All cells of higher organisms are covered with surface carbohydrates, which are linked to peptides or fatty acids to form glycoconjugates (1). These cell surface glycoconjugates (glycoproteins, proteoglycans, glycosphingolipids, and glycosyl phosphatidyl inositols) play an important role in biological recognition, carrying encoded biological information that is recognized by other cells, viruses, bacteria, and toxins (2). This is another example of the lock and key mechanism, which was first used by Emil Fischer in 1897 to explain the interactions between enzymes and substrates. The recognition event is important for the regulation of cell-substratum adhesion and cell proliferation, for the binding and uptake of extracellular components, and for the regulation of extracellular matrix formation (3).


Amino Sugar Raney Nickel Benzyl Ether Stereoselective Synthesis Methyl Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hart, G.W.: Glycosylation. Current Options in Cell Biology, 4, 1017 (1992).Google Scholar
  2. 2.
    Sharon, N., and H. Lis: Carbohydrates in Cell Recognition. Scientific American, 1993, 74.Google Scholar
  3. 3.
    Höök, M., A. Woods, S. Johansson, L. Kjellen, and J.R. Couchman: Functions of Proteoglycans at Cell Surface. In: Functions of the Proteoglycans, Ciba Fundation Symposium 124, 143–157. Chichester: Wiley. 1986.Google Scholar
  4. 4.
    Leet, J.E., D.R. Schroeder, S.J. Hofstead, J. Golik, K.L. Colson, S. Huang, S.E. Klohr, T.W. Doyle, and J.A. Matson: Kedarcidin, a New Chromoprotein Antitumor Antibiotic: Structure Elucidation of Kedarcidin Chromophore. J. Am. Chem. Soc., 114, 7946 (1992).Google Scholar
  5. 5.
    Nakamura, T., S. Fukatsu, S. Seki, and T. Niida: A Convenient Method for the Preparation of the Acylated Macrolide Antibiotic Midecamycin using Molecular Sieves and Acylchloride. Chem. Lett., 1293 (1978).Google Scholar
  6. 6.
    Lown, J. W.: Discovery and Development of Anthracycline Antitumour Antibiotics. Chem. Soc. Rev., 165 (1993).Google Scholar
  7. 7.
    Baumann, H., J.-R. Tzianabos, D. L. Kasper, and H. J. Jennings: Structural Elucidation of Two Capsular Polysaccharides from One Strain of Bacteroides fragilis Using High-Resolution NMR Spectroscopy. Biochem., 31, 4081 (1992).Google Scholar
  8. 8.
    Lichtenthaler, F. W.: Emil Fischer’s Proof of the Configuration of Sugars: A Centennial Tribute. Angew.Chem., 31, 1541 (1992).Google Scholar
  9. 9.
    Uesugi, M., T. Sekida, S. Matsuki, and Y. Sugiura: Selective DNA Cleavage by Elsamicin A and Switch Function of Its Amino Sugar Group. Biochem., 30, 6711 (1991).Google Scholar
  10. 10.
    Brockmann, H., and K. Bauer: Rhodomycin, ein rotes Antibioticum aus Actinomyceten. Naturwissenschaften, 37, 492 (1950).Google Scholar
  11. 11.
    Zunino, F., R. Gambetta, A. Di Marco, and A. Zaccara: Interaction of Daunomycin and its Derivatives with DNA. Biochim. Biophys. Acta, 277, 489 (1972).Google Scholar
  12. 12.
    Grein, A., C. Spalla, A. Di Marco, and G. Canevazzi: Descrizione e classificazione di un attinomicete (Streptomyces peucetius ps. Nova) produttore di una sostanza ad attivita antitumorale: la daunomicina. Giorn. Microbiol., 11, 109 (1963).Google Scholar
  13. 13.
    Dubost, M., P. Gauter, R. Maral, L. Ninet, S. Pinnert, J. Proud’homme, and G.H. Werner: Un nouvel antibiotique a propriétés cytostatiques: la rubidomycine. C.R. Acad. Sci. Paris, 257, 1813 (1963).Google Scholar
  14. 14.
    Brockmann, H., and W. Henkel: Pikromycin, ein neues Antibiotikum aus Actinomyceten. Naturwissenschaften, 37, 138 (1950).Google Scholar
  15. 15.
    Lartey, P.A., S.L. DeNinno, R. Faghih, D.J. Hardy, J.J. Clement, and J.J. Plattner: Synthesis and Activity of C-21 Alkylamino Derivatives of (9R)-Erythromycylamine. J. Antibiot., 45, 380 (1992).Google Scholar
  16. 16.
    Jaret, R.S., A.K. Mallams, and H. Reimann: The Megalomicins. Part IV. The Structures of Megalomicins A, B, C1, and C2. J. Chem. Soc. Perkin Trans., I, 1374 (1973).Google Scholar
  17. 17.
