Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

  • 540 Accesses

Abstract

In 1934 Zener [3.118] proposed band-to-band tunneling as explanation for the electrical breakdown. A modified Zener theory was used by McAffee et al. [3.75] in 1951 to describe the breakdown of reversed biased pn-junctions, called Zener diodes since then. However, experimental work [3.76–3.78] in the following years showed that in such diodes with wide junctions the breakdown is not caused by tunneling, but by impact ionization. Only in narrow junctions, where the width of the transition region is less than 50 nm, the necessary field strength for tunneling is reached before the avalanche effect sets in. This was first clearly demonstrated by Chynoweth and McKay [3.22] in 1957 by the absence of microplasma noise and by the temperature coefficients of reverse and forward characteristics of junctions with different breakdown voltages. In the same year Esaki [3.32] discovered that narrow pn-junctions between degenerate regions can have forward characteristics with a portion of negative differential conductivity, and that the tunnel “hump” is only weakly temperature dependent. Esaki’s work initiated intensive experimental and theoretical investigations. Holonyak et al. [3.53] and Hall [3.45] observed structures in the I (V)-characteristics of heavily doped Si-junctions at 4.2 K, which they attributed to the momentum-conserving phonons in indirect band-to-band tunneling. Various phonon energies could be resolved in these characteristics. Chynoweth et al. [3.19, 3.20] then found evidence that the excess current in silicon Esaki junctions, i.e. the current between the tunnel “hump” and the normal forward injection current, is essentially caused by the process of field ionization of impurity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1972.

    MATH  Google Scholar 

  2. E. N. Adams. The Crystal Momentum as a Quantum Mechanical Operator. J. chem. Phys., 21(11):2013–17, 1953.

    Article  Google Scholar 

  3. D. E. Aspnes. Electric-Field Effects on Optical Absorption. Phys. Rev., 147:554–561, 1966.

    Article  Google Scholar 

  4. D. E. Aspnes. Electric Field Effects on the Dielectric Constant of Solids. Phys. Rev., 153:972–982, 1967.

    Article  Google Scholar 

  5. D. E. Aspnes, P. Handler, and D. F. Blossey. Inerband Dielectric Properties of Solids in an Electric Field. Phys. Rev., 166 (3):921–933, 1968.

    Article  Google Scholar 

  6. B. J. Baliga. Modern Power Devices. J. Wiley and Sons, New York, 1987.

    Google Scholar 

  7. S. K. Banerjee, D. J. Coleman, W. Richardson, and A. Shah. Leakage Mechanism in the Trench Transistor DRAM Cell. IEEE Trans. Electron Devices, ED-35 (1): 108–115, 1988.

    Article  Google Scholar 

  8. R. Bergmann, S. J. Robinson, Z. Shi, and J. Kurianski. Silicon Films Incorporating a Drift-Field Grown by Liquid Phase Epitaxy for Solar Cell Application. Solar Energy Materials and Solar Cells, 31:447–51, 1993.

    Article  Google Scholar 

  9. W. Bergner and R. Kircher. Modeling of Band-to-Band Tunneling Mechanisms. Extended Abstracts of the 22nd Conference on Solid State Devices and Materials, Sendai, pp. 135–137, 1990.

    Google Scholar 

  10. D. F. Blossey. Wannier Exciton in an Electric Field. I. Optical Absorption by Bound and Continuum States. Phys. Rev. B, 2(10):3976–90, 1970.

    Article  Google Scholar 

  11. W. Brauer and H.-W. Streitwolf. Theoretische Grundlagen der Halbleiterphysik. Akademie-Verlag, Berlin, 1977.

    Book  Google Scholar 

  12. T. P. Brody. On the Nature of the Excess Current in Tunnel Diodes. Bull. Am. Phys. Soc., 6:105, 1961.

    Google Scholar 

  13. M. G. Burt. On the Relation between Static and Adiabatic Coupling Schemes for Calculating Non-radiative Multiphonon Transition Rates. J. Phys. C, 15:L381–L384, 1982.

