Skip to main content

Structure-function relationships of mitochondrial monoamine oxidase A and B: chimaeric enzymes and site-directed mutagenesis studies

  • Conference paper
MAO — The Mother of all Amine Oxidases

Part of the book series: Journal of Neural Transmission. Supplement ((NEURAL SUPPL,volume 52))

Summary

To gain insight into the structure of monoamine oxidases (MAO) A and B, we investigated the properties of various chimaeric enzymes, engineered by moving progressively the junction between the NH2- and the COOH-termini of each MAO form. Whereas exchange of the ADP-binding sequence did not modify the catalytic properties of either MAO isoforms, chimaeras with increasing length of the NH2-terminus of MAO-A (up to position 256) showed a marked decrease in affinity towards substrates and inhibitors. Two sequences, spanning position 62 to 103 and 146 to 220, appeared of particular importance in putatively constituting the binding site of MAO-B. Conversely, the catalytic properties and specificity of MAO-A were insensitive to substitution of both the NH2- (up to position 112) and COOHtermini (from residue 395), but further modification of the central sequence of MAO-A was not compatible with activity. None of the engineered chimaeras showed a shift in substrate and inhibitor specificity. Investigation on MAO-B by site-directed mutagenesis revealed that His382 and Thr158 may represent residues relevant for MAO-B catalytic mechanism.

Mosé Da Prada died on April 25, 1995

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bach AJW, Lan NC, Johnson DL, Abell CW, Bembenek ME, Kwan SW, Seeburg P, Shih JC (1988) cDNA cloning of human liver monoamine oxidase A and B: molecular basis of differences in enzymatic properties. Proc Natl Acad Sci USA 85: 4934–4938

    Article  PubMed  CAS  Google Scholar 

  • Bertocci B, Miggiano V, Da Prada M, Denbic Z, Lahm H-W, Malherbe P (1991) Human catechol-O-methyltransferase: cloning and expression of the membrane-associated form. Proc Natl Acad Sci USA 88: 1416–1420

    Article  PubMed  CAS  Google Scholar 

  • Cesura AM, Pletscher A (1992) The new generation of monoamine oxidase inhibitors. Prog Drug Res 38: 171–297

    PubMed  CAS  Google Scholar 

  • Cesura AM, Galva MD, Imhof R, Kyburz E, Picotti GB, Da Prada M (1989) [3H]Ro 19-6327: a reversible ligand and affinity labelling probe for monoamine oxidase-A. Eur J Pharmacol 162:457–465

    Article  PubMed  CAS  Google Scholar 

  • Cesura AM, Bös M, Galva MD, Imhof R, Da Prada M (1990) Characterisation of the binding of [3H]Ro 41-1049 to the active site of human monoamine oxidase-A. Mol Pharmacol 37: 358–366

    PubMed  CAS  Google Scholar 

  • Cesura AM, Gottowik J, Lahm H-W, Lang G, Imhof R, Malherbe P, Röthlisberger U, Da Prada M (1996) Investigation on the structure of the active site of monoamine oxidase-B by affinity labeling with the selective inhibitor lazabemide and by site-directed mutagenesis. Eur J Biochem 236: 996–1002

    Article  PubMed  CAS  Google Scholar 

  • Da Prada M, Kettler R, Keller HH, Burkard WP, Muggli-Maniglio D, Haefely WE (1989) Neurochemical profile of moclobemide, a short-acting and reversible inhibitor of monoamine oxidase type A. J Pharmacol Exp Ther 248: 400–414

    PubMed  Google Scholar 

  • Da Prada M, Kettler R, Keller HH, Cesura AM, Richards JG, Saura Marti J, Muggli-Maniglio D, Wyss P-C, Kyburz E, Imhof R (1990) From moclobemide to Ro 19-6327 and Ro 41-1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. J Neural Transm [Suppl] 29: 279–292

    Google Scholar 

  • Dostert P, Strolin-Benedetti M (1991) Structure-modulated recognition of substrates and inhibitors by monoamine oxidase A and B. Biochem Soc Trans 19: 207–211

    PubMed  CAS  Google Scholar 

  • Efange SMN, Michelson RH, Tan AK, Krueger MJ, Singer TP (1993) Molecular size and flexibility as determinants of selectivity in the oxydation of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine analogs by monoamine oxidase A and B. J Med Chem 36: 1278–1283

    Article  PubMed  CAS  Google Scholar 

  • Gottowik J, Cesura AM, Malherbe P, Lang G, Da Prada M (1993) Characterisation of wild-type and mutant forms of human monoamine oxidase A and B expressed in a mammalian cell line. FEBS Lett 317: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Gottowik J, Malherbe P, Lang G, Da Prada M, Cesura AM (1995) Structure/function relationships of mitochondrial monoamine oxidase A and B chimeric forms. Eur J Biochem 230: 934–942

    Article  PubMed  CAS  Google Scholar 

  • Grimsby J, Chen K, Wang L-J, Lan NC, Shih JC (1991) Human monoamine oxidase A and B genes exhibit identical exon-intron organisation. Proc Natl Acad Sci USA 88: 3637–3641

    Article  PubMed  CAS  Google Scholar 

  • Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucl Acids Res 16: 7351–7367

    Article  PubMed  CAS  Google Scholar 

  • Horton R, Hunt HD, Ho SN, Pullen JK, Pease LR (1989) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61–68

    Article  PubMed  CAS  Google Scholar 

  • Kearney EB, Salach JI, Walker WH, Seng RL, Kenney W, Zeszotek E, Singer TP (1971) The covalently bound flavin of hepatic monoamine oxidase. 1. Isolation and sequence of a flavin peptide and evidence for binding in the 8α position. Eur J Biochem 24: 321–327

    Article  PubMed  CAS  Google Scholar 

  • Kwan S-K, Lewis DA, Zhou BP, Abell CW (1995) Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis. Arch Biochem Biophys 316: 385–391

    Article  PubMed  CAS  Google Scholar 

  • Löffler J, Feltz A (1990) Lipoplyamine-mediated transfection allows gene expression studies in primary neuronal cells. J Neurochem 54: 1812–1815

    Article  Google Scholar 

  • Mitoma J, Ito A (1992) Mitochondrial targeting signal of rat liver monoamine oxidase B is located at its carboxy terminus. J Biochem 111: 20–24

    PubMed  CAS  Google Scholar 

  • Sanger F, Coulson A, Barrell B, Smith A, Roe B (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143: 161–178

    Article  PubMed  CAS  Google Scholar 

  • Silverman RB (1991) The use of mechanism-based inactivators to probe the mechanism of monoamine oxidase. Biochem Soc Trans 19: 201–206

    PubMed  CAS  Google Scholar 

  • Weyler W (1994) Functional expression of C-terminally truncated human monoamine oxidase type A in Saccharomyces cerevisiae. J Neural Transm [Suppl] 41: 3–15

    CAS  Google Scholar 

  • Weyler W, Hsu Y-PP, Breakefield XO (1991) Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 47: 391–417

    Article  Google Scholar 

  • Wierenga RK, Terpstra P, Hol WGJ (1986) Prediction of the occurrence of the ADP-binding ßαß-fold in proteins, using an amino acid sequence fingerprint. J Mol Biol 187: 101–107

    Article  PubMed  CAS  Google Scholar 

  • Wu H-F, Chen K, Shih JC (1993) Site-directed mutagenesis of monoamine oxidase A and B: role of cysteines. Mol Pharmacol 43: 888–893

    PubMed  CAS  Google Scholar 

  • Wouters J, Ramsay R, Goormaghtigh E, Ruysschaert J-M, Brasseur R, Duranr F (1995) Secondary structure of monoamine oxidase by FTIR spectroscopy. Biochem Biophys Res Commun 208: 773–778

    Article  PubMed  CAS  Google Scholar 

  • Zhou BP, Lewis DA, Kwan S-W, Kirskey TJ, Abell CW (1995a) Mutagenesis of a highly conserved tyrosine residue in monoamine oxidase B affects FAD incorporation and catalytic activity. Biochemistry 34: 9526–9531

    Article  PubMed  CAS  Google Scholar 

  • Zhou BP, Lewis DA, Kwan S-W, Abell CW (1995b) Flavynation of monoamine oxidase B. J Biol Chem 270: 23653–23660

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Cesura, A.M., Gottowik, J., Lang, G., Malherbe, P., Da Prada, M. (1998). Structure-function relationships of mitochondrial monoamine oxidase A and B: chimaeric enzymes and site-directed mutagenesis studies. In: Finberg, J.P.M., Youdim, M.B.H., Riederer, P., Tipton, K.F. (eds) MAO — The Mother of all Amine Oxidases. Journal of Neural Transmission. Supplement, vol 52. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6499-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6499-0_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83037-6

  • Online ISBN: 978-3-7091-6499-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics