Skip to main content

Synthesis of 6-Deoxyamino Sugars

  • Chapter

Abstract

All cells of higher organisms are covered with surface carbohydrates, which are linked to peptides or fatty acids to form glycoconjugates (1). These cell surface glycoconjugates (glycoproteins, proteoglycans, glycosphingolipids, and glycosyl phosphatidyl inositols) play an important role in biological recognition, carrying encoded biological information that is recognized by other cells, viruses, bacteria, and toxins (2). This is another example of the lock and key mechanism, which was first used by Emil Fischer in 1897 to explain the interactions between enzymes and substrates. The recognition event is important for the regulation of cell-substratum adhesion and cell proliferation, for the binding and uptake of extracellular components, and for the regulation of extracellular matrix formation (3).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hart, G.W.: Glycosylation. Current Options in Cell Biology, 4, 1017 (1992).

    CAS  Google Scholar 

  2. Sharon, N., and H. Lis: Carbohydrates in Cell Recognition. Scientific American, 1993, 74.

    Google Scholar 

  3. Höök, M., A. Woods, S. Johansson, L. Kjellen, and J.R. Couchman: Functions of Proteoglycans at Cell Surface. In: Functions of the Proteoglycans, Ciba Fundation Symposium 124, 143–157. Chichester: Wiley. 1986.

    Google Scholar 

  4. Leet, J.E., D.R. Schroeder, S.J. Hofstead, J. Golik, K.L. Colson, S. Huang, S.E. Klohr, T.W. Doyle, and J.A. Matson: Kedarcidin, a New Chromoprotein Antitumor Antibiotic: Structure Elucidation of Kedarcidin Chromophore. J. Am. Chem. Soc., 114, 7946 (1992).

    CAS  Google Scholar 

  5. Nakamura, T., S. Fukatsu, S. Seki, and T. Niida: A Convenient Method for the Preparation of the Acylated Macrolide Antibiotic Midecamycin using Molecular Sieves and Acylchloride. Chem. Lett., 1293 (1978).

    Google Scholar 

  6. Lown, J. W.: Discovery and Development of Anthracycline Antitumour Antibiotics. Chem. Soc. Rev., 165 (1993).

    Google Scholar 

  7. Baumann, H., J.-R. Tzianabos, D. L. Kasper, and H. J. Jennings: Structural Elucidation of Two Capsular Polysaccharides from One Strain of Bacteroides fragilis Using High-Resolution NMR Spectroscopy. Biochem., 31, 4081 (1992).

    CAS  Google Scholar 

  8. Lichtenthaler, F. W.: Emil Fischer’s Proof of the Configuration of Sugars: A Centennial Tribute. Angew.Chem., 31, 1541 (1992).

    Google Scholar 

  9. Uesugi, M., T. Sekida, S. Matsuki, and Y. Sugiura: Selective DNA Cleavage by Elsamicin A and Switch Function of Its Amino Sugar Group. Biochem., 30, 6711 (1991).

    CAS  Google Scholar 

  10. Brockmann, H., and K. Bauer: Rhodomycin, ein rotes Antibioticum aus Actinomyceten. Naturwissenschaften, 37, 492 (1950).

    CAS  Google Scholar 

  11. Zunino, F., R. Gambetta, A. Di Marco, and A. Zaccara: Interaction of Daunomycin and its Derivatives with DNA. Biochim. Biophys. Acta, 277, 489 (1972).

    CAS  Google Scholar 

  12. Grein, A., C. Spalla, A. Di Marco, and G. Canevazzi: Descrizione e classificazione di un attinomicete (Streptomyces peucetius ps. Nova) produttore di una sostanza ad attivita antitumorale: la daunomicina. Giorn. Microbiol., 11, 109 (1963).

    Google Scholar 

  13. Dubost, M., P. Gauter, R. Maral, L. Ninet, S. Pinnert, J. Proud’homme, and G.H. Werner: Un nouvel antibiotique a propriétés cytostatiques: la rubidomycine. C.R. Acad. Sci. Paris, 257, 1813 (1963).

    CAS  Google Scholar 

  14. Brockmann, H., and W. Henkel: Pikromycin, ein neues Antibiotikum aus Actinomyceten. Naturwissenschaften, 37, 138 (1950).

    CAS  Google Scholar 

  15. Lartey, P.A., S.L. DeNinno, R. Faghih, D.J. Hardy, J.J. Clement, and J.J. Plattner: Synthesis and Activity of C-21 Alkylamino Derivatives of (9R)-Erythromycylamine. J. Antibiot., 45, 380 (1992).

    CAS  Google Scholar 

  16. Jaret, R.S., A.K. Mallams, and H. Reimann: The Megalomicins. Part IV. The Structures of Megalomicins A, B, C1, and C2. J. Chem. Soc. Perkin Trans., I, 1374 (1973).