    Article  Google Scholar 

  14. C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, and A. Alberigi-Quaranta. Electron Drift Velocity in Silicon. Phys. Rev., B12 (4):2265–84, 1974.

    Google Scholar 

  15. T. Y. Chan, J. Chen, P. K. Ko, and C. Hu. The Impact of Gate-Induced Drain Leakage Current on MOSFET Scaling. IEDM Tech. Digest, Dec.:718–21, 1987.

    Google Scholar 

  16. I.-C. Chen, D. J. Coleman, and C. W. Teng. Gate Current Injection Initiated by Electron Band-to-Band Tunneling in MOS Devices. IEEE Electron Device Letters, EDL-10(7):297–300, 1989.

    Article  Google Scholar 

  17. W. M. Chen, B. Monemar, E. Janzen, and J. L. Lindström. Direct Observation of Inter-center Charge Transfer in Dominant Nonradiative Recombination Channels in Silicon. Phys. Rev. Lett., 67(14): 1914–17, 1991.

    Article  Google Scholar 

  18. A. G. Chynoweth. Ionization Rates for Electrons and Holes in Silicon. Phys. Rev., 109(5): 1537–40, 1958.

    Article  Google Scholar 

  19. A. G. Chynoweth, W. L. Feldmann, and R. A. Logan. Excess Tunnel Current in Silicon Esaki Junctions. Phys. Rev., 121:684–93, 1961.

    Article  Google Scholar 

  20. A. G. Chynoweth and R. A. Logan. On the Excess Current in Silicon Esaki Junctions. Proc. Int. Conf. Phys. Sem., Prague, Czech. J. Phys., (special publication), pp. 201–203, 1960.

    Google Scholar 

  21. A. G. Chynoweth, R. A. Logan, and D. E. Thomas. Phonon-Assisted Tunneling in Silicon and Germanium Esaki Junctions. Phys. Rev., 125 (3):877–81, 1962.

    Article  Google Scholar 

  22. A. G. Chynoweth and K. G. McKay. Internal Field Emission in Silicon p-n Junctions. Phys. Rev., 106 (3):418–426, 1957.

    Article  Google Scholar 

  23. M. L. Cohen and J. R. Chelikowsky. Electronic Structure and Optical Properties of Semiconductors. Springer-Verlag, Berlin Heidelberg New York, 1988.

    Book  Google Scholar 

  24. A. Cuthbertson and P. Ashburn. Self-Aligned Transistors with Polysilicon Emitters for Bipolar VLSI. IEEE Trans. Electron Devices, ED-32 (2):242–247, 1985.

    Article  Google Scholar 

  25. J. A. del Alamo and R. M. Swanson. Forward-Bias Tunneling: A Limitation to Bipolar Device Scaling. IEEE Electron Device Letters, EDL-7(11):629–31, 1986.

    Article  Google Scholar 

  26. C. B. Duke and M. E. Alferieff. Solvable Model of a Hydrogenic System in a Strong Electric Field: Application to Optical Absorption in Semiconductors. Phys. Rev., 145 (2):583–592, 1965.

    Article  Google Scholar 

  27. C. Duvvury, D. J. Redwine, and H. J. Stiegler. Leakage Current Degradation in N-MOSFETs Due to Hot-Electron Stress. IEEE Electron Dev. Lett., EDL-9 (11):579–81, 1988.

    Article  Google Scholar 

  28. R. Enderlein, R. Keiper, and W. Tausendfreund. Theory of Stark Effect in Crystals. phys. stat sol., 33:69–83, 1969.

    Article  Google Scholar 

  29. R. Enderlein and K. Peuker. On the Theory of the Electric Conductivity of Solids in a Strong Electric Field. phys. stat. sol. (b), 48:231–241, 1971.

