Modeling Transport Across Thin Dielectric Barriers

  • Andreas Schenk
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In modern microelectronics the transport of carriers across thin and ultra-thin dielectric barriers is of considerable interest. Well-known problems are the highenergy injection of carriers into gate oxides of MOSFETs [5.13, 5.43] leading to a long-term shift of their threshold voltage (so-called degradation), the strong tunnel currents during the erase mode of electrically erasable programmable read only memories (EPROMs) [5.68], the current-voltage characteristics of metal-insulator-semiconductor (MIS) solar cells [5.15, 5.25, 5.69, 5.78], or the tunneling leakage occurring in memory cells [5.5, 5.33]. Apart from a realistic distribution function, the simulation of the current requires a good knowledge of the quantum-mechanical transmission probability.


Barrier Height Gate Oxide Resonant Tunneling Image Force Direct Tunneling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.1]
    J. L. Alay, M. Fukuda, K. Nakagawa, S. Yokoyama, and M. Hirose. The Valence Band Alignment at Ultra-Thin SiO2/Si(100) Interfaces Determined by High-Resolution X-Ray Photoelectron Spectroscopy. In Proc. Int. Conf. Sol. State Devices and Materials (Japan), 1995.Google Scholar
  2. [5.2]
    R. M. Alexander. Accelerated Testing in FAMOS Devices-8K EPROM. Int. Reliability Physics Symposium, pp. 229–232, 1978.Google Scholar
  3. [5.3]
    Y. Ando and T. Itoh. Calculation of Transmission Tunneling Current Across Arbitrary Potential Barriers. J. Appl. Phys., 61(4): 1497–1502, 1987.CrossRefGoogle Scholar
  4. [5.4]
    M. Av-Ron, M. Shatzkes, T. H. DiStefano, and R. A. Gdula. Electron Tunneling at Al-SiO2 Interfaces. J. Appl. Phys., 52(4):2897–908, 1981.CrossRefGoogle Scholar
  5. [5.5]
    S. K. Banerjee, D. J. Coleman, W. Richardson, and A. Shah. Leakage Mechanism in the Trench Transistor DRAM Cell. IEEE Trans. Electron Devices, ED-35(1):108–115, 1988.CrossRefGoogle Scholar
  6. [5.6]
    J. Bardeen. Tunneling from a Many-Particle Point of View. Phys. Rev. Lett., 6(2):57–62, 1961.CrossRefGoogle Scholar
  7. [5.7]
    G. Binnig, N. Garcia, H. Rohrer, J. M. Soler, and F. Flores. Electron-Metal-Surface Interaction Potential with Vacuum Tunneling: Observation of the Image Force. Phys. Rev. B, 30(8):4816–18, 1984.CrossRefGoogle Scholar
  8. [5.8]
    J. R. Chelikowsky and M. Schlüter. Electron States in α-Quartz: A Selfconsistent Pseu-dopotential Calculation. Phys. Rev. B, 15(8):4020–29, 1977.CrossRefGoogle Scholar
  9. [5.9]
    F. I. Dalidchik. Mnogofononije Tunnelnije Protzessi w Odnorodnom Elektritcheskom Polje. J. Eks. Theo. Fiz., 74:472–482, 1978.Google Scholar
  10. [5.10]
    F. I. Dalidchik. Resonance Tunneling for an Ordered Distribution of Scattering Centers. Soviet Physics Solid State, 25:1289–1291, 1983.Google Scholar
  11. [5.11]
    B. E. Deal, E. H. Snow, and C. A. Mead. Barrier Energies in Metal-Silicon Dioxide-Silicon Structures. J. Phys. Chem. Solids, 27:1873–79, 1966.CrossRefGoogle Scholar
  12. [5.12]
    M. Depas, B. Vermeire, P. W. Mertens, R. L. van Meirhaeghe, and M. M. Heyns. Determination of Tunneling Parameters in Ultra-Thin Oxide Layer Poly-Si/SiO2/Si Structures. Solid-State Electronics, 38(8): 1465–71, 1995.CrossRefGoogle Scholar
  13. [5.13]
    D. J. DiMaria and E. Cartier. Mechanism for Stress-Induced Leakage Currents in Thin Silicon Dioxide Films. J. Appl. Phys., 78(6):3883–94, 1995.CrossRefGoogle Scholar
  14. [5.14]
    D. J. DiMaria and D. R. Kerr. Interface Effects and High Conductivity in Oxides Grown from Polycrystalline Silicon. Appl. Phys. Lett., 27(9):505–07, 1975.CrossRefGoogle Scholar
  15. [5.15]
    M. Y. Doghish and F. D. Ho. A Comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devices. IEEE Trans. Electron Devices, ED-39(12):2771–80, 1992.CrossRefGoogle Scholar
  16. [5.16]
    G. Dorda and M. Pulver. Tunnel Mechanism in MNOS Structures. phys. stat sol. (a), 1:71–79, 1970.CrossRefGoogle Scholar
  17. [5.17]
    P. V. Dressendorfer and R. C. Barker. Photoemission Measurements of Interface Barrier Energies for Tunnel Oxides on Silicon. Appl. Phys. Lett., 36(11):933–35, 1980.CrossRefGoogle Scholar
  18. [5.18]
    C. B. Duke and M. E. Alferieff. Field Emission Through Atoms Adsorbed on a Metal Surface. J. Chem. Phys., 46(3):923–943, 1967.CrossRefGoogle Scholar
  19. [5.19]
    M. V. Fischietti, S. E. Laux, and E. Crabbé. Understanding Hot-Electron Transport in Silicon Devices: Is There a Shortcut? J. Appl. Phys., 78(2): 1058–87, 1995.CrossRefGoogle Scholar
  20. [5.20]
    S. Fleischer, P. T. Lai, and Y. C. Cheng. Simplified Closed-Form Trap-Assisted Tunneling Model Applied to Nitrided Oxide Dielectric Capacitors. J. Appl. Phys., 72:5711–5715, 1992.CrossRefGoogle Scholar
  21. [5.21]
    R. H. Fowler and L. W. Nordheim. Electron Emission in Intense Electric Fields. Proc. Roy. Soc., A 119:173–81, 1928.MATHCrossRefGoogle Scholar
  22. [5.22]
    W. Franz. Handbuch der Physik, Vol. 17 of Handbook on Semiconductors, ed. S. Flügge, p. 155. Springer, Berlin, 1956.Google Scholar
  23. [5.23]
    Y. Fu and M. Willander. Evanescent Channels in Calculation of Phonon-Assisted Tunneling Spectrum of a Semiconductor Tunneling Structure. J. Appl. Phys., 73(4): 1848–1852, 1993.CrossRefGoogle Scholar
  24. [5.24]
    J. W. Gadzuk. Resonance Tunneling Through Impurity States in Metal-Insulator-Metal Junctions. J. Appl. Phys., 41(1):286–291, 1970.CrossRefGoogle Scholar
  25. [5.25]
    M. A. Green, F. D. King, and J. Shewchun. Minority Carrier MIS Tunnel Diodes and their Application to Electron-and Photo-Voltaic Energy Conservation-I. Theory. Solid-State Electronics, 17:551–61, 1974.CrossRefGoogle Scholar
  26. [5.26]
    B. Gu, M. Mangiantini, and C. Coluzza. Analysis of Mechanism for Resonant Tunneling via Localized States in Thin SiO2-Films. J. Appl. Phys., 64(12):6867–70, 1988.CrossRefGoogle Scholar
  27. [5.27]
    K. H. Gundlach. Zur Berechnung des Tunnelstroms durch eine trapezförmige Potentialstufe. Solid-State Electronics, 9:949–57, 1966.CrossRefGoogle Scholar
  28. [5.28]
    W. A. Harrison. Tunneling from an Independent-Particle Point of View. Phys. Rev., 123(1):85–89, 1961.CrossRefGoogle Scholar
  29. [5.29]
    A. Hartstein and Z. A. Weinberg. On the Nature of the Image Force in Quantum Mechanics with Application to Photon Assisted Tunneling and Photoemission. J. Phys. C., 11:L469–73, 1978.CrossRefGoogle Scholar
  30. [5.30]
    A. Hartstein and Z. A. Weinberg. Unified Theory of Internal Photoemission and Photon-Assisted Tunneling. Phys. Rev. B, 20(4): 1335–38, 1979.CrossRefGoogle Scholar
  31. [5.31]