    Donin, M.N., J. Pagano, J.D. Dutcher, and C.M. McKee: Methymycin, a New Crystalline Antibiotic. Antibiot. Annu., 1, 179 (1953-54).Google Scholar
  18. 18.a)
    Djerassi, C., and J.A. Zderic: The Structure of the Antibiotic Methymycin. J. Am. Chem. Soc., 78, 2907 (1956)Google Scholar
  19. 18.b)
    Djerassi, C., and J.A. Zderic: The Structure of the Antibiotic Methymycin. J. Am. Chem. Soc., 78, 6390 (1956).Google Scholar
  20. 19.
    Kinoshita, K., S. Satoi, M. Hayashi, and K. Nakatsu: Mycinamicins, new Macrolide Antibiotics: X. X-Ray Crystallography and the Absolute Configuration of Mycinamicin IV. J. Antibiot., XLII 42, 1003 (1989).Google Scholar
  21. 20.
    Kirst, H.A., and G.D. Sides: New Directions for Macrolide Antibiotics: Pharmacokinetics and Clinical Efficacy. Antimicrob. Agents Chemother., 33, 1419 (1989).Google Scholar
  22. 21.
    Lazarevski, G., M. Vinkovic, G. Kobrehel, and S. Dokic: Conformational Analysis of Azithromycin by Nuclear Magnetic Resonance Spectroscopy and Molecular Modelling. Tetrahedron, 49, 721 (1993).Google Scholar
  23. 22.
    Shephard, R.M., G.S. Duthu, R.A. Ferraina, and M.A. Mullins: High-performance Liquid Chromatographic Assay with Electrochemical Detection for Azithromycin in Serum and Tissues. J. Chromatogr., 565, 321 (1991).Google Scholar
  24. 23.
    Edo, K., M. Mizugaki, Y. Koide, H. Seto, K. Furihata, N. Otake, and N. Ishada: The Structure of Neocarzinostatin Chromophore Possessing a Novel Bicyclo-[7,3,0]dodekadiyne System. Tetrahedron Lett., 26, 331 (1985).Google Scholar
  25. 24.
    For a review see Nicolaou, K.C., and W.-M. Dai: Chemistry and Biology of the Enediyne Anticancer Antibiotics. Angew. Chem. Int. Ed. Engl., 30, 1387 (1991).Google Scholar
  26. 25.
    Leet, J.E., J. Golik, S.J. Hofstead, J.A. Matson, A.Y. Lee, and J. CLARDY: Kedarcidin Chromophore: Structure Elucidation of the Amino Sugar Kedarosamine. Tetrahedron Lett., 33, 6107 (1992).Google Scholar
  27. 26.
    Walker, S., K.G. Valentine, and D. Kahne: Sugars as DNA Binders: A Comment to the Calicheamicin Oligosaccharide. J. Am. Chem. Soc., 112, 6428 (1990).Google Scholar
  28. 27.
    Smith, A.L. and K.C. Nicolaou: The Edndiyne Antibiotics. J. Med. Chem., 39, 2103 (1993).Google Scholar
  29. 28.
    Furniss, B.S., A.J. Hannaford, P.W.G. Smith, and A.R. Tatchell: Vogels Textbook of Practical Organic Chemistry, 5th edn., 644. Essex: Longman Scientific and Technical. 1989.Google Scholar
  30. 29.
    Stevens, C.L., P. Blumbergs, and D.H. Otterbach: Synthesis and Chemistry of 4-Amino-4,6-Amino-4,6-dideoxy Sugars. I. Galactose. J. Org. Chem., 31, 2817 (1966).Google Scholar
  31. 30.
    Stevens, C.L., P. Blumbergs, F.A. Daniher, D.H. Otterbach, and K.G. Taylor: Synthesis and Chemistry of 4-Amino-4,6-Amino-4,6-dideoxy Sugars. II. Glucose. J. Org. Chem., 31, 2822 (1966).Google Scholar
  32. 31.
    Rainer, H., and H.-D. Scharf: Synthesis of the Hydroxyamino Sugar of Calicheamicins. Liebigs Ann. Chem., 117 (1993).Google Scholar
  33. 32.
    Furniss, B.S., A.J. Hannaford, P.W.G. Smith, and A.R. Tatchell: Vogels Textbook of Practical Organic Chemistry, 5th edn., 660. Essex: Longman Scientific and Technical. 1989.Google Scholar
  34. 33.
    Bell, D.J., and J. Lorber: Use of the Benzyl Radical in Syntheses of Methylated Sugars. Part I. 4:6-Dimethyl Glucose. J. Chem. Soc., 453 (1940).Google Scholar
  35. 34.
    Mathers, D.J., and G.J. Robertson: Optical Superposition and the 4:6-Benzylidenemethyl-1-glycosides. J. Chem. Soc., 696 (1933).Google Scholar
  36. 35.