    Article  Google Scholar 

  30. R. Enderlein, P. Renner, and M. Scheele. Anisotropy of Electroreflectance Due to Orbital Degeneracy of Energy Bands. phys. stat. sol. (b), 71:503–513, 1975.

    Article  Google Scholar 

  31. T. Endoh, R. Shirota, M. Momodomi, and F. Masuoka. An Accurate Model of Subbreak-down Due to Band-to-Band Tunneling and Some Applications. IEEE Trans. Electron Devices, ED-37 (1):290–295, 1990.

    Article  Google Scholar 

  32. L. Esaki. New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev., 109:603-, 1958.

    Article  Google Scholar 

  33. L. Esaki and Y. Miyahara. A New Device Using the Tunneling Process in Narrow p-n Junctions. Solid-State Electronics, 1:13–21, 1960.

    Article  Google Scholar 

  34. R. B. Fair and H. W. Wivell. Zener and Avalanche Breakdown in As-Implanted Low-Voltage Si n-p Junctions. IEEE Trans. Electron Devices, ED-23 (5):512–18, 1976.

    Article  Google Scholar 

  35. J. G. Fossum and D. S. Lee. A Physical Model for the Dependence of Carrier Lifetime on Doping Density in Nondegenerate Silicon. Solid-State Electronics, 25(8):741–47, 1982.

    Article  Google Scholar 

  36. J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs. Carrier Recombination and Lifetime in Highly Doped Silicon. Solid-State Electronics, 26(6):569–76, 1983.

    Article  Google Scholar 

  37. W. Franz. Einfluss eines elektrischen Feldes auf eine optische Absorptionskante. Z. Naturforschung, 13a:484–89, 1958.

    Google Scholar 

  38. D. R. Fredkin and G. H. Wannier. Theory of Electron Tunneling in Semiconductor Junctions. Phys. Rev., 128 (5):2054–61, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev., 54:647–48, 1938.

    Article  Google Scholar 

  40. A. M. Frens, M. T. Bennebroek, A. Zakrzewski, J. Schmidt, W. M. Chen, E. Janzen, J. L. Lindström, and B. Monemar. Observation of Rapid Direct Charge Transfer between Deep Defects in Silicon. Phys. Rev. Lett., 72(18):2939–42, 1994.

    Article  Google Scholar 

  41. L. Fritsche. Phonon Assisted Optical Absorption in an Electric Field. phys. stat. sol., 11:381–400, 1965.

    Article  Google Scholar 

  42. H. Goebel and K. Hoffmann. Full dynamic power diode model including temperature behavior for use in circuit simulators. In Proceedings of 1992 International Symposium on Power Semiconductor Devices & ICs, pp. 130–135, Tokyo, 1992.

    Google Scholar 

  43. E. Gutsche. Non-Condon Approximations in the Theory of Non-Radiative Multiphonon Transitions. phys. stat. sol. (b), 109:583–596, 1982.

    Article  Google Scholar 

  44. R. N. Hall. Electron-Hole Recombination in Germanium. Phys. Rev., 87(5):387, 1952.

    Article  Google Scholar 

  45. R. N. Hall. Observation of Polarons and Phonons During Tunneling in Semiconductor Junctions. Proc. Int. Conf. Phys. Sem., Prague, Czech. J. Phys., (special publication), pp. 193–200, 1960.

    Google Scholar 

  46. A. Hangleiter. Nonradiative Recombination via Deep Impurity Levels in Semiconductors: Experiment. Phys. Rev., B35 (17):9149–61, 1987.

    Google Scholar 

  47. A. Hangleiter. Nonradiative Recombination via Deep Impurity Levels in Semiconductors: The Excitonic Auger Mechanism. Phys. Rev., B37 (5):2594–2604, 1988.

    Google Scholar 

  48. H. Hazama. Anomalous Band-to-Band Tunneling in n-ch MOSFETs. Extended Abstracts of the 22nd Conference on Solid State Devices and Materials, Sendai, pp. 303–306, 1990.

    Google Scholar 

  49. G. Helmis. Strahlungslose Übergänge. Ann. Phys., 19:41–53, 1956.

    Article  MathSciNet  Google Scholar 

  50. K. Henneberger, R. Strehlow, and H.-J. Wünsche. On the Theory of the Interband Conductivity for Forbidden Transitions and Indirect Transitions. phys. stat. sol. (b), 61:455–463, 1974.

    Article  Google Scholar 

  51. C. H. Henry and D. V. Lang. Nonradiative Capture and Recombination by Multiphonon Emission in GaAs and GaP. Phys. Rev., B15(2):989–1016, 1977.

    Google Scholar 

  52. J. C. Hensel, H. Hasegawa, and M. Nakayama. Cyclotron Resonance in Uniaxially Stressed Silicon. II. Nature of the Covalent Bond. Phys. Rev. A, 138(1):225–38, 1965.

    Google Scholar 

  53. N. Holonyak, Jr., I. A. Lesk, R. N. Hall, J. J. Tiemann, and H. Ehrenreich. Direct Observation of Phonons During Tunneling in Narrow Junction Diodes. Phys. Rev. Lett., 3 (4): 167–68, 1959.

    Article  Google Scholar 

  54. W. V. Houston. Acceleration of Electrons in a Crystal Lattice. Phys. Rev., 57:184–86, 1940.

    Article  MathSciNet  Google Scholar 

  55. K. Huang. Adiabatic Approximation Theory and Static Coupling Theory of Nonradiative Transitions. Scienta Sinica, XXIV(1):27–34, 1981.

    Google Scholar 

  56. K. Huang and A. Rhys. Theory of Light Absorption and Non-radiative Transitions in F-Centres. Proc. Royal Soc. London, 204 A:406–23, 1950.

    Google Scholar 

  57. G. A. M. Hurkx, D. B. M. Klaassen, M. P. G. Knuvers, and F. G. O’Hara. A New Recombination Model Describing Heavy-Doping Effects and Low-Temperature Behaviour. IEDM Tech. Digest, Dec.:307–10, 1989.

    Google Scholar 

  58. Y. Igura, H. Matsuoka, and E. Takeda. New Device Degradation Due to “Cold” Carriers Created by Band-to-Band Tunneling. IEEE Electron Device Letters, EDL-10(5):227–29, 1989.

    Article  Google Scholar 

  59. ISE Integrated Systems Engineering AG, Zurich, Switzerland. DESSIS 3.0: Manual, 1996.

    Google Scholar 

  60. H. Jorke, H. Kibbel, K. Strohm, and E. Kasper. Forward-Bias Characteristics of Si Bipolar Junctions Grown by Molecular Beam Epitaxy at Low Temperatures. Appl. Phys. Lett., 63(17):2408–10, 1993.

    Article  Google Scholar 

  61. E. O. Kane. Zener Tunneling in Semiconductors. J. Phys. Chem. Solids, 12:181–188, 1959.

    Article  Google Scholar 

  62. E. O. Kane. Theory of Tunneling. J. Appl. Phys., 32 (1):83–91, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  63. L. V. Keldysh. Behavior of Non-metallic Crystals in Strong Electric Fields. Soviet Physics JETP, 6(4):763–770, 1958.

    Google Scholar 

  64. L. V. Keldysh. Influence of the Lattice Vibrations of a Crystal on the Production of Electron-Hole Pairs in a Strong Electric Field. Soviet Physics JETP, 7(4):665–669,1958.

    Google Scholar 

  65. H. Köster, Jr., O. V. Kurnusova, and I. N. Yassievich. Tunneling from Deep Levels of l-c Type in Electric Fields. phys. stat. sol.(b), 127:339–350, 1985.

