Advertisement

Metal-Semiconductor Contact

  • Andreas Schenk
Part of the Computational Microelectronics book series (COMPUTATIONAL)

Abstract

The metal-semiconductor interface is among the most challenging problems in the field of solid-state theory and device physics. A variety of physical phenomena, e.g. the influence of interface states on barrier height [4.20, 4.34], the effect of interfacial layers (dipole, oxide, or contamination) [4.2, 4.6, 4.15, 4.18], inelastic scattering events [4.16, 4.22], recombination, trapping [4.5, 4.10] and trap-assisted tunneling [4.9], vertical and lateral potential fluctuations [4.8], barrier height fluctuations [4.33], interface roughness [4.30], band-state mixing [4.12], realistic image forces, hot carrier effects, and some other issues make the theoretical modeling a complicated task. Simplified contact models, e.g. suitable for device simulation, have to neglect most of all these effects.

Keywords

Barrier Height Transmission Coefficient Reverse Bias Transmission Probability Schottky Diode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [4.1]
    M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1972.MATHGoogle Scholar
  2. [4.2]
    J. M. Andrews and M. P. Lepselter. Reverse Current-Voltage Characteristics of Metal-Silicide Schottky Diodes. Solid-State Electronics, 13:1011–23, 1970.CrossRefGoogle Scholar
  3. [4.3]
    B. J. Baliga. The Pinch Rectifier: A Low Forward-Drop, High-speed Power Diode. IEEE Electron Device Letters, EDL-5:194–96, 1984.CrossRefGoogle Scholar
  4. [4.4]
    B. J. Baliga. Analysis of a High-Voltage Merged p-i-n/Schottky (MPS) Rectifier. IEEE Electron Device Letters, EDL-8:407–09, 1987.CrossRefGoogle Scholar
  5. [4.5]
    D. Bauza. Effect of Deep Traps on the Capacitance-Voltage Plots of Schottky Barrier Diodes: Application to the Study of Sputter-Etched Ti-W/n-Si Diodes. Jour. Appl. Phys., 73 (4): 1858–65, 1993.CrossRefGoogle Scholar
  6. [4.6]
    H. C. Card and E. H. Rhoderick. The Effect of an Interfacial Layer on Minority Carrier Injection in Forward-Biased Silicon Schottky Diodes. Solid-State Electronics, 16:365–74, 1973.CrossRefGoogle Scholar
  7. [4.7]
    D. M. Caughey and R. E. Thomas. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE, pp. 2192–93, December 1967.Google Scholar
  8. [4.8]
    C. Y. Chang and S. M. Sze. Carrier Transport Across Metal-Semiconductor Barriers. Solid-State Electronics, 13:727–40, 1970.CrossRefGoogle Scholar
  9. [4.9]
    A. G. Chynoweth, W. L. Feldmann, and R. A. Logan. Excess Tunnel Current in Silicon Esaki Junctions. Phys. Rev., 121:684–93, 1961.CrossRefGoogle Scholar
  10. [4.10]
    A. Cola, M. G. Lupo, L. Vasanelli, and A. Valentini. Characterization of a Defect at a Schottky Barrier Interface by Current and Capacitance Measurements. Solid-State Electronics, 36 (5):785–89, 1993.CrossRefGoogle Scholar
  11. [4.11]
    J. W. Conley, C. B. Duke, G. D. Mahan, and J. J. Tiemann. Electron Tunneling in Metal-Semiconductor Barriers. Phys. Rev., 150 (2):466–69, 1966.CrossRefGoogle Scholar
  12. [4.12]
    J. W. Conley and G. D. Mahan. Tunneling Spectroscopy in GaAs. Phys. Rev., 161 (3):681–95, 1967.CrossRefGoogle Scholar
  13. [4.13]
    C. R. Crowell and M. Beguwala. Recombination Velocity Effects on Current Diffusion and Imref in Schottky Barriers. Solid-State Electronics, 14:1149–57, 1971.CrossRefGoogle Scholar
  14. [4.14]
    C. R. Crowell and V. L. Rideout. Normalized Thermionic-Field (T-F) Emission in Metal-Semiconductor (Schottky) Barriers. Solid-State Electronics, 12:89–105, 1969.CrossRefGoogle Scholar
  15. [4.15]
