Monoamine oxidases: from brain maps to physiology and transgenics to pathophysiology

  • J. G. Richards
  • J. Saura
  • J. M. Luque
  • A. M. Cesura
  • J. Gottowik
  • P. Malherbe
  • E. Borroni
  • J. Gray
Part of the Journal of Neural Transmission. Supplement book series (NEURAL SUPPL, volume 52)


The present report reviews recent advances in mapping the cellular sites of synthesis and catalytic activity, as well as age- and disease-related changes of monoamine oxidases A and B in the brain. A transgenic model of oxidative stress is also described. The relevance of these findings for the physiological and pathophysiological roles of monoamine oxidases is briefly discussed.


Monoamine Oxidase Locus Coeruleus Neurobiol Aging Hybridization Histochemistry Human Substantia Nigra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abell CW, Stewart RM, Andrews PJ, Kwan S-W (1994) Molecular and functional properties of the monoamine oxidases. Heterocycles 39: 933–955CrossRefGoogle Scholar
  2. Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27: 1029–1034PubMedCrossRefGoogle Scholar
  3. Anderson JK, Frim DM, Isacson O, Breakfield XO (1994) Catecholaminergic cell atrophy in a transgenic mouse aberrantly overexpressing MAO-B in neurons. Neurodegen 3: 97–109Google Scholar
  4. Arnett CD, Fowler JS, MacGregor RR, Schlyer DJ, Wolf AP, Langstrom B, Halldin C (1987) Turnover of brain monoamine oxidase measured in vivo by positron emmission tomography using L-[11C]deprenyl. J Neurochem 49: 522–527PubMedCrossRefGoogle Scholar
  5. Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Muller U, Aguet M, Babinet C, Shih JC, De Maeyer E (1995) Aggressive behavior and altered amounts of serotonin and norepinephrine in mice lacking MAO-A. Science 268: 1763–1766PubMedCrossRefGoogle Scholar
  6. Cesura AM, Pletscher A (1992) The new generation of monoamine oxidase inhibitors. Prog Drug Res 38: 171–297PubMedGoogle Scholar
  7. Chan-Palay V, Hochli M, Savaskan E, Hungerecker G (1993) Calbindin D-28k and monoamine oxidase A immunoreactive neurons in the nucleus basalis of Meynert in senile dementia of the Alzheimer type and Parkinson’s disease. Dementia 4: 1–15PubMedGoogle Scholar
  8. Cohen G (1986) Monoamine oxidase, hydrogen peroxide and Parkinson’s disease. Adv Neurol 45: 119–125Google Scholar
  9. Damier P, Kastner A, Agid Y, Hirsch EC (1996) Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson’s disease? Neurology 46: 1262–1269PubMedCrossRefGoogle Scholar
  10. Da Prada M, Pieri L, Cesura AM, Kettler R (1994a) The pharmacology of moclobemide. Revs Contemp Pharmacol 5: 1–18Google Scholar
  11. Da Prada M, Zurcher G, Kettler R, Dingemanse K, Jorga K, Dubuis R (1994b) Remodelling the kinetics and dynamics of levodopa therapy in Parkinson’s disease by inhibiting MAO-B with lazabemide and COMT with tolcapone. In: Poewe W, Lees AJ (eds) Levodopa — the first 25 years. Proceedings of the Symposium “20 Years of MadoparR, New Avenues”, Berlin, October 1993. Editiones Roche, Basel, pp 99–117Google Scholar
  12. Desagher S, Glowinski J, Premont J (1996) Astrocytes protect neurons from hydrogen peroxide toxicity. J Neurosci 16: 2553–2562PubMedGoogle Scholar
  13. Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 49: 1–20PubMedCrossRefGoogle Scholar
  14. Fowler JS, Volkow ND, Wang G-J, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schyler D, Wolf AP, Warner D, Zezulkova I, Cilento R (1996) Inhibition of monoamine oxidase B in the brains of smokers. Nature 379: 733–736PubMedCrossRefGoogle Scholar
  15. Gerlach M, Ben-Shachar D, Riederer P, Youdim MBH (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 63: 793–807PubMedCrossRefGoogle Scholar
  16. Girman AS, Baenziger J, Hotamisligil GS, Konradi C, Shalish C, Sullivan JL, Breakfield XO (1992) Relationship between platelet monoamine oxidase B activity and alleles at the MAO-B locus. J Neurochem 59: 2063–2066CrossRefGoogle Scholar
  17. Goridis C, Neff NH (1971) Monoamine oxidase: an approximation of turnover rates. J Neurochem 18: 1673–1682PubMedCrossRefGoogle Scholar
  18. Goridis C, Neff NH (1973) Neuronal and hormonal influences on the turnover of monoamine oxidase in salivary gland. Biochem Pharmacol 22: 2501–2510PubMedCrossRefGoogle Scholar
  19. Gottfries CG, Adolfsson R, Aquilonius S-M, Carlsson A, Eckernas S-A, Nordberg A, Oreland L, Svennerholm L, Wiberg A, Winblad B (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol Aging 4: 261–271PubMedCrossRefGoogle Scholar
  20. Haefely W, Burkard WP, Cesura AM, Kettler R, Lorez HP, Martin JR, Richards JG, Scherschlicht R, Da Prada M (1992) Biochemistry and pharmacology of moclobemide, a prototype RIMA. Psychopharmacology 106: S6–S14PubMedCrossRefGoogle Scholar
  21. Jarman J, Glover V, Sandler M, Turjanski N, Stern G (1993) Platelet monoamine oxidase B activity in Parkinson’s disease: a re-evaluation. J Neural Transm [P-D Sect] 5: 1–4CrossRefGoogle Scholar
  22. Konradi C, Svoma E, Jellinger K, Riederer P, Denney P, Thibault J (1988) Topographical immunocytochemical mapping of MAO-A, MAO-B and tyrosine hydroxylase in human post-mortem brainstem. Neuroscience 26: 791–802PubMedCrossRefGoogle Scholar
  23. Konradi C, Kornhuber J, Froelich L, Fritze J, Heinsen H, Beckmann H, Schulz E, Riederer P (1989) Demonstration of monoamine oxidase-A and-B in the human brainstem by a histochemical technique. Neuroscience 33: 383–400PubMedCrossRefGoogle Scholar
  24. Kurth JH, Kurth MC, Poduslo SE, Schwankhaus JD (1993) Association of a monoamine oxidase B alle with Parkinson’s disease. Ann Neurol 33: 368–372PubMedCrossRefGoogle Scholar
  25. Luque JM, Kwan S-W, Abell CW, Da Prada M, Richards JG (1995) Cellular expression of mRNAs encoding monoamine oxidases A and B in the rat central nervous system. J Comp Neurol 363: 665–680PubMedCrossRefGoogle Scholar
  26. Luque JM, Bleuel Z, Hendrickson A, Richards JG (1996) Detection of MAO-A and MAO-B mRNAs in monkey brainstem by cross-hybridization with human oligonucleotide probes. Mol Brain Res 36: 357–360PubMedCrossRefGoogle Scholar
  27. Moll G, Moll R, Riederer P, Gsell W, Heinsen H, Denney RM (1990) Immunofluorescence cytochemistry on thin frozen sections of human substantia nigra for staining of monoamine oxidase A and monoamine oxidase B, a pilot study. J Neural Transm [Suppl] 32: 67–77Google Scholar
  28. Nakamura S, Kawamata T, Akiguchi I, Kameyama M, Nakamura N, Kimura H (1990) Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol 80: 319–325CrossRefGoogle Scholar
  29. Nakamura S, Akigachi I, Kimura J (1993) A subpopulation of mouse striatal cholinergic neurons show monoamine oxidase activity. Neurosci Lett 161: 141–144PubMedCrossRefGoogle Scholar
  30. Nakamura S, Akigachi I, Kimura J (1995) Topographic distribution of monoamine oxi-dase-B-containing neurons in the mouse striatum. Neurosci Lett 184: 29–31PubMedCrossRefGoogle Scholar
  31. Nelson DL, Herbet A, Glowinski J, Hamon M (1979) [3H]Harmaline as a specific ligand of MAO-A. II. Measurement of the turnover rates of MAO A during ontogenesis in rat brain. J Neurochem 32: 1829–1836PubMedCrossRefGoogle Scholar
  32. Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurosci 16: 439–444PubMedCrossRefGoogle Scholar
  33. Ordway GA, Klimek V, Richards JG, Overholser JC, Meltzer HY, Dilley G, Stockmeier CA (1996) [3H]Ro 41-1049 binding to monoamine oxidase-A in the locus coeruleus is not altered in major depression. Soc Neurosci Abstr 368.2Google Scholar
  34. Oreland L, Gottfries CG (1986) Brain monoamine oxidase in aging and in dementia of Alzheimer type. Prog Neuropsychopharmacol Biol Psychiatry 10: 533–540PubMedCrossRefGoogle Scholar