    Freudenberg, K., and E. Plankenhorn: Zur Kenntnis der teilweise methylierten Glucose. Ber., 73B, 621 (1940).Google Scholar
  37. 36.
    Ward, D.E., and B.F. Kaller: Diastereoselective Synthesis of Actinobolin from D-Glucose by Application of a Novel [3 + 3] Annulation. J. Org. Chem., 59, 4230 (1994).Google Scholar
  38. 37.
    Ward, D.E., and B.F. Kaller: The Diastereoselective Synthesis of (+)-Actinobolin from D-Glucose. Tetrahedron Lett., 34, 407 (1993).Google Scholar
  39. 38.
    Stanek, J., K. Capek, and J. Jary: Preparation of Partially Acylated Derivatives of Methyl 3-Acetamido-3,6-dideoxy-ß-D-gluco-and (β-D-Mannopyranoside. Coll. Czech. Chem. Comm., 39, 1479 (1973).Google Scholar
  40. 39.
    Jennings, H.J., and J.K.N. Jones: Reaction of Sugar Chlorosulfates: Part V. The Synthesis of Chlorodeoxy Sugars. Can. J. Chem., 43, 2372 (1965).Google Scholar
  41. 40.
    Hanessian, S., and N.R. Plessas: The Reaction of O-Benzylidene Sugars with N-Bromosuccinimide. III. Applications of the Synthesis of Aminodeoxy and Deoxy Sugars of Biological Importance. J. Org. Chem., 34, 1045 (1969).Google Scholar
  42. 41.
    Stick, R.V., and J.J. Patroni: The Deoxygenation of Some Derivatives of Methyl 3-Amino-3-deoxy-α-D-glucopyranoside. Aust. J. Chem., 38, 947 (1985).Google Scholar
  43. 42.
    Guthrie, R.D., and L.F. Johnson: Nitrogen-Containing Carbohydrate Derivatives. Part I. Methyl 4,6-Benzylidene-3-deoxy-3-phenylazo-α-D-glucoside. J. Chem. Soc., 4166 (1961).Google Scholar
  44. 43.
    Furstner, A., J. Baumgartner, and D.N. Jumbam: Unprecedented Influence of Azides and the Effect of Bulky Groups on Zinc-induced Reductions of Deoxy Halogeno Sugars. J. Chem. Soc. Perkin Trans., I, 131 (1993).Google Scholar
  45. 44.
    Weiler, L., and D.A. Nicoll-Griffith: Introduction of a Chiral Centre on C-6 of a Carbohydrate Unit: Application to the Synthesis of the C-2 to C-15 Fragment of Ionomycin. Tetrahedron, 47, 2733 (1991).Google Scholar
  46. 45.
    Izawa, T., Y. Nishumura, and S. Kondo: 3-Amino-5-C-phenyl-D-altrofuranose and 3-Amino-5-C-[3-carboxy-4-(carboxymethyl)-2-oxo-3-cyclohexen-l-yl]-D-altrofura-nose, Possible Intermediates for Synthesis of the Anthracycline Antibiotic Decilorubicin. Carbohydr. Res., 211, 137 (1991).Google Scholar
  47. 46.
    Ali, Y., and A.C. Richardson: The Reduction of Azides with Sodium Borohydride: A Convenient Synthesis of Methyl 2-Acetamido-4,6-O-benzylidene-2-deoxy-α-D-allo-pyranoside. Carbohydr. Res., 5, 441 (1967).Google Scholar
  48. 47.
    For a review see Brimacombe, J.S.: Synthesen von Antibiotica-Zuckern. Angew. Chem., 83, 261 (1971).Google Scholar
  49. 48.
    Foster, A.B., T.D. Inch, J. Lehmann, M. Stacey, and J.M. Webber: Carbohydrate Components of Antibiotics. Part III. Synthesis of 3,6-Dideoxy-3-dimethylamino-ß-D-glucose Hydrochloride Monohydrate: the Absolute Configuration of Mycaminose. J. Chem. Soc., 2116 (1962).Google Scholar
  50. 49.
    Reist, E.J., R.R. Spencer, and B.R. Baker: Potential Anticancer Agents. XXIX. Inversion of a Ring Carbon of a Glycoside. J. Org. Chem., 24, 1618 (1959).Google Scholar
  51. 50.
    Eis, M.J., and B. Ganem: An Improved Synthesis of D-Perosamine and Some Derivatives. Carbohydr. Res., 176, 316 (1988).Google Scholar
  52. 57.
    Stevens, C.L., R.P. Glinski, and K.G. Taylor: 4,6-Dideoxy-4-(N,N-dimethylamino)-D-talopyranose Hydrochloride. J. Org. Chem., 33, 1586 (1968).Google Scholar
  53. 52.
    Brimacombe, J.S., A.K. al-Radhi, and L.C.N. Tucker: The Deamination of Methyl 4-Amino-4, 6-dideoxy-2,3-O-isopropylidene-α-L-talo-and-manno-pyranosides with Nitrous Acid. J. Chem. Soc. Perkin Trans., I, 315 (1992).Google Scholar
  54. 53.
    Overend, W.G., S.W. Gunner, and N.R. Williams: The Preparation of Amino Sugars from Methyl Glycopyranosiduloses: Methyl 4-Acetamido-4,6-dideoxy-α-L-talopyr-anoside. Carbohydr. Res., 4, 498 (1967).Google Scholar
  55. 54.
    Jary, J., K. Capek, and J. Kovar: Synthese von Derivaten der 3,6-Didesoxy-3-amino-L-idose. Coll. Czech. Chem. Comm. 28, 2171 (1963).Google Scholar
  56. 55.
    Brimacombe, J.S., O.A. Ching, and M. Stacey: Nucleophilic Displacement Reactions in Carbohydrates. Part XI. Reaction of Methyl 6-Deoxy-2,3-isopropylidene-4-O-methylsulphonyl-α-L-talopyranoside with Sodium Azide: a Synthesis of L-Perosamine (4-Amino-4,6-didexy-L-mannose) Derivatives. J. Chem. Soc. (C), 1270 (1969).Google Scholar
  57. 56.
    Pfitzner, K.E., and J.G. Moffatt: A New and Selective Oxidation of Alcohols. J. Am. Chem. Soc., 85, 3027 (1963).Google Scholar
  58. 57.
    Cieplak, A.S.: Stereochemistry of Nucleophilic Addition to Cyclohexanone. The Importance of Two-Electron Stabilizing Interactions. J. Am. Chem. Soc., 103, 4540 (1981).Google Scholar
  59. 58.
    Cieplak, A.S., B.D. Tait, and C.R. Johnson: Reversal of π-facial Diastereoselection upon Electronegative Substitution of the Substrate and the Reagent. J. Am. Chem. Soc., 111, 8447 (1989).Google Scholar
  60. 59.
    Jary, J., and A. Zobacova: Amino Sugars via Displacement of Sulfonyloxy Groups with Hydrazine. Methods in Carbohydrate Chemistry, 6, 229–235 (1972).Google Scholar
  61. 60.
    Coleman, R.S., Y. Dong, and A.J. Carpenter: A Convenient Preparation of Terminally Differentiated, Selectively Protected Six-Carbon Synthons from D-glucosamine. J. Org. Chem., 57, 3732 (1992).Google Scholar
  62. 61.
    Paulsen, H., V. Rutz, and I. Brockhausen: Synthese von modifizierten Derivaten der 2-Acetamido-2-desoxy-D-galactose zur Untersuchung der Substratspezifität der Core-1-β3-Gal-Transferase und der Core-1-β3-GlcNAc-Transferase der Biosynthese von O-Glycoproteinen. Liebigs Ann. Chem., 735 (1992).Google Scholar
  63. 62.
    Stevens, C.L., R.R. Glinski, K.G. Taylor, P. Blumbergs, and S. K. Gupta: The Synthesis and Proof of Structure of Perosamine (4-Amino-4,6-dideoxy-D-mannose) Derivatives. J. Am. Chem. Soc., 92, 3160 (1970).Google Scholar
  64. 63.
    Malik, A., S.N.-H. Kasmi, and Z. Ahmad: A Regioselective One-pot Synthesis of N,N-Dialkylamino Sugars via Aminosilanes. J. Chem. Res. (S), 124 (1992).Google Scholar
  65. 64.
    Jary, J., K. Capek, and J. Stanek jr.: Preparation of Methyl 3-amino-3,6-dideoxy-β-D-hexopyranosides by Condensation of (2R,4R)-2-Methoxy-4-methyl-3-oxapentane-1,5-dial with Nitrometane. Coll. Czech. Chem. Comm., 39, 1462 (1974).Google Scholar
  66. 65.
    Richardson, A.C.: The Synthesis of D-and L-Mycaminose Hydrochlorides. J. Chem. Soc., 2758 (1962).Google Scholar
  67. 66.
    Horton, D., and A. Liav: A Synthesis of 2-Amino-2,6-dideoxy-D-allose and-D-altrose Hydrochlorides and their Tetraacetyl Derivatives. Carbohydr. Res., 47, 326 (1976).Google Scholar
  68. 67.
    Levene, P.A., and E.T. Stiller: The Synthesis of Ribose-5-phosphoric Acid. J. Biol. Chem., 104, 299 (1934).Google Scholar
  69. 68.
    Shunk, C.H., J.B. Lavigne, and K. Folkers: Studies on Carcinolytic Compounds. V. 6,7-Dimethyl-9-[l-(5desoxy-D-ribityl)]-isoalloxazine. J. Am. Chem. Soc., 77, 2210 (1955).Google Scholar
  70. 69.