    Google Scholar 

  17. Donin, M.N., J. Pagano, J.D. Dutcher, and C.M. McKee: Methymycin, a New Crystalline Antibiotic. Antibiot. Annu., 1, 179 (1953-54).

    Google Scholar 

  18. Djerassi, C., and J.A. Zderic: The Structure of the Antibiotic Methymycin. J. Am. Chem. Soc., 78, 2907 (1956)

    CAS  Google Scholar 

  19. Djerassi, C., and J.A. Zderic: The Structure of the Antibiotic Methymycin. J. Am. Chem. Soc., 78, 6390 (1956).

    CAS  Google Scholar 

  20. Kinoshita, K., S. Satoi, M. Hayashi, and K. Nakatsu: Mycinamicins, new Macrolide Antibiotics: X. X-Ray Crystallography and the Absolute Configuration of Mycinamicin IV. J. Antibiot., XLII 42, 1003 (1989).

    Google Scholar 

  21. Kirst, H.A., and G.D. Sides: New Directions for Macrolide Antibiotics: Pharmacokinetics and Clinical Efficacy. Antimicrob. Agents Chemother., 33, 1419 (1989).

    CAS  Google Scholar 

  22. Lazarevski, G., M. Vinkovic, G. Kobrehel, and S. Dokic: Conformational Analysis of Azithromycin by Nuclear Magnetic Resonance Spectroscopy and Molecular Modelling. Tetrahedron, 49, 721 (1993).

    CAS  Google Scholar 

  23. Shephard, R.M., G.S. Duthu, R.A. Ferraina, and M.A. Mullins: High-performance Liquid Chromatographic Assay with Electrochemical Detection for Azithromycin in Serum and Tissues. J. Chromatogr., 565, 321 (1991).

    Google Scholar 

  24. Edo, K., M. Mizugaki, Y. Koide, H. Seto, K. Furihata, N. Otake, and N. Ishada: The Structure of Neocarzinostatin Chromophore Possessing a Novel Bicyclo-[7,3,0]dodekadiyne System. Tetrahedron Lett., 26, 331 (1985).

    CAS  Google Scholar 

  25. For a review see Nicolaou, K.C., and W.-M. Dai: Chemistry and Biology of the Enediyne Anticancer Antibiotics. Angew. Chem. Int. Ed. Engl., 30, 1387 (1991).

    Google Scholar 

  26. Leet, J.E., J. Golik, S.J. Hofstead, J.A. Matson, A.Y. Lee, and J. CLARDY: Kedarcidin Chromophore: Structure Elucidation of the Amino Sugar Kedarosamine. Tetrahedron Lett., 33, 6107 (1992).

    CAS  Google Scholar 

  27. Walker, S., K.G. Valentine, and D. Kahne: Sugars as DNA Binders: A Comment to the Calicheamicin Oligosaccharide. J. Am. Chem. Soc., 112, 6428 (1990).

    CAS  Google Scholar 

  28. Smith, A.L. and K.C. Nicolaou: The Edndiyne Antibiotics. J. Med. Chem., 39, 2103 (1993).

    Google Scholar 

  29. Furniss, B.S., A.J. Hannaford, P.W.G. Smith, and A.R. Tatchell: Vogels Textbook of Practical Organic Chemistry, 5th edn., 644. Essex: Longman Scientific and Technical. 1989.

    Google Scholar 

  30. Stevens, C.L., P. Blumbergs, and D.H. Otterbach: Synthesis and Chemistry of 4-Amino-4,6-Amino-4,6-dideoxy Sugars. I. Galactose. J. Org. Chem., 31, 2817 (1966).

    CAS  Google Scholar 

  31. Stevens, C.L., P. Blumbergs, F.A. Daniher, D.H. Otterbach, and K.G. Taylor: Synthesis and Chemistry of 4-Amino-4,6-Amino-4,6-dideoxy Sugars. II. Glucose. J. Org. Chem., 31, 2822 (1966).

    CAS  Google Scholar 

  32. Rainer, H., and H.-D. Scharf: Synthesis of the Hydroxyamino Sugar of Calicheamicins. Liebigs Ann. Chem., 117 (1993).

    Google Scholar 

  33. Furniss, B.S., A.J. Hannaford, P.W.G. Smith, and A.R. Tatchell: Vogels Textbook of Practical Organic Chemistry, 5th edn., 660. Essex: Longman Scientific and Technical. 1989.

    Google Scholar 

  34. Bell, D.J., and J. Lorber: Use of the Benzyl Radical in Syntheses of Methylated Sugars. Part I. 4:6-Dimethyl Glucose. J. Chem. Soc., 453 (1940).

    Google Scholar 

  35. Mathers, D.J., and G.J. Robertson: Optical Superposition and the 4:6-Benzylidenemethyl-1-glycosides. J. Chem. Soc., 696 (1933).