    Article  Google Scholar 

  66. M. A. Krivoglaz. Zh. Exper. Theor. Fiz., 25:191, 1953.

    Google Scholar 

  67. R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Japan, 12(6):570–86, 1957.

    Article  MathSciNet  Google Scholar 

  68. D. V. Lang, H. G. Grimmeiss, E. Meijer, and M. Jaros. Complex Nature of Gold-related Deep Levels in Silicon. Phys. Rev. B, 22(7):3917–34, 1980.

    Article  Google Scholar 

  69. P. Lawaetz. Valence-Band Parameters in Cubic Semiconductors. Phys. Rev., B4(10):3460–67, 1971.

    Google Scholar 

  70. U. Lindefeit. ABB Corporate Research, Västerås, Sweden. Private communication.

    Google Scholar 

  71. R. A. Logan and A. G. Chynoweth. Effect of Degenerate Semiconductor Band Structure on Current-Voltage Characteristics of Silicon Tunnel Diodes. Phys. Rev., 131 (1):89–95, 1963.

    Article  Google Scholar 

  72. G. Lucovski. On the Photoionization of Deep Impurity Centers in Semiconductors. Solid State Comm., 3:299–302, 1965.

    Article  Google Scholar 

  73. S. Makram-Ebeid and M. Lannoo. Quantum Model for Phonon-Assisted Tunnel Ionization of Deep Levels in a Semiconductor. Phys. Rev., B25:6406–24, 1982.

    Google Scholar 

  74. R. M. Martin. Dielectric Screening Model for Lattice Vibrations of Diamond-Structure Crystals. Phys. Rev., 186 (3):871–884, 1969.

    Article  Google Scholar 

  75. K. B. McAffee, E. J. Ryder, W. Shockley, and M. Sparks. Observations of Zener Current in Germanium p-n Junctions. Phys. Rev., 83:650–51, 1951.

    Article  Google Scholar 

  76. K. G. McKay. Avalanche Breakdown in Silicon. Phys. Rev., 94(4):877–84, 1954.

    Article  Google Scholar 

  77. K. G. McKay and K. B. McAffee. Electron Multiplication in Silicon and Germanium. Phys. Rev., 91(5): 1079–84, 1953.

    Article  Google Scholar 

  78. S. L. Miller. Avalanche Breakdown in Germanium. Phys. Rev., 99(4): 1234–41, 1955.

    Article  Google Scholar 

  79. J. R. Morante, J. E. Carceller, P. Cartujo, and J. J. Barbolla. Analysis of Thermal Capture of the Acceptor Level of Gold in Silicon. phys. stat. sol. (b), 111:375–382, 1982.

    Article  Google Scholar 

  80. N. Mott, E. A. Davis, and H. A. Street. States in the Gap and Recombination in Amorphous Semiconductors. Phil. Mag., 32:961–96, 1975.

    Article  Google Scholar 

  81. I. Nedev, A. Asenov, and E. Stefanov. Experimental Study and Modeling of Band-to-Band Tunneling Leakage Current in Thin-Oxide MOSFETs. Solid-State Electronics, 34 (12): 1401–08, 1991.

    Article  Google Scholar 

  82. Y. Odake, K. Kurimoto, and S. Odanaka. Three-Dimensional Numerical Modeling of the Indirect Band-to-Band Tunneling in MOSFETs. Extended Abstracts of the 22nd Conference on Solid State Devices and Materials, Sendai, pp. 131–134, 1990.

    Google Scholar 

  83. R. Pässler. Temperature Dependence of the Nonradiative Multiphonon Carrier Capture and Ejection Properties of Deep Traps in Semiconductors. phys. stat. sol.(b), 85:203–215, 1978.

    Article  Google Scholar 

  84. Yu. E. Perlin. Consideration of the Polaron Effect in the Theory of Multiphonon Thermal Ionization. Soviet Physics —Solid State, 2(2):222–35, 1960.

    Google Scholar 

  85. K. Peuker, R. Enderlein, A. Schenk, and E. Gutsche. Theory of Non-Radiative Multiphonon Capture Processes. phys. stat. sol.(b), 109:599–606, 1982.

    Article  Google Scholar 

  86. P. J. Price. Tunneling from Trap States in Esaki Diodes. Bull. Am. Phys. Soc, 5:406–07, 1960.

    Google Scholar 

  87. P. J. Price and J. M. Radcliffe. Esaki Tunneling. IBM Journal, Oct.:364–371, 1959.

    Google Scholar 

  88. B. K. Ridley. Multiphonon, Non-radiative Transition Rate for Electrons in Semiconductors and Insulators. J. Phys. C, 11:2323–41, 1978.

    Article  Google Scholar 

  89. S. J. Robinson. University of New South Wales, Kensington, Australia. Private communication.

    Google Scholar 

  90. S. J. Robinson, G. F. Zheng, W. Zhang, Z. Shi, and M. A. Green. Opto-Electronic Characterisation of Thin-Film Crystalline Silicon Solar Cells Grown from Metal Solutions. In Ext. Abstracts of the 12th EC PVSEC, Amsterdam, Netherlands, 1994.

    Google Scholar 

  91. C. T. Sah. Electronic Processes in Gold-Doped Silicon Tunnel Diodes. Bull. Am. Phys. Soc., 6:105–106, 1961.

    Google Scholar 

  92. A. Schenk. A Model for the Field and Temperature Dependence of Shockley-Read-Hall Lifetimes in Silicon. Solid-State Electronics, 35(11): 1585–96, 1992.

    Article  Google Scholar 

  93. A. Schenk. An Improved Approach to the Shockley-Read-Hall Recombination in Inho-mogeneous Fields of Space Charge Regions. J. Appl. Phys., 71(7):3339–49, 1992.

    Article  Google Scholar 

  94. A. Schenk. Rigorous Theory and Simplified Model of the Band-to-Band Tunneling in Silicon. Solid-State Electronics, 36(1):19–34, 1993.

    Article  Google Scholar 

  95. A. Schenk, R. Enderlein, and D. Suisky. Field-Dependent Emission Rate at Deep Centers in GaAs by Using a Two Phonon Mode Model. Acta Phys. Polonica, A69:813–816, 1986.

    Google Scholar 

  96. A. Schenk, K. Irmscher, D. Suisky, R. Enderlein, F. Bechstedt, and H. Klose. Electric Field Effect on Multiphonon Transitions at Deep Centres. In J. C. Chadi and W. A. Harrison (eds.), Proc. 17th ICPS, pp. 613–16, San Francisco, 1984. Springer-Verlag, New York Berlin Heidelberg Tokyo.

    Google Scholar 

  97. A. Schenk, U. Krumbein, S. Müller, H. Dettmer, and W. Fichtner. On the Origin of Tunneling Currents in Scaled Silicon Devices. IEICE Trans. on Electronics (Japan), E77-C(2): 148–154, 1994.

    Google Scholar 

  98. A. Schenk, M. Stahl, and H.-J. Wünsche. Calculation of Interband Tunneling in Inho-mogeneous Fields. phys. stat. sol. (b), 154:815–826, 1989.

    Article  Google Scholar 

  99. A. Schenk, D. Suisky, and R. Enderlein. Nonradiative Transitions in Semiconductors — A General Formula for an n-Mode Model: The Role of Promoting and Accepting Modes. Acta Phys. Polonica, A71:315–317, 1987.

    Google Scholar 

  100. A. Schenk. On the Theory of Nonradiative and Radiative Multiphonon Processes at Deep Centers in an Electric Field (German). PhD thesis, Humboldt-University, Berlin, 1986.

    Google Scholar 

  101. W. Schmid, U. Nieper, and J. Weber. Donor-Acceptor Pair Spectra in Si:In LPE-Layers. Solid State Comm., 45(12): 1007–1011, 1983.

