Advanced Generation-Recombination Models

  • Andreas Schenk
Part of the Computational Microelectronics book series (COMPUTATIONAL)


In 1934 Zener [3.118] proposed band-to-band tunneling as explanation for the electrical breakdown. A modified Zener theory was used by McAffee et al. [3.75] in 1951 to describe the breakdown of reversed biased pn-junctions, called Zener diodes since then. However, experimental work [3.76–3.78] in the following years showed that in such diodes with wide junctions the breakdown is not caused by tunneling, but by impact ionization. Only in narrow junctions, where the width of the transition region is less than 50 nm, the necessary field strength for tunneling is reached before the avalanche effect sets in. This was first clearly demonstrated by Chynoweth and McKay [3.22] in 1957 by the absence of microplasma noise and by the temperature coefficients of reverse and forward characteristics of junctions with different breakdown voltages. In the same year Esaki [3.32] discovered that narrow pn-junctions between degenerate regions can have forward characteristics with a portion of negative differential conductivity, and that the tunnel “hump” is only weakly temperature dependent. Esaki’s work initiated intensive experimental and theoretical investigations. Holonyak et al. [3.53] and Hall [3.45] observed structures in the I (V)-characteristics of heavily doped Si-junctions at 4.2 K, which they attributed to the momentum-conserving phonons in indirect band-to-band tunneling. Various phonon energies could be resolved in these characteristics. Chynoweth et al. [3.19, 3.20] then found evidence that the excess current in silicon Esaki junctions, i.e. the current between the tunnel “hump” and the normal forward injection current, is essentially caused by the process of field ionization of impurity levels.


Tunneling Rate Field Enhancement Factor Direct Tunneling Excess Current Classical Turning Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [3.1]
    M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1972.MATHGoogle Scholar
  2. [3.2]
    E. N. Adams. The Crystal Momentum as a Quantum Mechanical Operator. J. chem. Phys., 21(11):2013–17, 1953.CrossRefGoogle Scholar
  3. [3.3]
    D. E. Aspnes. Electric-Field Effects on Optical Absorption. Phys. Rev., 147:554–561, 1966.CrossRefGoogle Scholar
  4. [3.4]
    D. E. Aspnes. Electric Field Effects on the Dielectric Constant of Solids. Phys. Rev., 153:972–982, 1967.CrossRefGoogle Scholar
  5. [3.5]
    D. E. Aspnes, P. Handler, and D. F. Blossey. Inerband Dielectric Properties of Solids in an Electric Field. Phys. Rev., 166 (3):921–933, 1968.CrossRefGoogle Scholar
  6. [3.6]
    B. J. Baliga. Modern Power Devices. J. Wiley and Sons, New York, 1987.Google Scholar
  7. [3.7]
    S. K. Banerjee, D. J. Coleman, W. Richardson, and A. Shah. Leakage Mechanism in the Trench Transistor DRAM Cell. IEEE Trans. Electron Devices, ED-35 (1): 108–115, 1988.CrossRefGoogle Scholar
  8. [3.8]
    R. Bergmann, S. J. Robinson, Z. Shi, and J. Kurianski. Silicon Films Incorporating a Drift-Field Grown by Liquid Phase Epitaxy for Solar Cell Application. Solar Energy Materials and Solar Cells, 31:447–51, 1993.CrossRefGoogle Scholar
  9. [3.9]
    W. Bergner and R. Kircher. Modeling of Band-to-Band Tunneling Mechanisms. Extended Abstracts of the 22nd Conference on Solid State Devices and Materials, Sendai, pp. 135–137, 1990.Google Scholar
  10. [3.10]
    D. F. Blossey. Wannier Exciton in an Electric Field. I. Optical Absorption by Bound and Continuum States. Phys. Rev. B, 2(10):3976–90, 1970.CrossRefGoogle Scholar
  11. [3.11]
    W. Brauer and H.-W. Streitwolf. Theoretische Grundlagen der Halbleiterphysik. Akademie-Verlag, Berlin, 1977.CrossRefGoogle Scholar
  12. [3.12]
    T. P. Brody. On the Nature of the Excess Current in Tunnel Diodes. Bull. Am. Phys. Soc., 6:105, 1961.Google Scholar
  13. [3.13]
    M. G. Burt. On the Relation between Static and Adiabatic Coupling Schemes for Calculating Non-radiative Multiphonon Transition Rates. J. Phys. C, 15:L381–L384, 1982.CrossRefGoogle Scholar
  14. [3.14]
    C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta. Electron Drift Velocity in Silicon. Phys. Rev., B12 (4):2265–84, 1974.Google Scholar
  15. [3.15]
    T. Y. Chan, J. Chen, P. K. Ko, and C. Hu. The Impact of Gate-Induced Drain Leakage Current on MOSFET Scaling. IEDM Tech. Digest, Dec.:718–21, 1987.Google Scholar
  16. [3.16]
    I.-C. Chen, D. J. Coleman, and C. W. Teng. Gate Current Injection Initiated by Electron Band-to-Band Tunneling in MOS Devices. IEEE Electron Device Letters, EDL-10(7):297–300, 1989.CrossRefGoogle Scholar
  17. [3.17]
    W. M. Chen, B. Monemar, E. Janzen, and J. L. Lindström. Direct Observation of Inter-center Charge Transfer in Dominant Nonradiative Recombination Channels in Silicon. Phys. Rev. Lett., 67(14): 1914–17, 1991.CrossRefGoogle Scholar
  18. [3.18]
    A. G. Chynoweth. Ionization Rates for Electrons and Holes in Silicon. Phys. Rev., 109(5): 1537–40, 1958.CrossRefGoogle Scholar
  19. [3.19]
    A. G. Chynoweth, W. L. Feldmann, and R. A. Logan. Excess Tunnel Current in Silicon Esaki Junctions. Phys. Rev., 121:684–93, 1961.CrossRefGoogle Scholar
  20. [3.20]
    A. G. Chynoweth and R. A. Logan. On the Excess Current in Silicon Esaki Junctions. Proc. Int. Conf. Phys. Sem., Prague, Czech. J. Phys., (special publication), pp. 201–203, 1960.Google Scholar
  21. [3.21]
    A. G. Chynoweth, R. A. Logan, and D. E. Thomas. Phonon-Assisted Tunneling in Silicon and Germanium Esaki Junctions. Phys. Rev., 125 (3):877–81, 1962.CrossRefGoogle Scholar
  22. [3.22]
    A. G. Chynoweth and K. G. McKay. Internal Field Emission in Silicon p-n Junctions. Phys. Rev., 106 (3):418–426, 1957.CrossRefGoogle Scholar
  23. [3.23]
    M. L. Cohen and J. R. Chelikowsky. Electronic Structure and Optical Properties of Semiconductors. Springer-Verlag, Berlin Heidelberg New York, 1988.CrossRefGoogle Scholar
  24. [3.24]
    A. Cuthbertson and P. Ashburn. Self-Aligned Transistors with Polysilicon Emitters for Bipolar VLSI. IEEE Trans. Electron Devices, ED-32 (2):242–247, 1985.CrossRefGoogle Scholar
  25. [3.25]
    J. A. del Alamo and R. M. Swanson. Forward-Bias Tunneling: A Limitation to Bipolar Device Scaling. IEEE Electron Device Letters, EDL-7(11):629–31, 1986.CrossRefGoogle Scholar
  26. [3.26]
    C. B. Duke and M. E. Alferieff. Solvable Model of a Hydrogenic System in a Strong Electric Field: Application to Optical Absorption in Semiconductors. Phys. Rev., 145 (2):583–592, 1965.CrossRefGoogle Scholar
  27. [3.27]
    C. Duvvury, D. J. Redwine, and H. J. Stiegler. Leakage Current Degradation in N-MOSFETs Due to Hot-Electron Stress. IEEE Electron Dev. Lett., EDL-9 (11):579–81, 1988.CrossRefGoogle Scholar
  28. [3.28]
    R. Enderlein, R. Keiper, and W. Tausendfreund. Theory of Stark Effect in Crystals. phys. stat sol., 33:69–83, 1969.CrossRefGoogle Scholar
  29. [3.29]
    R. Enderlein and K. Peuker. On the Theory of the Electric Conductivity of Solids in a Strong Electric Field. phys. stat. sol. (b), 48:231–241, 1971.CrossRefGoogle Scholar
  30. [3.30]
    R. Enderlein, P. Renner, and M. Scheele. Anisotropy of Electroreflectance Due to Orbital Degeneracy of Energy Bands. phys. stat. sol. (b), 71:503–513, 1975.CrossRefGoogle Scholar
  31. [3.31]
    T. Endoh, R. Shirota, M. Momodomi, and F. Masuoka. An Accurate Model of Subbreak-down Due to Band-to-Band Tunneling and Some Applications. IEEE Trans. Electron Devices, ED-37 (1):290–295, 1990.CrossRefGoogle Scholar
  32. [3.32]
    L. Esaki. New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev., 109:603-, 1958.CrossRefGoogle Scholar
  33. [3.33]
    L. Esaki and Y. Miyahara. A New Device Using the Tunneling Process in Narrow p-n Junctions. Solid-State Electronics, 1:13–21, 1960.CrossRefGoogle Scholar
  34. [3.34]
    R. B. Fair and H. W. Wivell. Zener and Avalanche Breakdown in As-Implanted Low-Voltage Si n-p Junctions. IEEE Trans. Electron Devices, ED-23 (5):512–18, 1976.CrossRefGoogle Scholar
  35. [3.35]
    J. G. Fossum and D. S. Lee. A Physical Model for the Dependence of Carrier Lifetime on Doping Density in Nondegenerate Silicon. Solid-State Electronics, 25(8):741–47, 1982.CrossRefGoogle Scholar
  36. [3.36]
    J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs. Carrier Recombination and Lifetime in Highly Doped Silicon. Solid-State Electronics, 26(6):569–76, 1983.CrossRefGoogle Scholar
  37. [3.37]
    W. Franz. Einfluss eines elektrischen Feldes auf eine optische Absorptionskante. Z. Naturforschung, 13a:484–89, 1958.Google Scholar
  38. [3.38]
    D. R. Fredkin and G. H. Wannier. Theory of Electron Tunneling in Semiconductor Junctions. Phys. Rev., 128 (5):2054–61, 1962.MathSciNetMATHCrossRefGoogle Scholar
  39. [3.39]
    J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev., 54:647–48, 1938.CrossRefGoogle Scholar
  40. [3.40]
    A. M. Frens, M. T. Bennebroek, A. Zakrzewski, J. Schmidt, W. M. Chen, E. Janzen, J. L. Lindström, and B. Monemar. Observation of Rapid Direct Charge Transfer between Deep Defects in Silicon. Phys. Rev. Lett., 72(18):2939–42, 1994.CrossRefGoogle Scholar
  41. [3.41]
    L. Fritsche. Phonon Assisted Optical Absorption in an Electric Field. phys. stat. sol., 11:381–400, 1965.CrossRefGoogle Scholar
  42. [3.42]
    H. Goebel and K. Hoffmann. Full dynamic power diode model including temperature behavior for use in circuit simulators. In Proceedings of 1992 International Symposium on Power Semiconductor Devices & ICs, pp. 130–135, Tokyo, 1992.Google Scholar
  43. [3.43]
    E. Gutsche. Non-Condon Approximations in the Theory of Non-Radiative Multiphonon Transitions. phys. stat. sol. (b), 109:583–596, 1982.CrossRefGoogle Scholar
  44. [3.44]
    R. N. Hall. Electron-Hole Recombination in Germanium. Phys. Rev., 87(5):387, 1952.CrossRefGoogle Scholar
  45. [3.45]
    R. N. Hall. Observation of Polarons and Phonons During Tunneling in Semiconductor Junctions. Proc. Int. Conf. Phys. Sem., Prague, Czech. J. Phys., (special publication), pp. 193–200, 1960.Google Scholar
  46. [3.46]
    A. Hangleiter. Nonradiative Recombination via Deep Impurity Levels in Semiconductors: Experiment. Phys. Rev., B35 (17):9149–61, 1987.Google Scholar
  47. [3.47]
    A. Hangleiter. Nonradiative Recombination via Deep Impurity Levels in Semiconductors: The Excitonic Auger Mechanism. Phys. Rev., B37 (5):2594–2604, 1988.Google Scholar
  48. [3.48]
    H. Hazama. Anomalous Band-to-Band Tunneling in n-ch MOSFETs. Extended Abstracts of the 22nd Conference on Solid State Devices and Materials, Sendai, pp. 303–306, 1990.Google Scholar
  49. [3.49]
    G. Helmis. Strahlungslose Übergänge. Ann. Phys., 19:41–53, 1956.MathSciNetCrossRefGoogle Scholar
  50. [3.50]
    K. Henneberger, R. Strehlow, and H.-J. Wünsche. On the Theory of the Interband Conductivity for Forbidden Transitions and Indirect Transitions. phys. stat. sol. (b), 61:455–463, 1974.CrossRefGoogle Scholar
  51. [3.51]
    C. H. Henry and D. V. Lang. Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP. Phys. Rev., B15(2):989–1016, 1977.Google Scholar
  52. [3.52]
    J. C. Hensel, H. Hasegawa, and M. Nakayama. Cyclotron Resonance in Uniaxially Stressed Silicon. II. Nature of the Covalent Bond. Phys. Rev. A, 138(1):225–38, 1965.Google Scholar
  53. [3.53]
    N. Holonyak, Jr., I. A. Lesk, R. N. Hall, J. J. Tiemann, and H. Ehrenreich. Direct Observation of Phonons During Tunneling in Narrow Junction Diodes. Phys. Rev. Lett., 3 (4): 167–68, 1959.CrossRefGoogle Scholar
  54. [3.54]
    W. V. Houston. Acceleration of Electrons in a Crystal Lattice. Phys. Rev., 57:184–86, 1940.MathSciNetCrossRefGoogle Scholar
  55. [3.55]
    K. Huang. Adiabatic Approximation Theory and Static Coupling Theory of Nonradiative Transitions. Scienta Sinica, XXIV(1):27–34, 1981.Google Scholar
  56. [3.56]
    K. Huang and A. Rhys. Theory of Light Absorption and Non-radiative Transitions in F-Centres. Proc. Royal Soc. London, 204 A:406–23, 1950.Google Scholar
  57. [3.57]
    G. A. M. Hurkx, D. B. M. Klaassen, M. P. G. Knuvers, and F. G. O’Hara. A New Recombination Model Describing Heavy-Doping Effects and Low-Temperature Behaviour. IEDM Tech. Digest, Dec.:307–10, 1989.Google Scholar
  58. [3.58]
    Y. Igura, H. Matsuoka, and E. Takeda. New Device Degradation Due to “Cold” Carriers Created by Band-to-Band Tunneling. IEEE Electron Device Letters, EDL-10(5):227–29, 1989.CrossRefGoogle Scholar
  59. [3.59]
    ISE Integrated Systems Engineering AG, Zurich, Switzerland. DESSIS 3.0: Manual, 1996.Google Scholar
  60. [3.60]
    H. Jorke, H. Kibbel, K. Strohm, and E. Kasper. Forward-Bias Characteristics of Si Bipolar Junctions Grown by Molecular Beam Epitaxy at Low Temperatures. Appl. Phys. Lett., 63(17):2408–10, 1993.CrossRefGoogle Scholar
  61. [3.61]
    E. O. Kane. Zener Tunneling in Semiconductors. J. Phys. Chem. Solids, 12:181–188, 1959.CrossRefGoogle Scholar
  62. [3.62]
    E. O. Kane. Theory of Tunneling. J. Appl. Phys., 32 (1):83–91, 1961.MathSciNetMATHCrossRefGoogle Scholar
  63. [3.63]
    L. V. Keldysh. Behavior of Non-metallic Crystals in Strong Electric Fields. Soviet Physics JETP, 6(4):763–770, 1958.Google Scholar
  64. [3.64]
    L. V. Keldysh. Influence of the Lattice Vibrations of a Crystal on the Production of Electron-Hole Pairs in a Strong Electric Field. Soviet Physics JETP, 7(4):665–669,1958.Google Scholar
  65. [3.65]
    H. Köster, Jr., O. V. Kurnusova, and I. N. Yassievich. Tunneling from Deep Levels of l-c Type in Electric Fields. phys. stat. sol.(b), 127:339–350, 1985.CrossRefGoogle Scholar
  66. [3.66]
    M. A. Krivoglaz. Zh. Exper. Theor. Fiz., 25:191, 1953.Google Scholar
  67. [3.67]
    R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Japan, 12(6):570–86, 1957.MathSciNetCrossRefGoogle Scholar
  68. [3.68]
    D. V. Lang, H. G. Grimmeiss, E. Meijer, and M. Jaros. Complex Nature of Gold-related Deep Levels in Silicon. Phys. Rev. B, 22(7):3917–34, 1980.CrossRefGoogle Scholar
  69. [3.69]
    P. Lawaetz. Valence-Band Parameters in Cubic Semiconductors. Phys. Rev., B4(10):3460–67, 1971.Google Scholar
  70. [3.70]
    U. Lindefeit. ABB Corporate Research, Västerås, Sweden. Private communication.Google Scholar
  71. [3.71]
    R. A. Logan and A. G. Chynoweth. Effect of Degenerate Semiconductor Band Structure on Current-Voltage Characteristics of Silicon Tunnel Diodes. Phys. Rev., 131 (1):89–95, 1963.CrossRefGoogle Scholar
  72. [3.72]
    G. Lucovski. On the Photoionization of Deep Impurity Centers in Semiconductors. Solid State Comm., 3:299–302, 1965.CrossRefGoogle Scholar
  73. [3.73]
    S. Makram-Ebeid and M. Lannoo. Quantum Model for Phonon-Assisted Tunnel Ionization of Deep Levels in a Semiconductor. Phys. Rev., B25:6406–24, 1982.Google Scholar
  74. [3.74]
    R. M. Martin. Dielectric Screening Model for Lattice Vibrations of Diamond-Structure Crystals. Phys. Rev., 186 (3):871–884, 1969.CrossRefGoogle Scholar
  75. [3.75]
    K. B. McAffee, E. J. Ryder, W. Shockley, and M. Sparks. Observations of Zener Current in Germanium p-n Junctions. Phys. Rev., 83:650–51, 1951.CrossRefGoogle Scholar
  76. [3.76]
    K. G. McKay. Avalanche Breakdown in Silicon. Phys. Rev., 94(4):877–84, 1954.CrossRefGoogle Scholar
  77. [3.77]
    K. G. McKay and K. B. McAffee. Electron Multiplication in Silicon and Germanium. Phys. Rev., 91(5): 1079–84, 1953.CrossRefGoogle Scholar
  78. [3.78]
    S. L. Miller. Avalanche Breakdown in Germanium. Phys. Rev., 99(4): 1234–41, 1955.CrossRefGoogle Scholar
  79. [3.79]
    J. R. Morante, J. E. Carceller, P. Cartujo, and J. J. Barbolla. Analysis of Thermal Capture of the Acceptor Level of Gold in Silicon. phys. stat. sol. (b), 111:375–382, 1982.CrossRefGoogle Scholar
  80. [3.80]
    N. Mott, E. A. Davis, and H. A. Street. States in the Gap and Recombination in Amorphous Semiconductors. Phil. Mag., 32:961–96, 1975.CrossRefGoogle Scholar
  81. [3.81]
    I. Nedev, A. Asenov, and E. Stefanov. Experimental Study and Modeling of Band-to-Band Tunneling Leakage Current in Thin-Oxide MOSFETs. Solid-State Electronics, 34 (12): 1401–08, 1991.CrossRefGoogle Scholar
  82. [3.82]
    Y. Odake, K. Kurimoto, and S. Odanaka. Three-Dimensional Numerical Modeling of the Indirect Band-to-Band Tunneling in MOSFETs. Extended Abstracts of the 22nd Conference on Solid State Devices and Materials, Sendai, pp. 131–134, 1990.Google Scholar
  83. [3.83]
    R. Pässler. Temperature Dependence of the Nonradiative Multiphonon Carrier Capture and Ejection Properties of Deep Traps in Semiconductors. phys. stat. sol.(b), 85:203–215, 1978.CrossRefGoogle Scholar
  84. [3.84]
    Yu. E. Perlin. Consideration of the Polaron Effect in the Theory of Multiphonon Thermal Ionization. Soviet Physics —Solid State, 2(2):222–35, 1960.Google Scholar
  85. [3.85]
    K. Peuker, R. Enderlein, A. Schenk, and E. Gutsche. Theory of Non-Radiative Multiphonon Capture Processes. phys. stat. sol.(b), 109:599–606, 1982.CrossRefGoogle Scholar
  86. [3.86]
    P. J. Price. Tunneling from Trap States in Esaki Diodes. Bull. Am. Phys. Soc, 5:406–07, 1960.Google Scholar
  87. [3.87]
    P. J. Price and J. M. Radcliffe. Esaki Tunneling. IBM Journal, Oct.:364–371, 1959.Google Scholar
  88. [3.88]
    B. K. Ridley. Multiphonon, Non-radiative Transition Rate for Electrons in Semiconductors and Insulators. J. Phys. C, 11:2323–41, 1978.CrossRefGoogle Scholar
  89. [3.89]
    S. J. Robinson. University of New South Wales, Kensington, Australia. Private communication.Google Scholar
  90. [3.90]
    S. J. Robinson, G. F. Zheng, W. Zhang, Z. Shi, and M. A. Green. Opto-Electronic Characterisation of Thin-Film Crystalline Silicon Solar Cells Grown from Metal Solutions. In Ext. Abstracts of the 12th EC PVSEC, Amsterdam, Netherlands, 1994.Google Scholar
  91. [3.91]
    C. T. Sah. Electronic Processes in Gold-Doped Silicon Tunnel Diodes. Bull. Am. Phys. Soc., 6:105–106, 1961.Google Scholar
  92. [3.92]
    A. Schenk. A Model for the Field and Temperature Dependence of Shockley-Read-Hall Lifetimes in Silicon. Solid-State Electronics, 35(11): 1585–96, 1992.CrossRefGoogle Scholar
  93. [3.93]
    A. Schenk. An Improved Approach to the Shockley-Read-Hall Recombination in Inho-mogeneous Fields of Space Charge Regions. J. Appl. Phys., 71(7):3339–49, 1992.CrossRefGoogle Scholar
  94. [3.94]
    A. Schenk. Rigorous Theory and Simplified Model of the Band-to-Band Tunneling in Silicon. Solid-State Electronics, 36(1):19–34, 1993.CrossRefGoogle Scholar
  95. [3.95]
    A. Schenk, R. Enderlein, and D. Suisky. Field-Dependent Emission Rate at Deep Centers in GaAs by Using a Two Phonon Mode Model. Acta Phys. Polonica, A69:813–816, 1986.Google Scholar
  96. [3.96]
    A. Schenk, K. Irmscher, D. Suisky, R. Enderlein, F. Bechstedt, and H. Klose. Electric Field Effect on Multiphonon Transitions at Deep Centres. In J. C. Chadi and W. A. Harrison (eds.), Proc. 17th ICPS, pp. 613–16, San Francisco, 1984. Springer-Verlag, New York Berlin Heidelberg Tokyo.Google Scholar
  97. [3.97]
    A. Schenk, U. Krumbein, S. Müller, H. Dettmer, and W. Fichtner. On the Origin of Tunneling Currents in Scaled Silicon Devices. IEICE Trans. on Electronics (Japan), E77-C(2): 148–154, 1994.Google Scholar
  98. [3.98]
    A. Schenk, M. Stahl, and H.-J. Wünsche. Calculation of Interband Tunneling in Inho-mogeneous Fields. phys. stat. sol. (b), 154:815–826, 1989.CrossRefGoogle Scholar
  99. [3.99]
    A. Schenk, D. Suisky, and R. Enderlein. Nonradiative Transitions in Semiconductors — A General Formula for an n-Mode Model: The Role of Promoting and Accepting Modes. Acta Phys. Polonica, A71:315–317, 1987.Google Scholar
  100. [3.100]
    A. Schenk. On the Theory of Nonradiative and Radiative Multiphonon Processes at Deep Centers in an Electric Field (German). PhD thesis, Humboldt-University, Berlin, 1986.Google Scholar
  101. [3.101]
    W. Schmid, U. Nieper, and J. Weber. Donor-Acceptor Pair Spectra in Si:In LPE-Layers. Solid State Comm., 45(12): 1007–1011, 1983.CrossRefGoogle Scholar
  102. [3.102]
    W. Shockley and W. T. Read. Statistics of the Recombinations of Holes and Electrons. Phys. Rev., 87(5):835–42, 1952.MATHCrossRefGoogle Scholar
  103. [3.103]
    J. M. C. Stork and R. D. Isaac. Tunneling in Base-Emitter Junctions. IEEE Trans. Electron Devices, ED-30 (11): 1527–34, 1983.CrossRefGoogle Scholar
  104. [3.104]
    N. Strecker, T. Feudel, and W. Fichtner. DIOS: Manual. Technical report, ETH Zurich, Integrated Systems Laboratory, ETH Zentrum, 1992.Google Scholar
  105. [3.105]
    Simon M. Sze. Physics of Semiconductor Devices, 2nd ed. John Wiley & Sons, New York, 1981.Google Scholar
  106. [3.106]
    M. Takayanagi and S. Iwabuchi. Theory of Band-to-Band Tunneling Under Nonuniform Electric Fields for Subbreakdown Leakage Currents. IEEE Trans. Electron Devices, 38(6): 1425–31, 1991.CrossRefGoogle Scholar
  107. [3.107]
    A. F. Tasch and C. T. Sah. Recombination-Generation and Optical Properties of Gold Acceptor in Silicon. Phys. Rev., B1(2):800–09, 1970.Google Scholar
  108. [3.108]
    Y. Toyozawa. Multiphonon Recombination Processes. Solid-State Electronics, 21:1313–18, 1978.CrossRefGoogle Scholar
  109. [3.109]
    M. S. Tyagi. Zener and Avalanche Breakdown in Silicon Alloyed p-n Junctions. Solid-State Electronics, 11:99–128, 1968.CrossRefGoogle Scholar
  110. [3.110]
    M. S. Tyagi and R. J. van Overstraeten. Minority Carrier Recombination in Heavily-Doped Silicon. Solid-State Electronics, 26(6):577–97, 1983.CrossRefGoogle Scholar
  111. [3.111]
    V. S. Vavilov, O. G. Koshelev, Yu. P. Koval’, and Ya. G. Klyava. A Study of Inter-Impurity Recombination between Phosphorus and Boron in Silicon. Soviet Physics —Solid State, 8(11):2770–71, 1967.Google Scholar
  112. [3.112]
    G. Vincent, A. Chantre, and D. Bois. Electric Field Effect on the Thermal Emission of Traps in Semiconductor Junctions. J. Appl. Phys., 50 (8):5484–87, 1979.CrossRefGoogle Scholar
  113. [3.113]
    W. C. Vinogradov. Teorija pogloschenja sveta w postojannom elektritscheskom polje primesnim zentrom s glubokim urovnjem. Fiz. Tver. Tela, 13 (11):3266–74, 1971.Google Scholar
  114. [3.114]
    S. H. Voldman, J. B. Johnson, T. D. Linton, and S. L. Titcomb. Unified Generation Model with Donor and Acceptor-Type Trap States for Heavily Doped Silicon. IEDM Tech. Digest, Dec.:349–52, 1990.Google Scholar
  115. [3.115]
    Th. Wasserrab. The Temperature Dependence of the Electronic Properties of Intrinsic Silicon. Z. Naturforsch., 32a(7):746–49, 1977.Google Scholar
  116. [3.116]
    J. C. S. Woo, J. D. Plummer, and J. M. C. Stork. Non-Ideal Base Current in Bipolar Transistors at Low Temperatures. IEEE Trans. Electron Devices, ED-34(1): 130–38, 1987.CrossRefGoogle Scholar
  117. [3.117]
    T. Yajima and L. Esaki. J. Phys. Soc. Japan, 13:1281, 1958.CrossRefGoogle Scholar
  118. [3.118]
    J. M. Zener. A General Proof of Certain Fundamental Equations in the Theory of Metallic Conduction. Proc. Roy. Soc., A145(521): 101–117, 1934.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Andreas Schenk
    • 1
  1. 1.Institut für Integrierte SystemeETH ZürichSchweiz

Personalised recommendations