    Google Scholar 

  36. Freudenberg, K., and E. Plankenhorn: Zur Kenntnis der teilweise methylierten Glucose. Ber., 73B, 621 (1940).

    CAS  Google Scholar 

  37. Ward, D.E., and B.F. Kaller: Diastereoselective Synthesis of Actinobolin from D-Glucose by Application of a Novel [3 + 3] Annulation. J. Org. Chem., 59, 4230 (1994).

    CAS  Google Scholar 

  38. Ward, D.E., and B.F. Kaller: The Diastereoselective Synthesis of (+)-Actinobolin from D-Glucose. Tetrahedron Lett., 34, 407 (1993).

    CAS  Google Scholar 

  39. Stanek, J., K. Capek, and J. Jary: Preparation of Partially Acylated Derivatives of Methyl 3-Acetamido-3,6-dideoxy-ß-D-gluco-and (β-D-Mannopyranoside. Coll. Czech. Chem. Comm., 39, 1479 (1973).

    Google Scholar 

  40. Jennings, H.J., and J.K.N. Jones: Reaction of Sugar Chlorosulfates: Part V. The Synthesis of Chlorodeoxy Sugars. Can. J. Chem., 43, 2372 (1965).

    CAS  Google Scholar 

  41. Hanessian, S., and N.R. Plessas: The Reaction of O-Benzylidene Sugars with N-Bromosuccinimide. III. Applications of the Synthesis of Aminodeoxy and Deoxy Sugars of Biological Importance. J. Org. Chem., 34, 1045 (1969).

    CAS  Google Scholar 

  42. Stick, R.V., and J.J. Patroni: The Deoxygenation of Some Derivatives of Methyl 3-Amino-3-deoxy-α-D-glucopyranoside. Aust. J. Chem., 38, 947 (1985).

    Google Scholar 

  43. Guthrie, R.D., and L.F. Johnson: Nitrogen-Containing Carbohydrate Derivatives. Part I. Methyl 4,6-Benzylidene-3-deoxy-3-phenylazo-α-D-glucoside. J. Chem. Soc., 4166 (1961).

    Google Scholar 

  44. Furstner, A., J. Baumgartner, and D.N. Jumbam: Unprecedented Influence of Azides and the Effect of Bulky Groups on Zinc-induced Reductions of Deoxy Halogeno Sugars. J. Chem. Soc. Perkin Trans., I, 131 (1993).

    Google Scholar 

  45. Weiler, L., and D.A. Nicoll-Griffith: Introduction of a Chiral Centre on C-6 of a Carbohydrate Unit: Application to the Synthesis of the C-2 to C-15 Fragment of Ionomycin. Tetrahedron, 47, 2733 (1991).

    Google Scholar 

  46. Izawa, T., Y. Nishumura, and S. Kondo: 3-Amino-5-C-phenyl-D-altrofuranose and 3-Amino-5-C-[3-carboxy-4-(carboxymethyl)-2-oxo-3-cyclohexen-l-yl]-D-altrofura-nose, Possible Intermediates for Synthesis of the Anthracycline Antibiotic Decilorubicin. Carbohydr. Res., 211, 137 (1991).

    CAS  Google Scholar 

  47. Ali, Y., and A.C. Richardson: The Reduction of Azides with Sodium Borohydride: A Convenient Synthesis of Methyl 2-Acetamido-4,6-O-benzylidene-2-deoxy-α-D-allo-pyranoside. Carbohydr. Res., 5, 441 (1967).

    CAS  Google Scholar 

  48. For a review see Brimacombe, J.S.: Synthesen von Antibiotica-Zuckern. Angew. Chem., 83, 261 (1971).

    Google Scholar 

  49. Foster, A.B., T.D. Inch, J. Lehmann, M. Stacey, and J.M. Webber: Carbohydrate Components of Antibiotics. Part III. Synthesis of 3,6-Dideoxy-3-dimethylamino-ß-D-glucose Hydrochloride Monohydrate: the Absolute Configuration of Mycaminose. J. Chem. Soc., 2116 (1962).

    Google Scholar 

  50. Reist, E.J., R.R. Spencer, and B.R. Baker: Potential Anticancer Agents. XXIX. Inversion of a Ring Carbon of a Glycoside. J. Org. Chem., 24, 1618 (1959).

    CAS  Google Scholar 

  51. Eis, M.J., and B. Ganem: An Improved Synthesis of D-Perosamine and Some Derivatives. Carbohydr. Res., 176, 316 (1988).

    CAS  Google Scholar 

  52. Stevens, C.L., R.P. Glinski, and K.G. Taylor: 4,6-Dideoxy-4-(N,N-dimethylamino)-D-talopyranose Hydrochloride. J. Org. Chem., 33, 1586 (1968).

    CAS  Google Scholar 

  53. Brimacombe, J.S., A.K. al-Radhi, and L.C.N. Tucker: The Deamination of Methyl 4-Amino-4, 6-dideoxy-2,3-O-isopropylidene-α-L-talo-and-manno-pyranosides with Nitrous Acid. J. Chem. Soc. Perkin Trans., I, 315 (1992).

    Google Scholar 

  54. Overend, W.G., S.W. Gunner, and N.R. Williams: The Preparation of Amino Sugars from Methyl Glycopyranosiduloses: Methyl 4-Acetamido-4,6-dideoxy-α-L-talopyr-anoside. Carbohydr. Res., 4, 498 (1967).

    Google Scholar 

  55. Jary, J., K. Capek, and J. Kovar: Synthese von Derivaten der 3,6-Didesoxy-3-amino-L-idose. Coll. Czech. Chem. Comm. 28, 2171 (1963).

    CAS  Google Scholar 

  56. Brimacombe, J.S., O.A. Ching, and M. Stacey: Nucleophilic Displacement Reactions in Carbohydrates. Part XI. Reaction of Methyl 6-Deoxy-2,3-isopropylidene-4-O-methylsulphonyl-α-L-talopyranoside with Sodium Azide: a Synthesis of L-Perosamine (4-Amino-4,6-didexy-L-mannose) Derivatives. J. Chem. Soc. (C), 1270 (1969).

    Google Scholar 

  57. Pfitzner, K.E., and J.G. Moffatt: A New and Selective Oxidation of Alcohols. J. Am. Chem. Soc., 85, 3027 (1963).

    Google Scholar 

  58. Cieplak, A.S.: Stereochemistry of Nucleophilic Addition to Cyclohexanone. The Importance of Two-Electron Stabilizing Interactions. J. Am. Chem. Soc., 103, 4540 (1981).

    CAS  Google Scholar 

  59. Cieplak, A.S., B.D. Tait, and C.R. Johnson: Reversal of π-facial Diastereoselection upon Electronegative Substitution of the Substrate and the Reagent. J. Am. Chem. Soc., 111, 8447 (1989).

    CAS  Google Scholar 

  60. Jary, J., and A. Zobacova: Amino Sugars via Displacement of Sulfonyloxy Groups with Hydrazine. Methods in Carbohydrate Chemistry, 6, 229–235 (1972).

    CAS  Google Scholar 

  61. Coleman, R.S., Y. Dong, and A.J. Carpenter: A Convenient Preparation of Terminally Differentiated, Selectively Protected Six-Carbon Synthons from D-glucosamine. J. Org. Chem., 57, 3732 (1992).

    CAS  Google Scholar 

  62. Paulsen, H., V. Rutz, and I. Brockhausen: Synthese von modifizierten Derivaten der 2-Acetamido-2-desoxy-D-galactose zur Untersuchung der Substratspezifität der Core-1-β3-Gal-Transferase und der Core-1-β3-GlcNAc-Transferase der Biosynthese von O-Glycoproteinen. Liebigs Ann. Chem., 735 (1992).

    Google Scholar 

  63. Stevens, C.L., R.R. Glinski, K.G. Taylor, P. Blumbergs, and S. K. Gupta: The Synthesis and Proof of Structure of Perosamine (4-Amino-4,6-dideoxy-D-mannose) Derivatives. J. Am. Chem. Soc., 92, 3160 (1970).

    CAS  Google Scholar 

  64. Malik, A., S.N.-H. Kasmi, and Z. Ahmad: A Regioselective One-pot Synthesis of N,N-Dialkylamino Sugars via Aminosilanes. J. Chem. Res. (S), 124 (1992).

    Google Scholar 

  65. Jary, J., K. Capek, and J. Stanek jr.: Preparation of Methyl 3-amino-3,6-dideoxy-β-D-hexopyranosides by Condensation of (2R,4R)-2-Methoxy-4-methyl-3-oxapentane-1,5-dial with Nitrometane. Coll. Czech. Chem. Comm., 39, 1462 (1974).

    Google Scholar 

  66. Richardson, A.C.: The Synthesis of D-and L-Mycaminose Hydrochlorides. J. Chem. Soc., 2758 (1962).

    Google Scholar 

  67. Horton, D., and A. Liav: A Synthesis of 2-Amino-2,6-dideoxy-D-allose and-D-altrose Hydrochlorides and their Tetraacetyl Derivatives. Carbohydr. Res., 47, 326 (1976).

    CAS  Google Scholar 

  68. Levene, P.A., and E.T. Stiller: The Synthesis of Ribose-5-phosphoric Acid. J. Biol. Chem., 104, 299 (1934).

    CAS  Google Scholar 

  69. Shunk, C.H., J.B. Lavigne, and K. Folkers: Studies on Carcinolytic Compounds. V. 6,7-Dimethyl-9-[l-(5desoxy-D-ribityl)]-isoalloxazine. J. Am. Chem. Soc., 77, 2210 (1955).

    CAS  Google Scholar 

  70. Kuhn, R., and H. Fischer: Aminozucker-Synthesen XI: D-Altrosamin und D-Allo-samin. Liebigs Ann. Chem., 615, 88 (1958).

    Google Scholar 

  71. Baer, H.H., K. Capek, and M.C. Cook: Synthesis of 3-Acetamido-2,3,6-trideoxy-D-lyxo-hexose (N-Acetyl-D-daunosamine) and its D-Arabino Isomer. Can. J. Chem., 47, 89 (1969).

    CAS  Google Scholar 

  72. Richardson, A.C.: The Synthesis of Desosamine Hydrochloride. J. Chem. Soc., 5364 (1964).

    Google Scholar 

  73. Overend, W.G., G.S. Hajivarnava, and N.R. Williams: Arylazo-Glycenosides. Part 7. Synthesis of Amino-sugars from Methyl Arylazo-hexenopyranosides. J. Chem. Soc. Perkin Trans., I, 205 (1982).

    Google Scholar 

  74. Iselin, B., and T. Reichstein: Krystallisierte 2-Desoxy-l-rhamnose (2-Desoxy-l-chinovose). Helv. Chim. Acta, 27, 1146 (1944).

    CAS  Google Scholar 

  75. Hadfield, A.F., L. Cunningham, and A.C. Sartorelli: The Synthesis and Cytotoxic Activity of l,3,4,-tri-O-Acetyl-2,6-dideoxy-L-arabino-and-L-lyxo-hexopyranose. Carbohydr. Res., 72, 93 (1979).

    CAS  Google Scholar 

  76. Monneret, C., C. Conreur, and Q. Khuong-Huu: Synthesis of Methyl 4-Amino-2,4,6, trideoxy-3-O-methyl-L-arabino-hexopyranosides (Methyl α-and β-L-Hollantosaminide) and of Methyl 4-Amino-2,4,6-trideoxy-3-O-methyl-β-L-lyxo-hexopyranoside (Methyl α-L-3-epiHollantosaminide). Carbohydr. Res., 65, 35 (1978).

    CAS  Google Scholar 

  77. Goodman, L., J. P. Marsh, C. W. Mosher, and E. M. Acton: 6-(3-Methylbut-3-enylamino)purine: a Highly Active Cytokinin. Chem. Comm., 973 (1967).

    Google Scholar 

  78. Inglis, G.R., J.C.P. Schwarz, and L. McLaren: The Methoxymercuration of D-Glucal and Tri-O-acetyl-D-glucal: a New Route to 2-Deoxyglucopyranosides. J. Chem. Soc., 1014 (1962).

    Google Scholar 

  79. Florent, J.-C., B. Abbaci, and C. Monneret: Addition of Hydrazoic Acid to Pseudoglycals Stereoselective Synthesis of L-Acosamine and L-Daunosamine. Bull. Soc. Chim. Fr., 667 (1989).

    Google Scholar 

  80. Grethe, G., T. Mitt, T.H. Williams, and M.R. Uskokovic: Synthesis of Daunosamine. J. Org. Chem., 48, 5309 (1983).

    CAS  Google Scholar 

  81. Sowden, J.C., and H.O.L. Fischer: The Condensation of Nitromethane with D-and L-Arabinose: Preparation of L-Glucose and L-Mannose. J. Am. Chem. Soc., 69, 1963 (1947).

    CAS  Google Scholar 

  82. Sowden, J.C., and H.O.L. Fischer: Carbohydrate C-Nitroalcohols: the Acetylated Nitroolefins. J. Am. Chem. Soc., 69, 1048 (1947).

    CAS  Google Scholar 

  83. Satoh, C., and A. Kiyomoto: Studies on Nitrogen-Containing Sugars. I. Synthesis of N-Acetyl-D-mannosamine from 1-Nitro-1-deoxy-D-mannitol Pentaacetate. Chem. Pharm. Bull. Jpn., 12, 615 (1964).

    CAS  Google Scholar 

  84. Perr, M.B., and A.C. Webb: Synthesis of 2-Acetamido-2-deoxy-D-gulose, 2-Acet-amido-2-deoxy-D-idose, and 2-Deoxy-D-xylo-hexose from 3,4,5,6-Tetraacetoxy-D-xylo-1-nitro-1-hexene. Can. J. Chem., 47, 1245 (1969).

    Google Scholar 

  85. Sztaricskai, F., I. Pelyvas, L. Szilagyi, R. Bognar, J. Tamas, and A. Neszmelyi: A Synthesis of L-Ristosamine and a Derivative of its C-4 Epimer. Carbohydr. Res., 65, 193 (1978).

    CAS  Google Scholar 

  86. Gupta, S.K.: The Synthesis of Methyl 3-Amino-2,3,6-trideoxy-α-L-arabino-hexo-pyranoside, a Structural Analog of Daunosamine. Carbohydr. Res., 37, 381 (1974).

    CAS  Google Scholar 

  87. Lee, W.W., H.Y. Wu, J.J. Marsh, C.W. Mosher, E.M. Acton, L. Goodman, and D.W. Henry: Confirmation by Synthesis of Ristosamine as 3-Amino-2,3,6-trideoxy-L-ribo-hexose. J. Med. Chem., 18, 767 (1975).