  35. Oreland L, Jossan SS, Hartvig P, Aquilonius SM, Langstrom B (1990) Turnover of monoamine oxidase B (MAO-B) in pig brain by positron emission tomography using 11C-L-deprenyl. J Neural Transm [Suppl] 32: 55–59Google Scholar
  36. Parkinson Study Group (1993) A controlled trial of lazabenmide (Ro 19-6327) in untreated Parkinsons disease. Ann Neurol 33: 350–356CrossRefGoogle Scholar
  37. Reinikainen KJ, Paljarvi L, Halonen T, Malminen O, Kosma V-M, Laakso M, Riekkinen PJ (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer’s disease. Neurobiol Aging 9: 245–252PubMedCrossRefGoogle Scholar
  38. Robinson DS (1975) Changes in monoamine oxidase and monoamines with human development and aging. Fed Proc 34: 103–107PubMedGoogle Scholar
  39. Saura J, Kettler R, Da Prada M, Richards JG (1992) Quantitative enzyme radioautogra-phy with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J Neurosci 12: 1977–1999PubMedGoogle Scholar
  40. Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Loffler J, Richards JG (1994a) Increased monoamine oxidase-B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62: 15–30PubMedCrossRefGoogle Scholar
  41. Saura J, Richards JG, Mahy N (1994b) Differential age-related changes of MAO-A and MAO-B in mouse brain and peripheral organs. Neurobiol Aging 15: 399–408PubMedCrossRefGoogle Scholar
  42. Saura J, Bleuel Z, Ulrich J, Mendelowitsch A, Chen K, Shih JC, Malherbe P, Da Prada M, Richards JG (1996) Molecular neuroanatomy of human monoamine oxidases A and B revealed by quantitative enzyme radioautography and in situ hybridization histochemistry. Neuroscience 70: 755–774PubMedCrossRefGoogle Scholar
  43. Saura J, Andres N, Andrade C, Ojuel J, Eriksson K, Mahy N (1997) Biphasic and region-specific MAO-B response to aging in control human brain. Neurobiol Aging (in press)Google Scholar
  44. Sparks DL, Woeltz VM, Markesbery WR (1991) Alterations in brain monoamine oxidase activity in aging, Alzheimer’s disease, and Pick’s disease. Arch Neurol 48: 718–721PubMedCrossRefGoogle Scholar
  45. Stevenson GB, Sturman SG, Heafield MTE (1989) Platelet monoamine oxidase B activity in Parkinson’s disease. J Neural Transm 1: 255–261CrossRefGoogle Scholar
  46. Strolin-Benedetti M, Dostert P (1992) Monoamine oxidase: from physiology and pathophysiology to the design and clinical applications of reversible inhibitors. Adv Drug Res 23: 65–125Google Scholar
  47. Waldmeier PC (1987) Amine oxidases and their endogenous substrates (with special reference to monoamine oxidase and the brain). J Neurotransm [Suppl] 23: 55–72Google Scholar
  48. Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW (1985) Distinct monoamine oxidase A and B populations in primate brain. Science 230: 181–183PubMedCrossRefGoogle Scholar
  49. Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidasde A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25: 439–456PubMedCrossRefGoogle Scholar
  50. Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16: 921–932PubMedCrossRefGoogle Scholar
  51. Youdim MBH (1995) The advent of selective monoamine oxidase A inhibitor antidepressants devoid of the cheese reaction. Acta Psychiatr Scand 91[Suppl 386]: 5–7CrossRefGoogle Scholar
  52. Zetsche T, Chan-Palay V (1992) MAO-A and MAO-B immunoreactivity in the hippocampus, temporal cortex and cerebellum of normal controls and of patients with senile dementia of the Alzheimer type. Dementia 3: 270–281Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • J. G. Richards
    • 1
    • 1
  • J. Saura
    • 1
  • J. M. Luque
    • 1
  • A. M. Cesura
    • 1
  • J. Gottowik
    • 1
  • P. Malherbe
    • 1
  • E. Borroni
    • 1
  • J. Gray
    • 2
  1. 1.Pharmaceuticals Division, Preclinical CNS ResearchF. Hoffmann-La Roche LtdBaselSwitzerland
  2. 2.Pharma Business Development & Strategic MarketingF. Hoffmann-La Roche LtdBaselSwitzerland

Personalised recommendations