    A. Hartstein, Z. A. Weinberg, and D. J. DiMaria. Experimental Test of the Quantum-Mechanical Image-Force Theory. Phys. Rev. B, 25(12):7174–82, 1982.CrossRefGoogle Scholar
  32. [5.32]
    S. Heike, Y. Wada, S. Kondo, and M. Lutwyche. Evaluation of Thin SiO2 Layers by Beam Assisted Scanning Tunneling Microscope. In Proc. Int. Conf. Sol. State Devices and Materials (Japan), 1994.Google Scholar
  33. [5.33]
    M. Herrmann and A. Schenk. Field and High-Temperature Dependence of the Long Term Charge Loss in Electrically Programable Read Only Memories — Measurements and Modeling. J. Appl. Phys., 77(9):4522–40, 1995.CrossRefGoogle Scholar
  34. [5.34]
    P. Hesto. The Nature of Electronic Conduction in Thin Insulating Layers. In G. Barbottin and A. Vapaille (eds.), Instabilities in Silicon Devices, Chapt. 5, pp. 265–314. Elsevier Science, North-Holland, Amsterdam, 1986.Google Scholar
  35. [5.35]
    M. Hiroshima, T. Yasaka, S. Miyazaki, and M. Hirose. Electron Tunneling through Ultra-Thin Gate Oxides Formed on Hydrogen-Terminated Si(100) Surfaces. In Proc. Int. Conf. Sol. State Devices and Materials, Makuhari, (Japan), 1993.Google Scholar
  36. [5.36]
    D. Hsu, M. Dsu, C. Tan, and Y. Y. Wang. Calculations of Resonant Tunneling Levels Across Arbitrary Potential Barriers. J. Appl. Phys., 72(10):4972–74, 1992.CrossRefGoogle Scholar
  37. [5.37]
    N. Hwang, Burnette S. S. Or, and L. Forbes. Tunneling and Thermal Emission of Electrons from a Distribution of Dep Traps in SiO2. IEEE Trans. Electron Devices, ED-40(6):1100–03, 1993.CrossRefGoogle Scholar
  38. [5.38]
    ISE Integrated Systems Engineering AG, Zurich, Switzerland. DESSIS 3.0: Manual, 1996.Google Scholar
  39. [5.39]
    G. Jin, R. W. Dutton, Y.-J. Park, and H.-S. Min. An Isotropic Two Band Model for the Hot Electron Transport in Silicon: Including Electron Emission Probability into SiO2. J. Appl. Phys., 78(5):3174–84, 1995.CrossRefGoogle Scholar
  40. [5.40]
    M. Jonson. Tunneling times in quantum mechanical tunneling. In D. K. Ferry and C. Jacoboni (eds.), Quantum Transport in Semiconductors, pp. 193–239. Plenum Press, New York, 1992.Google Scholar
  41. [5.41]
    L. V. Keldysh. Behavior of Non-metallic Crystals in Strong Electric Fields. Soviet Physics JETP, 6(4):763–770, 1958.Google Scholar
  42. [5.42]
    L. V. Keldysh. Influence of the Lattice Vibrations of a Crystal on the Production of Electron-Hole Pairs in a Strong Electric Field. Soviet Physics JETP, 7(4):665–669, 1958.Google Scholar
  43. [5.43]
    Q. D. M. Khosru, N. Yasuda, K. Taniguchi, and C. Hamaguchi. Generation and Relaxation Phenomena of Positive Charge and Interface Trap in a Metal-Oxide-Semiconductor Structure. J. Appl. Phys., 77(9):4494–4503, 1995.CrossRefGoogle Scholar
  44. [5.44]
    M. Kleefstra and G. C. Herman. Influence of the Image Force on the Band Gap in Semiconductors and Insulators. J. Appl. Phys., 51(9):4923–26, 1980.CrossRefGoogle Scholar
  45. [5.45]
    K. Kobayashi, A. Teramoto, M. Hirayama, and Y. Fujita. Model for the Substrate Hole Current Based on Thermionic Hole Emission from the Anode During Fowler-Nordheim Electron Tunneling in n-Channel Metal-Oxide-Semiconductor Field-Effect Transistors. J. Appl. Phys., 77(7):3277–82, 1995.CrossRefGoogle Scholar
  46. [5.46]
    G. Krieger and R. M. Swanson. Fowler-Nordheim Electron Tunneling in Thin Si-SiO2-Al Structures. J. Appl. Phys., 52(9):5710–17, 1981.CrossRefGoogle Scholar
  47. [5.47]
    A. Kriveris, S. Kudzmauskas, and P. Pipinys. Release of Electrons from Traps by an Electric Field with Phonon Participation. phys. stat. sol. (a), 37:321–327, 1976.CrossRefGoogle Scholar
  48. [5.48]
    M. Lenzlinger and E. H. Snow. Fowler-Nordheim Tunneling into Thermally Grown SiO2. J. Appl. Phys., 40:278–283, 1969.CrossRefGoogle Scholar
  49. [5.49]
    W. W. Lui and M. Fukuma. Exact Solution of the Schrödinger Equation Across an Arbitrary One-dimensional Piecewise-linear Potential Barrier. J. Appl. Phys., 60(5): 1555–1559, 1986.CrossRefGoogle Scholar
  50. [5.50]
    B. Majkusiak and A. Strojwas. Influence of Oxide Thickness Nonuniformities on the Tunnel Current-Voltage and Capacitance-Voltage Characteristics of the Metal-Oxide-Semiconductor System. J. Appl. Phys., 74(9):5638–47, 1993.CrossRefGoogle Scholar
  51. [5.51]
    J. Maserjian. Tunneling in Thin MOS Structures. J. Vac. Sci. Techn., 11(6):996–1003, 1974.Google Scholar
  52. [5.52]
    M. Matsuda, K. Watanabe, M. Yasutake, and T. Hattori. Electron Tunneling through Chemical Oxide of Silicon. In Proc. Int. Conf. Sol. State Devices and Materials (Japan), 1995.Google Scholar
  53. [5.53]
    H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, and H. Iwai. 1.5 nm Direct-Tunneling Gate Oxide Si MOSFET’s. IEEE Trans. Electron Devices, 43(8): 1233–41, 1996.CrossRefGoogle Scholar
  54. [5.54]
    S. Nagano, M. Tsukiji, K. Ando, E. Hasegawa, and A. Ishitani. Mechanism of Leakage Current through the Nano Scale SiO2 Layer. J. Appl. Phys., 75(7):3530–3535, 1994.CrossRefGoogle Scholar
  55. [5.55]
    T. H. Ning. Hot-Electron Emission from Silicon into Silicon Dioxide. Solid-State Electronics, 21:273–82, 1978.CrossRefGoogle Scholar
  56. [5.56]
    L. W. Nordheim. The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals. Proc. Roy. Soc., A 121:626–39, 1928.MATHCrossRefGoogle Scholar
  57. [5.57]
    H. Nozawa and S. Kohoyama. Thermionic Electron Emission Model for Charge Retention in SAMOS Structures. Jap. J. Appl. Phys., 21:111–112, 1982.CrossRefGoogle Scholar
  58. [5.58]
    C. S. Pan, K. Wu, D. Chin, G. Sery, and J. Kiely. High-Temperature Charge Loss Mechanism in a Floating-Gate EPROM with an Oxide-Nitride-Oxide (ONO) Interpoly Stacked Dielectric. IEEE Electron Device Letters, 12(9):506–509, 1991.CrossRefGoogle Scholar
  59. [5.59]
    C. S. Pan, K. Wu, and G. Sery. Physical Origin of Long-Term Charge Loss Mechanism in a Floating-Gate EPROM with an Oxide-Nitride-Oxide Interpoly Stacked Dielectric. IEEE Electron Device Letters, 12(2):51–53, 1991.CrossRefGoogle Scholar
  60. [5.60]
    G. H. Parker and C. A. Mead. The Effect of Trapping States on Tunneling in Metal-Semiconductor Junctions. Appl. Phys. Lett., 14(1):21–23, 1969.CrossRefGoogle Scholar
  61. [5.61]
    J. C. Penley. Tunneling through Thin Films with Traps. Phys. Rev., 128(2):596–602, 1962.MATHCrossRefGoogle Scholar
  62. [5.62]
    W. Pötz. Self-consistent Model of Transport in Quantum Well Tunneling Structures. J. Appl. Phys., 66(6):2458–66, 1989.CrossRefGoogle Scholar
  63. [5.63]
    P. J. Price and J. M. Radcliffe. Esaki Tunneling. IBM Journal, Oct.:364–371, 1959.Google Scholar
  64. [5.64]
    A. Puri and W. L. Schaich. Comparison of Image-Potential Theories. Phys. Rev B, 28(4): 1781–84, 1983.CrossRefGoogle Scholar
  65. [5.65]
    B. Ricco, M. Ya. Azbel, and M. H. Brodsky. Novel Mechanism for Tunneling and Breakdown of Thin SiO2 Films. Phys. Rev. Lett., 51(19): 1795–98, 1983.CrossRefGoogle Scholar
  66. [5.66]
    A. Schenk. A Model for the Field and Temperature Dependence of Shockley-Read-Hall Lifetimes in Silicon. Solid-State Electronics, 35(11): 1585–96, 1992.CrossRefGoogle Scholar
  67. [5.67]
    P. A. Serena, J. M. Soler, and N. Garcia. Self-Consistent Image Potential in a Metal Surface. Phys. Rev., B 34(10):6767–69, 1986.Google Scholar
  68. [5.68]
    R. B. Sethi, U. S. Kim, I. Johnson, P. Cacharelis, and M. Manley. Electron Barrier Height Change and its Influence on EEPROM Cells. IEEE Electron Device Letters, 13(5):244–46, 1992.CrossRefGoogle Scholar
  69. [5.69]
    J. Shewchun, R. Singh, and M. A. Green. Theory of Metal-Insulator-Semiconductor Solar Cells. J. Appl. Phys., 48(2):765–70, 1977.CrossRefGoogle Scholar
  70. [5.70]
    R. E. Shiner, J. M. Caywood, and B. L. Euzent. Data Retention in EPROMs. Int. Reliability Physics Symposium, pp. 238–243, 1980.Google Scholar
  71. [5.71]
    J. G. Simmons. Richardson-Schottky Effect in Solids. Phys. Rev. Lett., 15:967–968,1965.CrossRefGoogle Scholar
  72. [5.72]
    A. Spitzer and R. Baunach. The Physics of ONO Layer Dielectrics. In Applied Surface Science, Vol. 39, pp. 192–199. Elsevier Science, North-Holland, Amsterdam, 1989.Google Scholar
  73. [5.73]
    F. Stern. Image Potential near a Gradual Interface between two Dielectrics. Phys. Rev. B, 17(12):5009–15, 1978.CrossRefGoogle Scholar
  74. [5.74]
    R. Stratton. Volt-Current Characteristics for Tunneling through Insulating Films. J. Phys. Chem. Solids, 23:1177–1190, 1962.CrossRefGoogle Scholar
  75. [5.75]
    E. Suzuki, D. K. Schroder, and Y. Hayashi. Carrier Conduction in Ultrathin Nitrided Oxide Films. J. Appl. Phys., 60(10):3616–3621, 1986.CrossRefGoogle Scholar
  76. [5.76]
    C. M. Svensson and I. K. Lundström. Trap-Assisted Charge Injection in MNOS Structures. J. Appl. Phys., 44:4657–4663, 1973.CrossRefGoogle Scholar
  77. [5.77]
    S. M. Sze. Physics of Semiconductor Devices, 2nd ed. John Wiley and Sons, New York, 1981.Google Scholar
  78. [5.78]
    V. A. K. Temple, M. A. Green, and J. Shewchun. Equilibrium-to-Nonequilibrium Transition in MOS (Surface Oxide) Tunnel Diode. J. Appl. Phys., 45(11):4934–43, 1974.CrossRefGoogle Scholar
  79. [5.79]
    Z. A. Weinberg. Tunneling of Electrons from Si into Thermally Grown SiO2. Solid-State Electronics, 22:11–18, 1977.CrossRefGoogle Scholar
  80. [5.80]
    Z. A. Weinberg. On Tunneling in Metal-Oxide Silicon Structures. J. Appl. Phys., 53(7):5052–56, 1982.CrossRefGoogle Scholar
  81. [5.81]
    Z. A. Weinberg and A. Hartstein. Photon Assisted Tunneling from Aluminium into Silicon Dioxide. Solid State Comm., 20:179–82, 1976.CrossRefGoogle Scholar
  82. [5.82]
    Z. A. Weinberg and A. Hartstein. Effect of Silicon Orientation and Hydrogen Anneal on Tunneling from Si to SiO2. J. Appl. Phys., 54(5):2517–21, 1983.CrossRefGoogle Scholar
  83. [5.83]
    N. Yasuda, N. Patel, and A. Toriumi. A Two-Step Tunneling Model for the Stress Induced Leakage Current in Thin Silicon Dioxide Films. In Ext. Abstracts Solid State Devices and Materials SSDM, pp. 847–849, Chiba, Japan, 1993.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Andreas Schenk
    • 1
  1. 1.Institut für Integrierte SystemeETH ZürichSchweiz

Personalised recommendations