    CAS  Google Scholar 

  88. Sztaricskai, F, I. Pelyvas, R. Bognar, and G. Bujtas: The Synthesis of N-Benzoyl-ristosamine. Tetrahedron Lett., 1111 (1975).

    Google Scholar 

  89. Coleman, R.S., and J.R. Fraser: Acylketene [4 + 2] Cycloadditions: Divergent de Novo Synthesis of 2,6-Dideoxy Sugars. J. Org. Chem., 58, 385 (1993).

    CAS  Google Scholar 

  90. Sztaricskai, F. J., M. Hornyak, and I. F. Pelyvas: Definitive Synthesis of Methyl α-kedarosaminide, a Sugar Component of the Antitumor Antibiotic Kedarcidin. Tetrahedron Lett., 34, 4087 (1993).

    Google Scholar 

  91. Overend, W.G., P.J. Beynon, and P.M. Collins: Aspects of the Chemistry of Oximes Derived from Methyl Hexopyranosiduloses. J. Chem. Soc. (C), 272 (1969).

    Google Scholar 

  92. Banaszek, A., A. Zamojski, and E. Baranowska: Mass Spectra of Methyl 3,4-Dideoxy-3-dimethylamino-and 2,4-Dideoxy-2-dimethylamino-α-DL-glycopyrano-sides. Pol. J. Chem., 58, 439 (1984).

    Google Scholar 

  93. Banaszek, A., and A. Zamojski: Derivatives of 2-Alkoxy-5,6-dihydro-2H-pyran as Starting Materials in the Synthesis of Monosaccharides. Part IX. Total Synthesis of Methyl 3,4-Dideoxy-and 3,4,6-Trideoxy-D,L-hex-3-enopyranosides. Carbohydr. Res., 25, 453 (1972).

    CAS  Google Scholar 

  94. Banaszek, A., and A. Zamojski: Derivatives of 2-Alkoxy-5,6-dihydro-α-pyran as Substrates in the Synthesis of Monosaccharides. Part V. Directions of the Oxirane Ring Opening in Methyl 2,3-Anhydro-4,6-dideoxy-α-DL-lyxo-and ribo-hexopyranosides. Roczniki Chem., 45, 391 (1971).

    CAS  Google Scholar 

  95. Jary, J., K. Kefurt, K. Capek, J. Capkova, and Z. Kefurtova: Amino Sugars. XXVII. The Synthesis of Derivatives of 3-Amino-3,4,6-trideoxy-D or L-xylo-Hexopyranose. Coll. Czech. Chem. Comm., 37, 2985 (1972).

    Google Scholar 

  96. Overend, W. G., S. Laland, and M. Stacey: Deoxy-Sugars. Part X. Some Metha-nesulphonyl and Toluene-p-sulphonyl Derivatives of α-Ethyl-2:3-dideoxy-D-glucoside. J. Chem. Soc., 738 (1950).

    Google Scholar 

  97. Foster, A.B., R. Harrison, J. Lehmann, and J.M. Webber: Aspects of Stereochemistry. Part XVI. Intramolecular Hydrogen Bonding in Ethyl 2,3-Dideoxy-α-D-erythro-and-threo-hexopyranosides and Related Compounds. J. Chem. Soc., 4471 (1963).

    Google Scholar 

  98. Brimacombe, J.S., L.W. Doner, and A.J. Rollins: Syntheses of Methyl 2,3,6-Trideoxy-α-L-erythro-hexopyranoside (Methyl α-L-Amicetoside) and Methyl 2,3,4,6-Tetradeoxy-4-(dimethylamino)-α-L-threo-hexopyranoside (Methyl α-L-Ossaminide). J. Chem. Soc. Perkin Trans., I, 2977 (1972).

    Google Scholar 

  99. Stevens, C.L., and C.P. Bryant: Synthesis of Amino Sugars with Retention of Configuration. Methods in Carbohydrate Chemistry, 6, 225–228 (1972).

    CAS  Google Scholar 

  100. Panzica, R.P., E. Abushanab, G. Bastian, M. Bessodes, S.-F. Chen, J.D. Stoeckler, and R.E. Parks: Adenoside Deaminase Inhibitors. Conversion of a Single Chiral Synthon into erythro- and threo-9-(2-Hydroxy-3-nonyl)adenines. J. Med. Chem., 24, 1385 (1981).

    Google Scholar 

  101. Stevens, C.L., G.E. Gutowski, C.P. Bryant, and R.P. Glinski: The Isolation and Synthesis of Ossamine, the Aminosugar Fragment from the Fungal Metabolite Ossamycin. Tetrahedron Lett., 1181 (1969).

    Google Scholar 

  102. Panek, J.S., and J. Zhang: Diastereoselectivity in the Osmium Tetraoxide Promoted Dihydroxylation of Chiral (E)-Crotylsilanes: Asymmetric Synthesis of Silyl-Func-tionalized γ-Lactones. J. Org. Chem., 58, 294 (1993).

    CAS  Google Scholar 

  103. Panek, J.S., and M.A. Sparks: Claisen Rearrangements of Enantiomerically Pure C3-(Acyloxy)-(E)-vinylsilanes. J. Org. Chem., 56, 3431 (1991).

    Google Scholar 

  104. Panek, J.S., R. Beresis, F. Xu, and M. Yang: Diastereoselective Electrophilic Addition Reactions to chiral β-Dimethylphenylsilyl Ester Enolates. Synthesis of 2,3-Anti-α-substituted-β-silyl-(E)-hex-4-enoates. J. Org. Chem., 56, 7341 (1991).

    CAS  Google Scholar 

  105. Ireland, R.E., R.H. Mueller, and A.K. Willard. The Ester Enolate Claisen Rearrangement. Stereochemical Control through Stereoselective Enolate Formation. J. Am. Chem. Soc., 98, 2868 (1976).

    Google Scholar 

  106. Ireland, R.E.: Synthetic Methdology in the Context of Natural Product Total Synthesis. Aldrichimica Acta, 21, 59 (1988).

    CAS  Google Scholar 

  107. Yamada, S.-I., K. Koga, M. Yoh, and T. Mizoguchi: Stereoselective Total Synthesis of 6-Deoxy-L-hexose Derivatives from L-Alanine without a Resolution Step. Carbohydr. Res., 36, C9 (1974).

    Google Scholar 

  108. Polt, R., and D. Sames: An Enantioselective Synthesis of N-Methylfucosamine via Tandem C-C/C-O Bond Formation. J. Org. Chem., 59, 4596 (1994).

    Google Scholar 

  109. Koskinen, A.M.P., and L.A. Otsomaa: A New Access to Enantiomerically Pure Deoxy Aminohexoses: Methyl 4-Amino-4,6-dideoxy Gulopyranoside and epi-Tolyposamine. Tetrahedron, 53, 6473 (1997).

    CAS  Google Scholar 

  110. Ruiz, M., V. Ojea, and J.M. Quintela: Amino Acid Based Diastereoselective Synthesis of Elsaminose. Tetrahedron Lett., 37, 5743 (1993).

    Google Scholar 

  111. Xu, Z., C.W. Johannes, S.S. Salman, and A.H. Hoveyda: Enantioselective Total Synthesis of Antifungal Agent Sch 38516. J. Am. Chem. Soc., 118, 10926 (1993).

    Google Scholar 

  112. Newman, H.: Degradation and Synthesis of Desosamine. J. Org. Chem., 29, 1461 (1964).

    CAS  Google Scholar 

  113. Manhas, M.S., V.R. Hegde, D.R. Wagle, and A.K. Bose: Studies on Lactams. Part 74. An Approach to the Total Synthesis of Amino Sugars via β-Lactams. J. Chem. Soc. Perkin Trans., I, 2045 (1985).

    Google Scholar 

  114. Hauser, F.M., and R.P. Rhee: A Brief Total Synthesis of N-Benzoyl-DL-daunosamine. J. Org. Chem., 46, 227 (1981).

    CAS  Google Scholar 

  115. Hauser, F.M., R.P. Rhee, and S.R. Ellenberger: Total Synthesis of Optically Active N-Benzoyldaunosamine from an Azetidinone. J. Org. Chem., 49, 2236 (1984).

    CAS  Google Scholar 

  116. Wiemann, R., and I. Dyong: Ein leistungsfähiges Syntheseprinzip für Aminozucker vom Daunosamin-Typ. Angew. Chem., 90, 728 (1978).

    Google Scholar 

  117. Fuganti, C., G. Fronza, and P. Grasselli: Synthesis of N-Trifluoroacetyl-L-acosa-mine and-L-daunosamine. J. Chem. Soc. Chem. Comm., 442 (1980).

    Google Scholar 

  118. Tietze, L.F., and U. Hartfield: Hetero-Diels Alder Reaction of Substitued 1-Oxa-butadienes And 2-Ethoxyvinylacetate: An Entry To Various Natural Occurring Carbohydrates. Tetrahedron Lett., 31, 1697 (1990).

    CAS  Google Scholar 

  119. Tietze, L.F., U. Hartfield, T. Hubsch, E. Voss, K. Bogdanowicz-Szwed, and J. Wichmann: Syntheses of the 3-Amino Sugar Glycosides rac-4-Deoxydaunosaminide, rac-4-Deoxyristosaminide, and rac-Acosaminide. Liebigs Ann. Chem., 275 (1991).

    Google Scholar 

  120. Grethe, G., J. Sereno, T.H. Williams, and M.R. Uskokovic: Asymmetric Synthesis of Daunosamine. J. Org. Chem., 48, 5315 (1983).