    Kuhn, R., and H. Fischer: Aminozucker-Synthesen XI: D-Altrosamin und D-Allo-samin. Liebigs Ann. Chem., 615, 88 (1958).Google Scholar
  71. 70.
    Baer, H.H., K. Capek, and M.C. Cook: Synthesis of 3-Acetamido-2,3,6-trideoxy-D-lyxo-hexose (N-Acetyl-D-daunosamine) and its D-Arabino Isomer. Can. J. Chem., 47, 89 (1969).Google Scholar
  72. 71.
    Richardson, A.C.: The Synthesis of Desosamine Hydrochloride. J. Chem. Soc., 5364 (1964).Google Scholar
  73. 72.
    Overend, W.G., G.S. Hajivarnava, and N.R. Williams: Arylazo-Glycenosides. Part 7. Synthesis of Amino-sugars from Methyl Arylazo-hexenopyranosides. J. Chem. Soc. Perkin Trans., I, 205 (1982).Google Scholar
  74. 73.
    Iselin, B., and T. Reichstein: Krystallisierte 2-Desoxy-l-rhamnose (2-Desoxy-l-chinovose). Helv. Chim. Acta, 27, 1146 (1944).Google Scholar
  75. 74.
    Hadfield, A.F., L. Cunningham, and A.C. Sartorelli: The Synthesis and Cytotoxic Activity of l,3,4,-tri-O-Acetyl-2,6-dideoxy-L-arabino-and-L-lyxo-hexopyranose. Carbohydr. Res., 72, 93 (1979).Google Scholar
  76. 75.
    Monneret, C., C. Conreur, and Q. Khuong-Huu: Synthesis of Methyl 4-Amino-2,4,6, trideoxy-3-O-methyl-L-arabino-hexopyranosides (Methyl α-and β-L-Hollantosaminide) and of Methyl 4-Amino-2,4,6-trideoxy-3-O-methyl-β-L-lyxo-hexopyranoside (Methyl α-L-3-epiHollantosaminide). Carbohydr. Res., 65, 35 (1978).Google Scholar
  77. 76.
    Goodman, L., J. P. Marsh, C. W. Mosher, and E. M. Acton: 6-(3-Methylbut-3-enylamino)purine: a Highly Active Cytokinin. Chem. Comm., 973 (1967).Google Scholar
  78. 77.
    Inglis, G.R., J.C.P. Schwarz, and L. McLaren: The Methoxymercuration of D-Glucal and Tri-O-acetyl-D-glucal: a New Route to 2-Deoxyglucopyranosides. J. Chem. Soc., 1014 (1962).Google Scholar
  79. 78.
    Florent, J.-C., B. Abbaci, and C. Monneret: Addition of Hydrazoic Acid to Pseudoglycals Stereoselective Synthesis of L-Acosamine and L-Daunosamine. Bull. Soc. Chim. Fr., 667 (1989).Google Scholar
  80. 79.
    Grethe, G., T. Mitt, T.H. Williams, and M.R. Uskokovic: Synthesis of Daunosamine. J. Org. Chem., 48, 5309 (1983).Google Scholar
  81. 80.
    Sowden, J.C., and H.O.L. Fischer: The Condensation of Nitromethane with D-and L-Arabinose: Preparation of L-Glucose and L-Mannose. J. Am. Chem. Soc., 69, 1963 (1947).Google Scholar
  82. 81.
    Sowden, J.C., and H.O.L. Fischer: Carbohydrate C-Nitroalcohols: the Acetylated Nitroolefins. J. Am. Chem. Soc., 69, 1048 (1947).Google Scholar
  83. 82.
    Satoh, C., and A. Kiyomoto: Studies on Nitrogen-Containing Sugars. I. Synthesis of N-Acetyl-D-mannosamine from 1-Nitro-1-deoxy-D-mannitol Pentaacetate. Chem. Pharm. Bull. Jpn., 12, 615 (1964).Google Scholar
  84. 83.
    Perr, M.B., and A.C. Webb: Synthesis of 2-Acetamido-2-deoxy-D-gulose, 2-Acet-amido-2-deoxy-D-idose, and 2-Deoxy-D-xylo-hexose from 3,4,5,6-Tetraacetoxy-D-xylo-1-nitro-1-hexene. Can. J. Chem., 47, 1245 (1969).Google Scholar
  85. 84.
    Sztaricskai, F., I. Pelyvas, L. Szilagyi, R. Bognar, J. Tamas, and A. Neszmelyi: A Synthesis of L-Ristosamine and a Derivative of its C-4 Epimer. Carbohydr. Res., 65, 193 (1978).Google Scholar
  86. 85.
    Gupta, S.K.: The Synthesis of Methyl 3-Amino-2,3,6-trideoxy-α-L-arabino-hexo-pyranoside, a Structural Analog of Daunosamine. Carbohydr. Res., 37, 381 (1974).Google Scholar
  87. 86.
    Lee, W.W., H.Y. Wu, J.J. Marsh, C.W. Mosher, E.M. Acton, L. Goodman, and D.W. Henry: Confirmation by Synthesis of Ristosamine as 3-Amino-2,3,6-trideoxy-L-ribo-hexose. J. Med. Chem., 18, 767 (1975).Google Scholar
  88. 87.
    Sztaricskai, F, I. Pelyvas, R. Bognar, and G. Bujtas: The Synthesis of N-Benzoyl-ristosamine. Tetrahedron Lett., 1111 (1975).Google Scholar
  89. 88.
    Coleman, R.S., and J.R. Fraser: Acylketene [4 + 2] Cycloadditions: Divergent de Novo Synthesis of 2,6-Dideoxy Sugars. J. Org. Chem., 58, 385 (1993).Google Scholar
  90. 89.
    Sztaricskai, F. J., M. Hornyak, and I. F. Pelyvas: Definitive Synthesis of Methyl α-kedarosaminide, a Sugar Component of the Antitumor Antibiotic Kedarcidin. Tetrahedron Lett., 34, 4087 (1993).Google Scholar
  91. 90.
    Overend, W.G., P.J. Beynon, and P.M. Collins: Aspects of the Chemistry of Oximes Derived from Methyl Hexopyranosiduloses. J. Chem. Soc. (C), 272 (1969).Google Scholar
  92. 91.
    Banaszek, A., A. Zamojski, and E. Baranowska: Mass Spectra of Methyl 3,4-Dideoxy-3-dimethylamino-and 2,4-Dideoxy-2-dimethylamino-α-DL-glycopyrano-sides. Pol. J. Chem., 58, 439 (1984).Google Scholar
  93. 92.
    Banaszek, A., and A. Zamojski: Derivatives of 2-Alkoxy-5,6-dihydro-2H-pyran as Starting Materials in the Synthesis of Monosaccharides. Part IX. Total Synthesis of Methyl 3,4-Dideoxy-and 3,4,6-Trideoxy-D,L-hex-3-enopyranosides. Carbohydr. Res., 25, 453 (1972).Google Scholar
  94. 93.
    Banaszek, A., and A. Zamojski: Derivatives of 2-Alkoxy-5,6-dihydro-α-pyran as Substrates in the Synthesis of Monosaccharides. Part V. Directions of the Oxirane Ring Opening in Methyl 2,3-Anhydro-4,6-dideoxy-α-DL-lyxo-and ribo-hexopyranosides. Roczniki Chem., 45, 391 (1971).Google Scholar
  95. 94.
    Jary, J., K. Kefurt, K. Capek, J. Capkova, and Z. Kefurtova: Amino Sugars. XXVII. The Synthesis of Derivatives of 3-Amino-3,4,6-trideoxy-D or L-xylo-Hexopyranose. Coll. Czech. Chem. Comm., 37, 2985 (1972).Google Scholar
  96. 95.
    Overend, W. G., S. Laland, and M. Stacey: Deoxy-Sugars. Part X. Some Metha-nesulphonyl and Toluene-p-sulphonyl Derivatives of α-Ethyl-2:3-dideoxy-D-glucoside. J. Chem. Soc., 738 (1950).Google Scholar
  97. 96.
    Foster, A.B., R. Harrison, J. Lehmann, and J.M. Webber: Aspects of Stereochemistry. Part XVI. Intramolecular Hydrogen Bonding in Ethyl 2,3-Dideoxy-α-D-erythro-and-threo-hexopyranosides and Related Compounds. J. Chem. Soc., 4471 (1963).Google Scholar
  98. 97.
    Brimacombe, J.S., L.W. Doner, and A.J. Rollins: Syntheses of Methyl 2,3,6-Trideoxy-α-L-erythro-hexopyranoside (Methyl α-L-Amicetoside) and Methyl 2,3,4,6-Tetradeoxy-4-(dimethylamino)-α-L-threo-hexopyranoside (Methyl α-L-Ossaminide). J. Chem. Soc. Perkin Trans., I, 2977 (1972).Google Scholar
  99. 98.
    Stevens, C.L., and C.P. Bryant: Synthesis of Amino Sugars with Retention of Configuration. Methods in Carbohydrate Chemistry, 6, 225–228 (1972).Google Scholar
  100. 99.
    Panzica, R.P., E. Abushanab, G. Bastian, M. Bessodes, S.-F. Chen, J.D. Stoeckler, and R.E. Parks: Adenoside Deaminase Inhibitors. Conversion of a Single Chiral Synthon into erythro- and threo-9-(2-Hydroxy-3-nonyl)adenines. J. Med. Chem., 24, 1385 (1981).Google Scholar
  101. 100.
    Stevens, C.L., G.E. Gutowski, C.P. Bryant, and R.P. Glinski: The Isolation and Synthesis of Ossamine, the Aminosugar Fragment from the Fungal Metabolite Ossamycin. Tetrahedron Lett., 1181 (1969).Google Scholar
  102. 101.
    Panek, J.S., and J. Zhang: Diastereoselectivity in the Osmium Tetraoxide Promoted Dihydroxylation of Chiral (E)-Crotylsilanes: Asymmetric Synthesis of Silyl-Func-tionalized γ-Lactones. J. Org. Chem., 58, 294 (1993).Google Scholar
  103. 102.
    Panek, J.S., and M.A. Sparks: Claisen Rearrangements of Enantiomerically Pure C3-(Acyloxy)-(E)-vinylsilanes. J. Org. Chem., 56, 3431 (1991).Google Scholar
  104. 103.
    Panek, J.S., R. Beresis, F. Xu, and M. Yang: Diastereoselective Electrophilic Addition Reactions to chiral β-Dimethylphenylsilyl Ester Enolates. Synthesis of 2,3-Anti-α-substituted-β-silyl-(E)-hex-4-enoates. J. Org. Chem., 56, 7341 (1991).Google Scholar
  105. 104.
    Ireland, R.E., R.H. Mueller, and A.K. Willard. The Ester Enolate Claisen Rearrangement. Stereochemical Control through Stereoselective Enolate Formation. J. Am. Chem. Soc., 98, 2868 (1976).Google Scholar
  106. 105.
    Ireland, R.E.: Synthetic Methdology in the Context of Natural Product Total Synthesis. Aldrichimica Acta, 21, 59 (1988).Google Scholar
  107. 106.
    Yamada, S.-I., K. Koga, M. Yoh, and T. Mizoguchi: Stereoselective Total Synthesis of 6-Deoxy-L-hexose Derivatives from L-Alanine without a Resolution Step. Carbohydr. Res., 36, C9 (1974).Google Scholar
  108. 107.
    Polt, R., and D. Sames: An Enantioselective Synthesis of N-Methylfucosamine via Tandem C-C/C-O Bond Formation. J. Org. Chem., 59, 4596 (1994).Google Scholar
  109. 108.
    Koskinen, A.M.P., and L.A. Otsomaa: A New Access to Enantiomerically Pure Deoxy Aminohexoses: Methyl 4-Amino-4,6-dideoxy Gulopyranoside and epi-Tolyposamine. Tetrahedron, 53, 6473 (1997).Google Scholar
  110. 109.
    Ruiz, M., V. Ojea, and J.M. Quintela: Amino Acid Based Diastereoselective Synthesis of Elsaminose. Tetrahedron Lett., 37, 5743 (1993).Google Scholar
  111. 110.
    Xu, Z., C.W. Johannes, S.S. Salman, and A.H. Hoveyda: Enantioselective Total Synthesis of Antifungal Agent Sch 38516. J. Am. Chem. Soc., 118, 10926 (1993).Google Scholar
  112. 111.
    Newman, H.: Degradation and Synthesis of Desosamine. J. Org. Chem., 29, 1461 (1964).Google Scholar
  113. 112.
    Manhas, M.S., V.R. Hegde, D.R. Wagle, and A.K. Bose: Studies on Lactams. Part 74. An Approach to the Total Synthesis of Amino Sugars via β-Lactams. J. Chem. Soc. Perkin Trans., I, 2045 (1985).Google Scholar
  114. 113.
    Hauser, F.M., and R.P. Rhee: A Brief Total Synthesis of N-Benzoyl-DL-daunosamine. J. Org. Chem., 46, 227 (1981).Google Scholar
  115. 114.
    Hauser, F.M., R.P. Rhee, and S.R. Ellenberger: Total Synthesis of Optically Active N-Benzoyldaunosamine from an Azetidinone. J. Org. Chem., 49, 2236 (1984).Google Scholar
  116. 115.
    Wiemann, R., and I. Dyong: Ein leistungsfähiges Syntheseprinzip für Aminozucker vom Daunosamin-Typ. Angew. Chem., 90, 728 (1978).Google Scholar
  117. 116.
    Fuganti, C., G. Fronza, and P. Grasselli: Synthesis of N-Trifluoroacetyl-L-acosa-mine and-L-daunosamine. J. Chem. Soc. Chem. Comm., 442 (1980).Google Scholar
  118. 117.
    Tietze, L.F., and U. Hartfield: Hetero-Diels Alder Reaction of Substitued 1-Oxa-butadienes And 2-Ethoxyvinylacetate: An Entry To Various Natural Occurring Carbohydrates. Tetrahedron Lett., 31, 1697 (1990).Google Scholar
  119. 118.
    Tietze, L.F., U. Hartfield, T. Hubsch, E. Voss, K. Bogdanowicz-Szwed, and J. Wichmann: Syntheses of the 3-Amino Sugar Glycosides rac-4-Deoxydaunosaminide, rac-4-Deoxyristosaminide, and rac-Acosaminide. Liebigs Ann. Chem., 275 (1991).Google Scholar
  120. 119.
    Grethe, G., J. Sereno, T.H. Williams, and M.R. Uskokovic: Asymmetric Synthesis of Daunosamine. J. Org. Chem., 48, 5315 (1983).Google Scholar
  121. 120.
    Wade, P.A., J.A. Rao, J.F. Bereznak, and C.-K. Yuan: A Dihydroisooxazole-based Route to 2,3,6-Trideoxy-3-aminohexose Derivatives. Tetrahedron Lett., 30, 5969 (1989).Google Scholar
  122. 121.
    Guanti, G., L. Banfi, E. Narisano, and S. Thea: Stereoselective Synthesis of 4-Acetylamino-2,4,6-trideoxy-L-ribo-hexose from Ethyl (S)-β-Hydroxybutyrate. Synlett, 1992, 311.Google Scholar
  123. 122.
    Griffith, W.P., and S.V. Ley: TPAP: Tetra-n-propylammonium Perruthenate, A Mild and Convenient Oxidant for Alcohols. Aldrichimica Acta, 23, 13 (1990).Google Scholar
  124. 123.
    Jurczak, J., and A. Golebiowski: α-Amino-β-hydroxy Acids in the Total Synthesis of Amino Sugars. Synlett, 241 (1993).Google Scholar
  125. 124.
    Jurczak, J., J. Kozak, and A. Golebiowski: The Total Synthesis of L-Daunosamine. Tetrahedron, 48, 4231 (1992).Google Scholar
  126. 125.
    Kihlberg, J., T. Vuljanic, and P. Somfai: Diastereoselective Synthesis of Methyl α-Kedarosaminide, a Carbohydrate Moiety of the Enediyne Antitumor Antibiotic Kedarcidin Chromophrore. Tetrahedron Lett., 35, 6937 (1994).Google Scholar
  127. 126.
    Saksena, A.K., and P. Mangiaracina: Recent Studies on Veratrum Alkaloids: A New Reaction of Sodium Triacetoxyborohydride. Tetrahedron Lett., 24, 273 (1983).Google Scholar
  128. 127.
    Fronza, G., C. Fuganti, P. Grasselli, and G. Marinoni: Synthesis of N-Benzoyl L-and D-2,3,6-Trideoxy-3-amino-xylo-hexose from Non-carbohydrate Precursors. Tetrahedron Lett., 3883 (1979).Google Scholar
  129. 128.
    Dondoni, A., G. Fantin, M. Fogagnolo, and P. Merino: Regio-and Stereoselective Conjugate Addition of Nitrogen Nucleophiles to 2-Alkenyl N-methylthiazolium Iodides. Synthesis of D-3-epi-Daunosamine and Some Lincosamine Analogues. Tetrahedron, 46, 6167 (1990).Google Scholar
  130. 129.
    Fuganti, C., P. Grasselli, and G. Pedrocchi-Fantoni: Synthesis of N-Benzoyl-L-daunosamine from D-Threonine. Tetrahedron Lett., 22, 4017 (1981).Google Scholar
  131. 130.
    Hamada, Y., A. Kawai, and T. Shioiri: New Methods and Reagents in Organic Synthesis. 49. A Highly Efficient Stereoselective Synthesis of L-Daunosamine through Direct C-Acylation Using Diphenyl Phosphorazidate (DPPA). Tetrahedron Lett., 25, 5409 (1984).Google Scholar
  132. 131.
    Hamada, Y., A. Kawai, T. Matsui, O. Hara, and T. Shioiri: 4-Alkoxycarbonyloxazoles as Hydroxy — amino Acid Synthons: Efficient, Stereoselective Syntheses of 3-Amino-2,3,6-trideoxyhexoses and a Hydroxy Amino Acid Moiety of AI-77-B. Tetrahedron, 46, 4823 (1990).Google Scholar
  133. 132.
    Guanti, G., L. Banfi, E. Narisano, and R. Riva: Stereoselective Synthesis of N-Acetyl-L-Tolyposamine from (S)-Ethyl β-Hydroxybutyrate. Tetrahedron Lett., 33, 2221 (1992).Google Scholar
  134. 133.
    Guanti, G., L. Banfi, and E. Narisano: Enantiospecific and Diastereoselective Preparation of Synthetic Equivalents of 2,4-Deoxy-2-amino-L-threose and-L-ery-throse from (S)-Ethyl β-Hydroxybutyrate. Stereochemical Course of their Condensations with C-Nucleophiles. Tetrahedron Lett., 30, 5511 (1989).Google Scholar
  135. 134.
    Evans, D.A., and W.C. Black: Total Synthesis of ( + )-A83543A [( + )-Lepicidin A]. J. Am. Chem. Soc., 115, 4497 (1993).Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of OuluLinnanmaaFinland

Personalised recommendations