    C. R. Crowell, H. B. Shore, and E. E. LaBate. Surface-State and Interface Effects in Schottky Barriers at n-Type Silicon Surfaces. Jour. Appl. Phys., 36 (12):3843–50, 1965.CrossRefGoogle Scholar
  16. [4.16]
    C. R. Crowell and S. M. Sze. Current Transport in Metal-Semiconductor Barriers. Solid-State Electronics, 9:1035–48, 1966.CrossRefGoogle Scholar
  17. [4.17]
    T. Feudel. Integrated Systems Laboratory, ETH Zurich. Private communication.Google Scholar
  18. [4.18]
    S. J. Fonash. A Reevaluation of the Meaning of Capacitance Plots for Schottky-Barrier-Type Diodes. Jour. Appl. Phys., 54 (4):1966–675, 1983.CrossRefGoogle Scholar
  19. [4.19]
    R. H. Fowler and L. W. Nordheim. Electron Emission in Intense Electric Fields. Proc. Roy. Soc., A 119:173–81, 1928.Google Scholar
  20. [4.20]
    J. L. Freeouf. Are Interface States Consistent with Schottky Barrier Measurements? Appi. Phys. Lett., 41 (3):285–87, 1982.CrossRefGoogle Scholar
  21. [4.21]
    W. Grabinski. Integrated Systems Laboratory, ETH Zurich. Private communication.Google Scholar
  22. [4.22]
    E. Y. Lee and L. J. Schowalter. Phonon Scattering and Quantum Mechanical Reflection at the Schottky Barrier. Jour. Appl. Phys., 70 (4):2156–62, 1991.CrossRefGoogle Scholar
  23. [4.23]
    J. L. Moll. Physics of Semiconductors. McGraw-Hill, New York, 1964.MATHGoogle Scholar
  24. [4.24]
    J. O. Nylander. Computer Simulations of Silicon Device Structures with Emphasis on Metal-Semiconductor Contacts. PhD thesis, Uppsala University, 1989. Acta Universitatis Upsaliensis 194.Google Scholar
  25. [4.25]
    J. Olsson, H. Norde, and U. Magnusson. Investigation of the Current-Voltage Behavior of a Combined Schottky-p-n Diode. Solid-State Electronics, 35(9): 1229–31, 1992.CrossRefGoogle Scholar
  26. [4.26]
    F. A. Padovani and R. Stratton. Field and Thermionic-Field Emission in Schottky Barriers. Solid-State Electronics, 9:695–707, 1966.CrossRefGoogle Scholar
  27. [4.27]
    D. Schroeder. An Analytical Model of Non-ideal Ohmic and Schottky Contacts for Device Simulation. In Proc. 4th Int. Conf. on Simulation of Semiconductor Devices and Processes, Zürich, Switzerland, Sept. 12–14, 1991.Google Scholar
  28. [4.28]
    D. Schroeder. A Boundary Condition for the Poisson Equation at Non-ideal Metal-Semiconductor Interfaces. In Proc. of the NASECODE VIII Conference, Vienna, Austria, May 18–22, 1992.Google Scholar
  29. [4.29]
    R. Stratton. Theory of Field Emission from Semiconductors. Phys. Rev., 125 (1):67, 1962.MATHCrossRefGoogle Scholar
  30. [4.30]
    J. P. Sullivan, R. T. Tung, M. R. Pinto, and W. R. Graham. Electron Transport in Inho-mogeneous Schottky Barriers: A Numerical Study. Jour. Appl. Phys., 70 (12):7403–24, 1991.CrossRefGoogle Scholar
  31. [4.31]
    S. M. Sze. Physics of Semiconductor Devices, 2nd ed. John Wiley and Sons, New York, 1981.Google Scholar
  32. [4.32]
    S. L. Tu and B. J. Baliga. Controlling the Characteristics of the MPS Rectifier by Variation of Area of Schottky Region. IEEE Trans. Electron Devices, ED-40(7): 1307–15, 1993.CrossRefGoogle Scholar
  33. [4.33]
    J. H. Werner and H. H. Güttler. Barrier Inhomogeneities at Schottky Contacts. Jour. Appl. Phys., 69(3):1522–33, 1991.CrossRefGoogle Scholar
  34. [4.34]
    X. Wu and E. S. Yang. Interface Capacitance in Metal-Semiconductor Junctions. Jour. Appl. Phys., 65 (9):3560–67, 1989.CrossRefGoogle Scholar
  35. [4.35]
    A. Y. C. Yu. Electron Tunneling and Contact Resistance of Metal-Silicon Contact Barriers. Solid-State Electronics, 13:239–47, 1970.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Andreas Schenk
    • 1
  1. 1.Institut für Integrierte SystemeETH ZürichSchweiz

Personalised recommendations