    CAS  Google Scholar 

  121. Wade, P.A., J.A. Rao, J.F. Bereznak, and C.-K. Yuan: A Dihydroisooxazole-based Route to 2,3,6-Trideoxy-3-aminohexose Derivatives. Tetrahedron Lett., 30, 5969 (1989).

    CAS  Google Scholar 

  122. Guanti, G., L. Banfi, E. Narisano, and S. Thea: Stereoselective Synthesis of 4-Acetylamino-2,4,6-trideoxy-L-ribo-hexose from Ethyl (S)-β-Hydroxybutyrate. Synlett, 1992, 311.

    Google Scholar 

  123. Griffith, W.P., and S.V. Ley: TPAP: Tetra-n-propylammonium Perruthenate, A Mild and Convenient Oxidant for Alcohols. Aldrichimica Acta, 23, 13 (1990).

    CAS  Google Scholar 

  124. Jurczak, J., and A. Golebiowski: α-Amino-β-hydroxy Acids in the Total Synthesis of Amino Sugars. Synlett, 241 (1993).

    Google Scholar 

  125. Jurczak, J., J. Kozak, and A. Golebiowski: The Total Synthesis of L-Daunosamine. Tetrahedron, 48, 4231 (1992).

    CAS  Google Scholar 

  126. Kihlberg, J., T. Vuljanic, and P. Somfai: Diastereoselective Synthesis of Methyl α-Kedarosaminide, a Carbohydrate Moiety of the Enediyne Antitumor Antibiotic Kedarcidin Chromophrore. Tetrahedron Lett., 35, 6937 (1994).

    Google Scholar 

  127. Saksena, A.K., and P. Mangiaracina: Recent Studies on Veratrum Alkaloids: A New Reaction of Sodium Triacetoxyborohydride. Tetrahedron Lett., 24, 273 (1983).

    CAS  Google Scholar 

  128. Fronza, G., C. Fuganti, P. Grasselli, and G. Marinoni: Synthesis of N-Benzoyl L-and D-2,3,6-Trideoxy-3-amino-xylo-hexose from Non-carbohydrate Precursors. Tetrahedron Lett., 3883 (1979).

    Google Scholar 

  129. Dondoni, A., G. Fantin, M. Fogagnolo, and P. Merino: Regio-and Stereoselective Conjugate Addition of Nitrogen Nucleophiles to 2-Alkenyl N-methylthiazolium Iodides. Synthesis of D-3-epi-Daunosamine and Some Lincosamine Analogues. Tetrahedron, 46, 6167 (1990).

    CAS  Google Scholar 

  130. Fuganti, C., P. Grasselli, and G. Pedrocchi-Fantoni: Synthesis of N-Benzoyl-L-daunosamine from D-Threonine. Tetrahedron Lett., 22, 4017 (1981).

    CAS  Google Scholar 

  131. Hamada, Y., A. Kawai, and T. Shioiri: New Methods and Reagents in Organic Synthesis. 49. A Highly Efficient Stereoselective Synthesis of L-Daunosamine through Direct C-Acylation Using Diphenyl Phosphorazidate (DPPA). Tetrahedron Lett., 25, 5409 (1984).

    CAS  Google Scholar 

  132. Hamada, Y., A. Kawai, T. Matsui, O. Hara, and T. Shioiri: 4-Alkoxycarbonyloxazoles as Hydroxy — amino Acid Synthons: Efficient, Stereoselective Syntheses of 3-Amino-2,3,6-trideoxyhexoses and a Hydroxy Amino Acid Moiety of AI-77-B. Tetrahedron, 46, 4823 (1990).

    CAS  Google Scholar 

  133. Guanti, G., L. Banfi, E. Narisano, and R. Riva: Stereoselective Synthesis of N-Acetyl-L-Tolyposamine from (S)-Ethyl β-Hydroxybutyrate. Tetrahedron Lett., 33, 2221 (1992).

    CAS  Google Scholar 

  134. Guanti, G., L. Banfi, and E. Narisano: Enantiospecific and Diastereoselective Preparation of Synthetic Equivalents of 2,4-Deoxy-2-amino-L-threose and-L-ery-throse from (S)-Ethyl β-Hydroxybutyrate. Stereochemical Course of their Condensations with C-Nucleophiles. Tetrahedron Lett., 30, 5511 (1989).

    CAS  Google Scholar 

  135. Evans, D.A., and W.C. Black: Total Synthesis of ( + )-A83543A [( + )-Lepicidin A]. J. Am. Chem. Soc., 115, 4497 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Otsomaa, L.A., Koskinen, A.M.P. (1998). Synthesis of 6-Deoxyamino Sugars. In: Herz, W., Kirby, G.W., Moore, R.E., Steglich, W., Tamm, C. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 74. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6496-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6496-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7335-0

  • Online ISBN: 978-3-7091-6496-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics