-methyl methionine. Neurosurgery 40: 276–288PubMedGoogle Scholar
  47. 47.
    Dethy S, Goldman S, Blecic S, Luxen A, Levivier M, Hildebrand J (1994) Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma. J Nucl Med 35: 1162–1166PubMedGoogle Scholar
  48. 48.
    Di Chiro G, De La Paz RL, Sokolofl L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilisation of cerebral gliomas measured by (18F) fluorodeoxyglucose and positron emission tomography. Neurology 32: 1323–1329PubMedGoogle Scholar
  49. 49.
    Di Chiro G, Books RA, Patronas NJ, Bairamian D, Kornblith PL, Smith BH, Mansi L, Barker J (1984) Issues in the in vivo measurement of glucose metabolism of human central nervous system tumors. Ann Neurol 15 [Suppl] S1: 38–S146Google Scholar
  50. 50.
    Di Chiro G (1986) Positron emission tomography using (18F) fluorodeoxyglucose in brain tumors: A powerful diagnostic and prognostic tool. Invest Radiol 22: 360–371Google Scholar
  51. 51.
    Di Chiro G, Oldfield E, Wright DC, De Michele D, Patz DA, Patronas NJ, Doppman JL, Larson SM, Ito M, Kufta CV (1987) Cerebral necrosis after radiotherapy and/or intraarterial chemotherapy for brain tumors. AJNR 8: 1083–1091Google Scholar
  52. 52.
    Di Chiro G (1994) Which PET radiopharmaceuticals for brain tumors? J Nucl Med 32: 1346–1347Google Scholar
  53. 53.
    Diksic M, Farrokhzad S, Yamamoto L, Feindel W (1982a) Synthesis of «no carrier added» HC-labeled BCNU. J Nucl Med 23: 895–898PubMedGoogle Scholar
  54. 54.
    Diksic M, Farrokhzad S, Yamamoto YL, Feinderl W (1982b) 11C and 13N-labelled BCNU and its in vivo pharmacokinetic study with PET. J Labelled Comput Radiopharm 19: 1394Google Scholar
  55. 55.
    Diksic M, Sako K, Feindel W, Kato A, Yamamoto YL, Farrohzad S, Thompson C (1984) Pharmacokinetics of positron-labeled l,3-bis(2-chloroethyl) nitrosourea in human brain tumors using positron emission tomography. Cancer Res 44: 3120–3124PubMedGoogle Scholar
  56. 56.
    Diksic M, Farrakhzad S, Yamamoto YL, Feindel W (1985) Synthesis of «no carrier-added» HC-labeled nitrosoureas. J Radioanal Nucl Chem 89: 45–54Google Scholar
  57. 57.
    Dooms GC, Hecht S, Brant-Zawadski M, Berthiaume Y, Norman D, Newton TH (1986) Brain radiation lesions: MR imaging. Radiology 158: 149–155PubMedGoogle Scholar
  58. 58.
    Doyle WK, Budinger TR, Valk PE, Levin VA, Gutin Ph (1987) Differentiation of cerebral radiation necrosis from tumor recurrence by (18F) FDG and 82Rb positron emission tomography. J Comput Assist Tomogr 11: 563–570PubMedGoogle Scholar
  59. 59.
    Ell PJ, Holman BL (1982) Computed emission tomography. Oxford University Press, OxfordGoogle Scholar
  60. 60.
    Ericson K, Lilja A, Bergstrom M, Collins VP, Eriksson L, Ehrin E, Von-Holst H, Lundqvist H, Langstrom BB, Mosskin M (1985) Positron emission tomography with (11C) methyl)-L-methionine, (11C)D-glucose and (68Ga) EDTA in supratentorial tumors. J Comput Assist Tomogr 9: 683–689PubMedGoogle Scholar
  61. 61.
    Ericson K, Blomqvist G, Bergstrom M, Eriksson L, Stone-Elander S (1987) Application of a kinetic model on the methionine accumulation in intra-cranial tumors studied with positron emission tomography. Acta Radiol 28: 505–509PubMedGoogle Scholar
  62. 62.
    Feiden W, Steude U, Bise K, Giindisch O (1991) Accuracy of stereotactic brain tumor biopsy: comparison of the histologic findings in biopsy cylinders and resected tumor tissue. Neurosurg Rev 14: 51–56PubMedGoogle Scholar
  63. 63.
    Ferrarese C, Appollonio I, Frigo M, Gaini SM, Piotri R, Frattola L (1989) Benzodiazepine receptors and diazepam-binding inhibitor in human cerebral tumors. Ann Neurol 26: 564–568PubMedGoogle Scholar
  64. 64.
    Ferrarese C, Pierapoli C, Linfante I, Bobo RH, Guthrie B, Kufta C, Duhaney MO, Melisi J, Fulham MJ (1994) Peripheral benzodiazepine receptors and glucose metabolism in human gliomas. J Neurooncol 22:15–22PubMedGoogle Scholar
  65. 65.
    Fishbein DS, Chrousos GA, Di Chiro G, Wayner RE, Patronas NJ, Larson SM (1987) Glucose utilization of visual cortex following extra-occipital interruptions of the visual pathways by tumor. A positron emission tomography study. J Clin Neuro Ophtalmol 7: 63–68Google Scholar
  66. 66.
    Forsting M, Albert FK, Kunze S, Adams HP, Zenner D, Sartor K (1993) Extirpation of glioblastomas: MR and CT follow-up of residual tumor and regrowth patterns. AJNR 14: 776–787Google Scholar
  67. 67.
    Frackowiak RSJ, Lenzi GL, Jones T, Heather JD (1982) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values. J Comput Assist Tomogr 4: 727–736Google Scholar
  68. 68.
    Fulling KH, Garcia DM (1985) Anaplastic astrocytoma of the adult cerebrum. Prognostic value of histologic featrues. Cancer 55: 928–931PubMedGoogle Scholar
  69. 69.
    Ginos JZ, Cooper AJL, Dhawan V (1987) [13N] Cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors. J Nucl Med 28: 1844–1852PubMedGoogle Scholar
  70. 70.
    Glantz MJ, Hoffman JM, Coleman RE, Firedman AH, Hanson MW, Burger PC, Herndon J, Meisler WJ, Schold S Jr (1991) Identification of early recurrence of primary central nervous system tumors by 18F-fluorodeoxy-glucose positron emission tomography. Ann Neurol 29: 347–355PubMedGoogle Scholar
  71. 71.
    Graham JF, Cummins CJ, Smith BH, Kornblith PL (1985) Regulation of hexokinase in cultured gliomas. Neurosurgery 17: 537–542PubMedGoogle Scholar
  72. 72.
    Groothuis DR, Vick NA (1982) Brain tumors and the blood-brain barrier. Elsevier, Amsterdam, pp 232–235Google Scholar
  73. 73.
    Gwan Go K, Lammmertsma A, Paans AMJ, Vaalburg W, Woldring MG (1981) Extraction of water labeled with oxygen 15 during single-capillary transit. Influence of blood pressure, osmolarity, and blood-brain damage. Arch Neurol 38: 581–584Google Scholar
  74. 74.
    Hanson MW, Hoffman JM, Glantz MJ, Schold SC, Radtke RA, Friedman AH, Coleman RE (1990) FDG-PET in the early postoperative evaluation of patients with brain tumors. J Nucl Med (Abstract) 31: 799Google Scholar
  75. 75.
    Hanson MW, Glantz MJ, Hoffman JM (1991) FDG-PET in the selection of brain lesions for biopsy. J Comput Assist Tomogr 15: 796–801PubMedGoogle Scholar
  76. 76.
    Hatazawa J, Ishiwata K, Itoh M, Kameyama M, Kubota K, Ido T, Matsuzawa T, Yoshimoto T, Watanuki S, Seo S (1989) Quantitative evaluation of L-(methyl-C-l 1) methionine uptake in tumor using positron emission tomography. J Nucl Med 30: 1809–1813PubMedGoogle Scholar
  77. 77.
    Hawkins RA, Phelps ME, Huang SC, Wapenski JA, Grimm PD, Parker RG, Juillard G, Greenberg P (1984) A kinetic evaluation of blood-brain barrier permeability in human brain tumors with (68-Ga) edta and positron computed tomography. J Cereb Blood Flow Metab 4: 507–515PubMedGoogle Scholar
  78. 78.
    Herholz K, Pietrzyk U, Voges J, Schröeder R, Halber M, Treuer H, Sturm V, Heiss WD (1993) Correlation of glucose consumption and tumor cell density in astrocytomas. A sterotactic PET study. J Neurosurg 79: 853–858PubMedGoogle Scholar
  79. 79.
    Hiesiger E, Fowler JS, Wolf AP, Logan J, Brodie JD, McPherson D, McGregor RR, Christman DR, Wolkow ND, Flamm E (1987) Serial PET studies of human cerebral malignancy with (l-11C) putrescine and (1-11C)2-deoxy-D-glucose. J Nucl Med 28: 1251–1261PubMedGoogle Scholar
  80. 80.
    Hoffman RF, Werbe R (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci 73: 1523–1527PubMedGoogle Scholar
  81. 81.
    Holzer T, Herholz K, Jeske J, Heiss WD (1993) FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 17: 681–687PubMedGoogle Scholar
  82. 82.
    Hoop B, Hnatowich DJ, Brownell GL, Jones T, McKusick KA, Ojemann RG, Parker JA, Subramanyam R, Taveras JM (1976) Techniques for positron scintigraphy of the brain. J Nucl Med 17: 473–479PubMedGoogle Scholar
  83. 83.
    Horton RW, Meldrum BS, Bachelard HS (1973) Enzymic and cerebral metabolic effects of 2-deoxy-D-glucose. J Neurochem 21: 507–520PubMedGoogle Scholar
  84. 84.
    Hossmann KA, Niebuhr I, Tamura M (1982) Local cerebral blood flow and glucose consumption of rats with experimental gliomas. J Cereb Blood Flow Metab 2: 25–32PubMedGoogle Scholar
  85. 85.
    Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238: E69–E82PubMedGoogle Scholar
  86. 86.
    Hubner KF, Purvis JT, Mahaley SM, Robertson Fr JT, Rogers S, Gibbs WD, King P, Partain CL (1982) Brain tumor imaging by positron emission computed tomography using 11C-labeled amino acids. J Comput Assist Tomogr 6: 544–550PubMedGoogle Scholar
  87. 87.
    Iannotti F, Fieschi C, Alfano B, Picozzi P, Mansi L, Pozzilli C, Punzo A, Del Vecchio L, Lenzi GL, Salvatore M, Conforti P (1987) Simplified, non-invasive PET measurement of blood-brain-barrier permeability. J Comput Assist Tomogr 11: 390–397PubMedGoogle Scholar
  88. 88.
    Ikezaki K, Black KL, Toga AW, Santori EM, Becker DP, Smith ML (1990a) Imaging peripheral benzodiazepine receptors in brain tumors in rats: in vitro binding characteristics. J Blood Flow Metabol 10: 580–587Google Scholar
  89. 89.
    Ikezaki K, Black KL, Santori EM, Becker DP, Payne BA, Toga AW (1990b) Three-dimensional comparison of peripheral benzodiazepine binding with histological findings in rat brain tumor. Neurosurgery 27: 78–82PubMedGoogle Scholar
  90. 90.
    Ishii K, Ogawa T, Hatazawa J, Kanno I, Inugami A, Fujita H, Shimose-gawa E, Murakami M, Okudera T, Uemura K (1993) High L-methyl-C 11 methionine uptake in brain abcess: a PET study. J Comput Assist Tomogr 17: 660–666PubMedGoogle Scholar
  91. 91.
    Ishiwata K, Ido T, Vaalburg W (1988a) Increased amounts of D-enantiomer dependent on alkaline concentration in the synthesis of L-methyl-11C-methionine. Appl Radiat Isot 39: 311–314Google Scholar
  92. 92.
    Ishiwata K, Vaalburg W, Elsinga PH, Paans AMJ, Woldring MG (1988b) Comparison of L-[l-11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein syntheis with PET. J Nucl Med 29: 1419–1427PubMedGoogle Scholar
  93. 93.
    Ishiwata K, Vaalburg W, Elsinga PH, Paans AMJ, Woldring MG (1988c) Metabolic studies with L-1-14C Tyrosine for the investigation of a kinetic model to measure protein synthesis rates with PET. J Nucl Med 29: 524–529PubMedGoogle Scholar
  94. 94.
    Ishiwata K, Hatazawa J, Kubota K, Kameyama M, Itoh M, Matzuzawa T, Takahashi T, Iwata R, Ido T (1989) Metabolic fate of L-(methyl-11C)-methionine in human plasma. Eur J Nucl Med 15: 665–669PubMedGoogle Scholar
  95. 95.
    Ishikawa M, Kikuchi H, Miyatake S, Oda Y, Yonekura Y, Nishizawa S (1993) Glucose consumption in recurrent gliomas. Neurosurgery 33: 28–33PubMedGoogle Scholar
  96. 96.
    Ito M, Lammentsma AA, Wise RJJ, Bernadi S, Frackowiak RJJ, Heather JD, McKenzie LG, Thomas DGT, Jones T (1982) Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumor using 15O and positron emission tomography: analytical technics and preliminary results. Neuroradiology 23: 63–74PubMedGoogle Scholar
  97. 97.
    Junck L, Olson JMM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, Mackeever PE, Wieland DM, Kilbourn JM, Starosta-Rubinstein S, Mancini WR, Kuhl DE, Greenberg HS, Young AB (1989) PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 26: 752–758PubMedGoogle Scholar
  98. 98.
    Kameyama M, Tsurumi Y, Shirane R, Katakura R, Suzuki J, Itoh M, Fukuda H, Matzuzawa T, Watanuki S, Ido T (1987) Multi-parametric analysis of brain tumor with PET. J Cereb Blood Flow Metabol 7 [Suppl 1]: S466Google Scholar
  99. 99.
    Kaschten B, Sadzot B, Stevenaert A (1994) Evaluation of brain tumor metabolism by PET J. Neurooncology 21: 1Google Scholar
  100. 100.
    Kawai K, Fujibayashi Y, Saji H (1991) A strategy for the study of cerebral amino acid transport using iodine 123 labeled amino acid radiopharmaceutical: 3-idio-alpha-methyl-L-tyrosine. J Nucl Med 32: 819–824PubMedGoogle Scholar
  101. 101.
    Kessler RM, Goble JC, Bird JH, Girton ME, Doppman JL, Rapoport SI, Barranger JA (1984) Measurement of blood-brain barrier permeability with positron emission tomography and 68Ga EDTA. J Cereb Blood Flow Metab 4: 324–328Google Scholar
  102. 102.
    Kim KT, Black KL, Marciano D, Mazziotta JC, Guze BH, Grafton S, Hawkins RA, Becker DP (1990) Thallium-201 SPECT imaging of brain tumors: methods and results. J Nucl Med 31: 965–969PubMedGoogle Scholar
  103. 103.
    Kim CK, Alavi JB, Alavi A, Reivich M (1991) New grading system of cerebral gliomas using positron emission tomography with F-18 fluorodeoxy-glucose. J Neurooncol 10: 85–91PubMedGoogle Scholar
  104. 104.
    Kirikae M, Diksic M, Yamamoto YL (1989) Quantitative measurements of regional glucose utilization and rate of valine incorporation into proteins by double-tracer autoradiography in the rat brain tumor model. J Cereb Blood Flow Metab 9: 87–95PubMedGoogle Scholar
  105. 105.
    Kubota K, Yamada K, Fukada H, Endo S, Ito M, Abe Y, Yamaguchi T, Fujimara T, Saro T, Ito K, Yoshioka S, Hatazawa J, Marsuzawa T, Iwata R, Ido T (1984) Tumor detection with carbon 11 labelled amino acids. Eur J Nucl Med 9: 136–140PubMedGoogle Scholar
  106. 106.
    Kubota K, Ishiwata K, Kubota R, Yamada S, Tada M, Sato T, Ido T (1991) Tracer feasibility for monitoring tumor radiotherapy: A quadruple tracer study with fluorine-18 fluorodeoxyglucose or fiuorine-18 fluorodeoxyuridine, L-(methyl-14C) methionine, (6-3H) thymidine and gallium-67. J Nucl Med 32:2118–2123PubMedGoogle Scholar
  107. 107.
    Lammertsma AA, Jones T, Frackowiak RSJ, Lenzi GL (1981) A theoretical study of the steady-state model for measuring cerebral blood flow and oxygen utilization using oxygen-15. J Comput Assist Tomogr 5: 544–550PubMedGoogle Scholar
  108. 108.
    Lammertsma AA, Wise RJ, Cox TC, Thomas DG, Jones T (1985) Measurement of blood flow, oxygen utilisation, oxygen extraction ratio, and fractional blood volume in human brain tumors and surrouding oedematous tissue. Br J Radiol 58: 725–734PubMedGoogle Scholar
  109. 109.
    Langen KJ, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, Kuwert T, Stöcklin G, Feinendegen LE (1990) SPECT studies of brain tumors with L-3-1231-iodo-alpha-methyl tyrosine: comparison with PET, 124 IMT and first clinical results. J Nucl Med 31: 281–286PubMedGoogle Scholar
  110. 110.
    Langen KJ, Roosen N, Coenen H, Kuikka JT, Kuwert T, Herzog H, Stoocklin G, Feinendegen LE (1991) Brain and brain tumor uptake of L-3-1231-iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J Nucl Med 32: 1225–1228PubMedGoogle Scholar
  111. 111.
    Laohaprasit V, Silbergeld DL, Ojemann GA, Eskridge JM, Winn HR (1990) Postoperative CT contrast enhancement following lobectomy for epilepsy. J Neurosurg 73: 392–395PubMedGoogle Scholar
  112. 112.
    Lasne MC, Barre L, Piarraud A, Lalaoui K, Giroux B, Derlon JM (1991) Synthesis of “no-carrier added” carbon-11 fotemustine. J labelled Comp radiopharma 30: 440–445Google Scholar
  113. 113.
    Leenders KL, Beaney RP, Brooks DJ, Lammertsma AA, Heather JD, McKenzie CG (1985) Dexamethasone treatment of brain tumor patients: Effects on regional blood flow, blood volume, and oxygen utilization. Neurology 35: 1610–1616PubMedGoogle Scholar
  114. 114.
    Levivier M, Goldman S, Bidaut L, Luxen A, Stanus E, Przedborski S, Baleriaux D, Hildebrand J, Brotchi J (1992) Positron tomography guided stereotactic brain biopsy. Neurosurgery 31: 792–797PubMedGoogle Scholar
  115. 115.
    Levivier M, Goldman S, Pirotte B, Brucher J, Baleriaux D, Luxen A, Hildebrand J, Brotchi J (1995) Diagnostic yield of stereotactic brain biopsy guided by positron emission tomography with 18F-Fluorodeoxyglucose. J Neurosurg 82: 445–452PubMedGoogle Scholar
  116. 116.
    Lilja A, Bergstrom K, Hartvig P, Spannare B, Halldin C, Lundqvist H, Langstrom B (1985) Dynamic study of supratentorial gliomas with L-methyl 11C-methionine and positron emission tomography. AJNR 6: 505–514PubMedGoogle Scholar
  117. 117.
    Magistretti PL (1983) Functional radionuclide imaging of the brain. Serono Symposia Publications 10d 5. Raven, New YorkGoogle Scholar
  118. 118.
    Martiat P, Ferrant L, Labard, Cogneau M, Bol A, Michel A, Michaux JL, Sokal G (1988) In vivo measurement of carbon-11 thymidine uptake in non Hodgkin’s lymphoma using positron emission tomography. J Nucl Med 19: 1633–1637Google Scholar
  119. 119.
    Martins AN, Johston JS, Henry JM, Stoffel TJ, Di Chiro J (1977) Delayed radiation necrosis of the brain. J Neurosurg 47: 336–345PubMedGoogle Scholar
  120. 120.
    Maublant JC, Gachon P, Moins N (1988) Hexakis (2-methoxy isobulisonitrile) technetium-99m and thallium-201 chloride: uptake and release in cultured myocardial cells. J Nucl Med 29: 48–54PubMedGoogle Scholar
  121. 121.
    McKenzie CG, Lenzi GL, Jones T, Moss S (1978) Radioactive oxygen 15O studies in cerebral neoplasms. J R Soc Med 71: 417–425PubMedGoogle Scholar
  122. 122.
    Meyer GJ, Schober O, Hundeshagen H (1985) Uptake of 11 C-L-and D-methionine in brain tumors. Eur J Nucl Med 10: 373–376PubMedGoogle Scholar
  123. 123.
    Meyer CJ, Schober O, Gaab MR, Kietz H, Hundeshagen H (1989) Multi-parameter studies in brain tumors. In: Beckers C, Goffinet A, Bol A(eds) PET in clinical research and clinical diagnosis. Kluwer, Dordrecht, pp 229–248Google Scholar
  124. 124.
    Mineura K, Yasuda T, Kowada M, Shishido F, Ogawa T, Uemura K (1986) Positron emission tomographic evaluation of histological malignancy in gliomas using oxygen-15 and fluorine-18-fluorodeoxyglucose. Neurol Res 8: 164–168PubMedGoogle Scholar
  125. 125.
    Mineura K, Sasajima T, Kowada M, Uesaka Y, Shishido F (1991) Innovative approach in the diagnosis of gliomatosis cerebri using carbon-11-L-methionine positron emission tomography. J Nucl Med 32: 726–728PubMedGoogle Scholar
  126. 126.
    Mosskin M, Holt V, Bergstrom M, Collins VP, Erikson L, Johnstrom P, Noren G (1987) Positron emission tomography with 11C-methionine and X-ray computed tomography of intracranial tumors compared with histopathologic observations in multiples biopsies. Acta Radiol Diag 28: 673–681Google Scholar
  127. 127.
    Moulinoux JP, Le Calve M, Quemener V, Quash G (1984a) In vitro studies of the entry of polyamines into normal red blood cells. Biochimie 66: 385–393PubMedGoogle Scholar
  128. 128.
    Moulinoux JP, Quemener V, Larzul JJ, Le Calve M, Roch M, Toujas L, Quash G (1984b) Red blood cell polyamines in mice bearing the Lewis lung carcinoma (3LL) and in patients with bronchopulmonary cancers. Int J Cancer 34: 277–281PubMedGoogle Scholar
  129. 129.
    Moulinoux JP, Quemener V, Le Calve M, Chatel M, Darcel F (1984c) Polyamines in human brain tumors. A correlative study between tumor, cerebrospinal fluid and red blood cell free polyamine levels. J Neurooncology 2: 153–158Google Scholar
  130. 130.
    Murakami M, Takahashi K, Kondo Y, Mizuzawa S, Nakamichi H, Sasaki H, Hagami E, Iida H, Kanno I, Miura S, Uemura K (1988) 2-18F-phenylaline and 3-18F-tyrosine. Synthesis and preliminary data of tracer kinetics. J Labelled Comp Radiopharmaceut 25: 773–782Google Scholar
  131. 131.
    Ogawa T, Uemura K, Kanno I, Shishido F, Inugami A, Yamaguchi T, Murakamin M, Hirata K, Kato T, Mineura K, Kowada M (1988a) Delayed radiation necrosis of brain evaluated by positron emission tomography. Tohoku J Exp 155: 247–260Google Scholar
  132. 132.
    Ogawa T, Uemura K, Shishido F, Yamaguchi T, Murakami M, Inugami A, Kanno I, Sasaki H, Kato T, Hirata K, Kowada M, Mineura K, Yasuda T (1988b) Changes of cerebral blood flow and oxygen and glucose metabolism following radiochemotherapy of gliomas: A PET study. J Comput Assist Tomogr 12: 290–297PubMedGoogle Scholar
  133. 133.
    Olson JM, McNeel W, Young AB, Mancini WR (1992) Localization of peripheral-type benzodiazepine binding site to mitochondria of human glioma cells. J Neurooncology 13: 35–42Google Scholar
  134. 134.
    O’Tuama LA, Travers ST, Larar JN, Packard AB, Kwan AJ, Barnes PD, Scott RM, Black P, Mcl, Madsen JR, Goumnerova LC, Sallan SE, Tarbell S, Tarbell NJ (1993) Thallium-201 versus technetium-99m-MIBI SPECT in evaluation of chilhood brain tumors: a within-subject comparison. J Nucl Med 34: 1045–1051PubMedGoogle Scholar
  135. 135.
    Pantano P, Baron JC, Crouzel C, Collard P, Sirou P, Samson Y (1985) The 15O continuous-inhalation method: correction for intravascular signal using 15CO2. Eur J Nucl Med 10: 387–391PubMedGoogle Scholar
  136. 136.
    Pappata S, Cornu P, Samson Y, Prenant C, Benavides J, Scatton B, Crouzel C, Hauw JJ, Syrota A (1991) PET study of carbon 11 PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med 32: 1608–1610PubMedGoogle Scholar
  137. 137.
    Patronas NJ, Di Chiro G, Brooks RA, De La Paz RL, Kornblith PL, Smith BH, Rizzoli HV, Kessler RM, Manning RG, Channing M, Wolf AP, O’Connor CM (1982) Work in progress: (18F) fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 144: 885–889PubMedGoogle Scholar
  138. 138.
    Patronas NJ, Brooks RA, de la Paz RL, Smith BH, Kornblith PL, Di Chiro G (1983) Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR 4: 533–535PubMedGoogle Scholar
  139. 139.
    Patronas NJ, Di Chiro G, Kufta G, Bairamian D, Kornblith PL, Simon R, Larson SM (1985) Prediction of survival in glioma patients by means of positron emission tomography. J Neurosurg 62: 612–622Google Scholar
  140. 140.
    Pegg AE, McCann PP (1982) Polyamine memtabolism and function. Am J Physiol 243: C212–C221PubMedGoogle Scholar
  141. 141.
    Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 48: 759–774PubMedGoogle Scholar
  142. 142.
    Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic memasurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-de’oxy-D-glucose: validation of method. Ann Neurol 6: 371–378PubMedGoogle Scholar
  143. 143.
    Phelps ME, Barrio JR, Huang SC, Keen RE, Chugani H, Mazziotta JC (1986) Measurement of cerebral protein synthesis in man with positron computerized tomography: model, assumptions and preliminary results. In: Phelps ME, Mazziotta JC, Schelbert HR (eds) The metabolism of the human brain studied with positron emission tomography. Raven, New York, pp 215–232Google Scholar
  144. 144.
    Phelps ME, Mazziotta JC, Schelbert HR (1986) Positron emission tomography and autoradiography: principles and applications for the brain and heart. In: Phelps ME, Mazziotta JC, Schelbert HR (eds) The metabolism of the human brain studied with positron emission tomography. Raven-Press, New YorkGoogle Scholar
  145. 145.
    Pirotte B, Goldman S, Brucher JM, Zomosa G, Balériaux D, Brotchi J, Levivier M (1994) PET in stereotactic conditions increases the diagnostic yield of brain therapy. Stereotact Funct Neurosurg 63: 144–149PubMedGoogle Scholar
  146. 146.
    Plate KH, Breier G, Weich HA, Risau W (1992) Vacular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas. Nature 359: 845–848PubMedGoogle Scholar
  147. 147.
    Preul MC, Caramanos Z, Collins DL, Villemure JG, Leblanc R, Olivier A, Pokrupa R, Arnold DL (1996) Accurate noninvasive diagnosis of human brain by using proton magnetic resonance spectroscopy. Nature Med 2: 323–325PubMedGoogle Scholar
  148. 148.
    Quemener V, Darcel F, Chatel M, Moulinoux JP (1986) Can polyamines act as positron emitter in cerebral oncology? Preliminary results obtained in nude mice bearing human glioblastoma xenografts. In: Chatel M, Darcel F, Pecker J (eds) Brain oncology. Martinus Nijhoff, Dordrecht, pp 201–204Google Scholar
  149. 149.
    Reivich M, Alavi A (eds) (1985) Positron emission tomography. Liss, New YorkGoogle Scholar
  150. 150.
    Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, MacGregor RR, Shiue CY, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for 18F-fluorodeoxyglucose and 11C-deoxyglucose. J Cereb Blood Flow Metab 5: 179–192PubMedGoogle Scholar
  151. 151.
    Rhodes CG, Wise RJS, Gibbs M, Frackoviak RSJ, Hatazawa J, Palmer AJ, Thomas DJT, Jones T (1983) In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 14: 614–626PubMedGoogle Scholar
  152. 152.
    Richfield EK, Ciliax BJ, Starosta-Rubinstein SR, Keever PE, Penney JB, Young AB (1988) Comparison of (14C)-deoxyglucose metabolism and peripheral benzodiazepine receptor binding in rat C6 glioma. Neurology 38: 1255–1262PubMedGoogle Scholar
  153. 153.
    Roelcke U (1994) PET: Brain tumor biochemistry. J Neurooncology 22: 275–279Google Scholar
  154. 154.
    Rogers S, Robertson JT (1981) A method of studying metabolic variation between individual tumors. Nutr Cancer 2: 148–149PubMedGoogle Scholar
  155. 155.
    Rottenberg DA, Ginos JZ, Kearfott KJ, Junck L, Bigner DD (1984) In vivo measurement of regional brain tissue pH using positron emission tomography. Ann-Neurol 15 [Suppl]: S98–S102PubMedGoogle Scholar
  156. 156.
    Rottenberg DA, Ginos JZ, Kearfott KJ, Dhawan V, Jarden JO (1985) In vivo measurement of brain tumor pH using (11C) DMO and positron emission tomography. Ann Neurol 17: 70–79PubMedGoogle Scholar
  157. 157.
    Rottinger EM, Mendouca BA (1980) Modification of pH induced cellular inactivation by irradiation-glial cells. Int J Radiat Oncol Biol Phys 6: 1659–1662PubMedGoogle Scholar
  158. 158.
    Rozental JM, Levine RL, Nickles RJ, Dobkin JA (1989) Glucose uptake by gliomas after treatment. Arch Neurol 46: 1302–1307PubMedGoogle Scholar
  159. 159.
    Rozental JM, Cohen JD, Mehta MP, Levine RL, Hanson JM, Nickles RJ (1993) Acute changes in glucose uptake after treatment: the effects of carmustine (BCNU) on human glioblastoma multiforme. J Neurooncology 15: 57–66Google Scholar
  160. 160.
    Rutten EHJ, Doesburg WH, Slooff JL (1992) Histologic factors in the grading and prognosis of astrocytoma grade I–IV. J Neurooncology 13: 223–230Google Scholar
  161. 161.
    Sasaki M, Ichiya Y, Kuwabara Y, Otsuka M, Tahara T, Fukumura T, Gunasekera R, Masuda K (1990) Ringlike uptake of 18F-FDG in brain abcess: a PET study. J Comput Assist Tomogr 14: 486–487PubMedGoogle Scholar
  162. 162.
    Sato K, Kameyama M, Ishiwata K, Katakura R, Yoshimoto Y (1992) Metabolic changes of glioma following chemotherapy: an experimental study using four PET tracers. J Neurooncology 14: 81–89Google Scholar
  163. 163.
    Schifter T, Hoffman JM, Hanson MW, Boyko OB, Beam C, Paine S, Schold SC, Burger PC, Coleman RE (1993) Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 17: 509–516PubMedGoogle Scholar
  164. 164.
    Shields AF, Quackenbush RC, Coonrod DV (1986) Development of C-11 thymidine as a PET imaging agent: biochemistry of its synthesis, degradation, and reutilization (abstract). J Nucl Med 27: 1033Google Scholar
  165. 165.
    Shields A, Lim K, Grierson J, Link J, Krohn K (1990) Utilization of labeled thymidine in DNA synthesis: studies for PET. J Nucl Med 31: 337–342PubMedGoogle Scholar
  166. 166.
    Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845PubMedGoogle Scholar
  167. 167.
    Sokoloff L, Reivich M, Kennedy M, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 14C-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–913PubMedGoogle Scholar
  168. 168.
    Sokoloff L (ed) (1985) Brain imaging and brain function. Raven, New YorkGoogle Scholar
  169. 169.
    Tjuvajev J, Abrams D, Ginos J, Desai R, Finn R, Blasberg R (1993a) Iodo-deoxyruidine (IUdR) imaging for tumor proliferation: correlation with-kinetic parameters of local tumor cell proliferation. Neurology 43: A399Google Scholar
  170. 170.
    Tjuvajev J, Muraki A, Ginos J, Berk J, Kourcher J, Ballon D, Beattie B, Finn R, Blasberg R (1993b) Iododeoxyuridine uptake and retention as a measure of tumor growth. J Nucl Med 34: 1152–1162PubMedGoogle Scholar
  171. 171.
    Tsurumi Y, Kameyama M, Ishiwata K, Katakura R, Monma M, Ido T, Suzuki J (1990) 18F-fluoro-2 deoxyuridine as a tracer of nucleic acid metabolism in brain tumors. J Neurosurg 72: 110–113PubMedGoogle Scholar
  172. 172.
    Tyler JL, Yamamoto YL, Diksic M, Theron J, Villemure JG, Worsinghton C, Evans AC, Feindel W (1986) Pharmacokinetics of superselective intra-arterial and intravenous (11 C) BCNU evaluated by PET. J Nucl Med 27: 775–780PubMedGoogle Scholar
  173. 173.
    Tyler JL, Diksic M, Villemure JG, Evans AC, Meyer E, Yamamoto YL, Feindel W (1987) Metabolic and hemodynamic evaluation of glicomas using positron emission tomography. J Nucl Med 28: 1123–1133PubMedGoogle Scholar
  174. 174.
    Tyler JL, Strother S, Zatorre RJ, Alivisatos B, Worsley KJ, Diksic M, Yamamoto YL (1988) Stability of regional cerebral glucose metabolism in the normal brain measured by positron emission tomography. J Nucl Med 29: 631–642PubMedGoogle Scholar
  175. 175.
    Vander Borght T, Pauwels S, Lambotte L, Labar S, De Maeght S, Stroobandt G, Laterre C (1994) Brain tumor imaging with PET and 2-(carbon-11) thymidine. J Nucl Med 35: 974–982Google Scholar
  176. 176.
    Viader F, Derlon JM, Petit-Tavoué MC, Shishido F, Hubert P, Houtteville JP, Courtheoux P, Chapon F (1993) Recurrent oligodendroglioma diagnosed with 11C-L-methionine and PET: a case report. Eur Neurol 33: 248–251PubMedGoogle Scholar
  177. 177.
    Volkow N, Goldman SS, Flamm ES, Cravioto H, Wolf AP, Brodie JD (1983) Labeled putrescine as a probe in brain tumors. Science 221: 673–675PubMedGoogle Scholar
  178. 178.
    Wackers F, Berman D, Maddahi J (1989) Techmcium-99m hexakis 2-methoxyisobutyl isonitrile: human biodistribution, dosimetry, safety and preliminary comparison to thallium-201 for myocardial perfusion imaging. J Nucl Med 30: 301–311PubMedGoogle Scholar
  179. 179.
    Warburg O (1956) On the origin of cancer cells. Science 123: 309–314PubMedGoogle Scholar
  180. 180.
    Warnick RE, Pietronigro DD, Duncan D, McBride Q, Flamm ES (1989) In vivo metabolism of radiolabeled putrescine in gliomas. Implications for positron emission tomography of brain tumors. Neurosurgery 23: 464–469Google Scholar
  181. 181.
    Weisberg LA (1980) Cerebral computed tomography in diagnosis of supra-tentorial astrocytoma. Computerized tomography, vd 4. Pergamon, Elunsford, NY, pp 87–105Google Scholar
  182. 182.
    Wike-Hooley JL, Van den Berg AP, Van der Zee J, Reinhold HS (1985) Human tumour pH and its variation. Eur J Cancer Clin Oncol 21: 785–791PubMedGoogle Scholar
  183. 183.
    Wilson MJ, Poirier LA (1987) An increased requirement for methionine by transformed rat liver epithelial cells in vitro. Exp Cell Res 111: 397–400Google Scholar
  184. 184.
    Yamaguchi T, Ssaski H, Ogawa T, Mineura K, Uemura K, Kanno I, Shishido F, Murakami M, Inugami A, Higano S (1986) Relation between tissue nature and (18F) fluorodeoxyglucose kinetics evaluated by dynamic positron emission tomography in human brain tumors. Acta Radiol [Suppl] 369: 415–418Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • J. M. Derlon
    • 1
  1. 1.Service de NeurochirurgieCHUCaenFrance

Personalised recommendations