    Article  Google Scholar 

  102. W. Shockley and W. T. Read. Statistics of the Recombinations of Holes and Electrons. Phys. Rev., 87(5):835–42, 1952.

    Article  MATH  Google Scholar 

  103. J. M. C. Stork and R. D. Isaac. Tunneling in Base-Emitter Junctions. IEEE Trans. Electron Devices, ED-30 (11): 1527–34, 1983.

    Article  Google Scholar 

  104. N. Strecker, T. Feudel, and W. Fichtner. DIOS: Manual. Technical report, ETH Zurich, Integrated Systems Laboratory, ETH Zentrum, 1992.

    Google Scholar 

  105. Simon M. Sze. Physics of Semiconductor Devices, 2nd ed. John Wiley & Sons, New York, 1981.

    Google Scholar 

  106. M. Takayanagi and S. Iwabuchi. Theory of Band-to-Band Tunneling Under Nonuniform Electric Fields for Subbreakdown Leakage Currents. IEEE Trans. Electron Devices, 38(6): 1425–31, 1991.

    Article  Google Scholar 

  107. A. F. Tasch and C. T. Sah. Recombination-Generation and Optical Properties of Gold Acceptor in Silicon. Phys. Rev., B1(2):800–09, 1970.

    Google Scholar 

  108. Y. Toyozawa. Multiphonon Recombination Processes. Solid-State Electronics, 21:1313–18, 1978.

    Article  Google Scholar 

  109. M. S. Tyagi. Zener and Avalanche Breakdown in Silicon Alloyed p-n Junctions. Solid-State Electronics, 11:99–128, 1968.

    Article  Google Scholar 

  110. M. S. Tyagi and R. J. van Overstraeten. Minority Carrier Recombination in Heavily-Doped Silicon. Solid-State Electronics, 26(6):577–97, 1983.

    Article  Google Scholar 

  111. V. S. Vavilov, O. G. Koshelev, Yu. P. Koval’, and Ya. G. Klyava. A Study of Inter-Impurity Recombination between Phosphorus and Boron in Silicon. Soviet Physics —Solid State, 8(11):2770–71, 1967.

    Google Scholar 

  112. G. Vincent, A. Chantre, and D. Bois. Electric Field Effect on the Thermal Emission of Traps in Semiconductor Junctions. J. Appl. Phys., 50 (8):5484–87, 1979.

    Article  Google Scholar 

  113. W. C. Vinogradov. Teorija pogloschenja sveta w postojannom elektritscheskom polje primesnim zentrom s glubokim urovnjem. Fiz. Tver. Tela, 13 (11):3266–74, 1971.

    Google Scholar 

  114. S. H. Voldman, J. B. Johnson, T. D. Linton, and S. L. Titcomb. Unified Generation Model with Donor and Acceptor-Type Trap States for Heavily Doped Silicon. IEDM Tech. Digest, Dec.:349–52, 1990.

    Google Scholar 

  115. Th. Wasserrab. The Temperature Dependence of the Electronic Properties of Intrinsic Silicon. Z. Naturforsch., 32a(7):746–49, 1977.

    Google Scholar 

  116. J. C. S. Woo, J. D. Plummer, and J. M. C. Stork. Non-Ideal Base Current in Bipolar Transistors at Low Temperatures. IEEE Trans. Electron Devices, ED-34(1): 130–38, 1987.

    Article  Google Scholar 

  117. T. Yajima and L. Esaki. J. Phys. Soc. Japan, 13:1281, 1958.

    Article  Google Scholar 

  118. J. M. Zener. A General Proof of Certain Fundamental Equations in the Theory of Metallic Conduction. Proc. Roy. Soc., A145(521): 101–117, 1934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Schenk, A. (1998). Advanced Generation-Recombination Models. In: Advanced Physical Models for Silicon Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6494-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6494-5_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7334-3

  • Online ISBN: 978-3-7091-6494-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics