Simulation of Silicon Devices: An Overview

  • Andreas Schenk
Part of the Computational Microelectronics book series (COMPUTATIONAL)


The description of transport in semiconductor devices requires models for both the interaction processes and the embedding system. These models have different form depending on the transport equations used, but on every level one needs expressions for the scattering of charge carriers with elementary excitations of the crystal as well as with each other, with impurities, device boundaries or interior interfaces, and models of all generation-recombination processes. The environmental system is given by material parameters, e.g. the band gap and the intrinsic carrier density, by external quantities like the doping concentration, defect profiles, boundaries, and others.


Monte Carlo Impact Ionization Mobility Model Inversion Layer Auger Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1.1]
    R. A. Abram, G. N. Childs, and P. A. Saunderson. Band Gap Narrowing due to Many-body Effects in Silicon and Gallium Arsenide. J. Phys. C, 17:6105–25, 1984.CrossRefGoogle Scholar
  2. [1.2]
    M. S. Adler. Accurate Calculations of the Forward Drop and Power Dissipation in Thyristors. IEEE Trans. Electron Devices, ED-25(1): 16–22, 1978.CrossRefGoogle Scholar
  3. [1.3]
    C. L. Anderson and C. R. Crowell. Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors. Phys. Rev. B, 5(6):2267–72, 1972.CrossRefGoogle Scholar
  4. [1.4]
    T. Ando. Screening Effect and Quantum Transport in a Silicon Inversion Layer in Strong Magnetic Fields. J. Phys. Soc. Japan, 43 (5): 1616–26, 1977.CrossRefGoogle Scholar
  5. [1.5]
    T. Ando, A. B. Fowler, and F. Stern. Electric Properties of Two-Dimensional Systems. Rev. Modern Physics, 54 (2):437–672, 1982.CrossRefGoogle Scholar
  6. [1.6]
    W. Anheier and W. L. Engl. Numerical Analysis of Gate Triggered SCR Turn-on Transients. In IEDM Technical Digest, pp. 303a–303d, 1977.Google Scholar
  7. [1.7]
    W. Anheier, W. L. Engl, O. Manck, and A. W. Wieder. Rigorous Numerical Analysis of a Planar Thyristor. In IEDM Technical Digest, pp. 363–366, 1975.Google Scholar
  8. [1.8]
    D. A. Antoniades, A. G. Gonzales, and R. W. Dutton. Boron in Near-Intrinsic (100) and (111) Silicon under Inert and Oxidizing Ambients. J. Electrochem. Soc., 125:813–19, 1978.CrossRefGoogle Scholar
  9. [1.9]
    G. A. Armstrong and W. D. French. Suppression of Parasitic Bipolar Effects in Thin-Film SOI Transistors. IEEE Electron Device Letters, EDL-13(4): 189–200, 1992.Google Scholar
  10. [1.10]
    N. D. Arora and G. Sh. Gildenblat. A Semi-Empirical Model of the MOSFET Inversion Layer Mobility for Low-Temperature Operation. IEEE Trans. Electron Devices, ED-34(1):89–93, 1987.CrossRefGoogle Scholar
  11. [1.11]
    N. D. Arora, J. R. Hauser, and D. J. Roulston. Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature. IEEE Trans. Electron Devices, ED-29(2):292–95, 1982.CrossRefGoogle Scholar
  12. [1.12]
    E. M. Azoff. Closed-form method for solving the steady-state generalized energy-momentum conservation equations. In Proc. NUMOS I Workshop, pp. 25–30, Los Angeles, 1987. Boole Press, Dublin.Google Scholar
  13. [1.13]
    E. M. Azoff. Generalized Energy-Momentum Conservation Equations in the Relaxation Time Approximation. Solid-State Electronics, 30(9):913–917, 1987.CrossRefGoogle Scholar
  14. [1.14]
    G. Baccarani and P. Ostoja. Electron Mobility Empirically Related to the Phosphorus Concentration in Silicon. Solid-State Electronics, 18:579–80, 1975.CrossRefGoogle Scholar
  15. [1.15]
    G. Baccarani, M. Rudan, R. Guerrieri, and P. Ciampolini. Physical Models for Numerical Device Simulation. In Proc. of the Comett-Euroform, DEIS-University of Bologna, Bologna, Italy, March 1991.Google Scholar
  16. [1.16]
    M. Balkanski, A. Aziza, and E. Amzallag. Infrared Absorption in Heavily Doped n-type Si. Phys. Stat. Sol., 31:323–30, 1969.CrossRefGoogle Scholar
  17. [1.17]
    E. K. Banghart and J. L. Gray. Extension of the Open-Circuit Voltage Cecay Technique to Include Plasma-Induced Bandgap Narrowing. IEEE Trans. Electron Devices, 39(5):1108–13, 1992.CrossRefGoogle Scholar
  18. [1.18]
    G. A. Baraff. Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors. Phys. Rev., 128(6):2507–17, 1962.MATHCrossRefGoogle Scholar
  19. [1.19]
    J. R. Barker. Basic Properties of Semiconductors, volume 1 of Handbook on Semiconductors, p. 1102. North Holland, Amsterdam New York London Tokyo, 1992.Google Scholar
  20. [1.20]
    J. D. Beck and R. Conradt. Auger Recombination in Si. Solid State Comm., 13:93–95, 1973.CrossRefGoogle Scholar
  21. [1.21]
    H. S. Bennett. Hole and Electron Mobilities in Heavily Doped Silicon: Comparision of Theory and Experiment. Solid-State Electronics, 26(12): 1157–66, 1983.CrossRefGoogle Scholar
  22. [1.22]
    H. S. Bennett. Improved Concepts for Predicting the Electrical Behavior of Bipolar Structures in Silicon. IEEE Trans. Electron Devices, ED-30(8):920–27, 1983.CrossRefGoogle Scholar
  23. [1.23]
    H. S. Bennett and J. R. Lowney. Effect of Donor Impurities on the Density of States near the band edge in Silicon. J. Appl. Phys., 52(9):5633–42, 1981.CrossRefGoogle Scholar
  24. [1.24]
    H. S. Bennett and J. R. Lowney. Caculated Majority-and Minority-Carrier Mobilities in Heavily Doped Silicon and Comparisons with Experiment. J. Appl. Phys., 71(5): 2285–96, 1992.CrossRefGoogle Scholar
  25. [1.25]
    H. S. Bennett and C. L. Wilson. Statistical Comparisons of Data on Band-Gap Narrowing in Heavily Doped Silicon: Electrical and Optical Measurements. J. Appl. Phys., 55(10):3582–87, 1984.CrossRefGoogle Scholar
  26. [1.26]
    A. Benvenuti, G. Ghione, M. R. Pinto, W. M. Coughran, Jr., and N. L. Schryer. Coupled thermal-fully hydrodynamic simulation of InP-based HBTs. In IEDM, pp. 737–740, 1992.Google Scholar
  27. [1.27]
    K.-F. Berggren and B. E. Sernelius. Band-gap Narrowing in Heavily Doped Many-valley Semiconductors. Phys. Rev., B24(4): 1971–86, 1981.Google Scholar
  28. [1.28]
    K.-F. Berggren and B. E. Sernelius. Intervalley Mixing versus Disorder in Heavily Doped n-type Silicon. Phys. Rev., B29(10):5575–80, 1984.Google Scholar
  29. [1.29]
    F. J. Blatt. Scattering of Carriers by Ionized Impurities in Semiconductors. Journ. Phys. Chem. Solids, 1:262–69, 1957.CrossRefGoogle Scholar
  30. [1.30]
    F. J. Blatt. Physics of Electronic Conduction in Solids. McGraw-Hill, New York, 1968.Google Scholar
  31. [1.31]
    D. F. Blossey. Wannier Exciton in an Electric Field. I. Optical Absorption by Bound and Continuum States. Phys. Rev. B, 2(10):3976–90, 1970.CrossRefGoogle Scholar
  32. [1.32]
    K. Bløtekjær. High-Frequency Conductivity, Carrier Waves, and Acoustic Amplification in Drifted Semiconductor Plasmas. Ericsson Technics, 22(2): 125–183, 1966.Google Scholar
  33. [1.33]
    K. Bløtekjær. Transport Equations for Electrons in Two-Valley Semiconductors. IEEE Trans. Electron Devices, ED-17(1):38–47, 1970.CrossRefGoogle Scholar
  34. [1.34]
    W. Bludau, A. Onton, and W. Heinke. Temperature Dependence of the Band Gap in Silicon. J. Appl. Phys., 45(4): 1846–48, 1974.CrossRefGoogle Scholar
  35. [1.35]
    Ludwig Boltzmann. Vorlesungen über Gastheorie I. und II. Theil. Ambrosius Barth, Leipzig, 1896.Google Scholar
  36. [1.36]
    V. L. Bonc-Bruevic and S. G. Kalasnikov. Halbleiterphysik. Deutscher Verlag der Wissenschaften Berlin, 1982.CrossRefGoogle Scholar
  37. [1.37]
    J. R. Brews. Theory of Carrier-Density Fluctuations in an IGFET near Threshold. J. Appl. Phys., 46(5):2281–92, 1975.Google Scholar
  38. [1.38]
    A. Bringer and G. Schön. Extended moment equations for electron transport in semiconducting submicron structures. J. Appl. Phys., 64(5):2447–55, 1988.CrossRefGoogle Scholar
  39. [1.39]
    R. Brunetti, C. Jacoboni, F. Venturi, E. Sangiorgi, and B. Ricco. A Many-Band Silicon Model for Hot-Electron Transport at High Energies. Solid-State Electronics, 32(12): 1663–67, 1989.CrossRefGoogle Scholar
  40. [1.40]
    J. Bude and K. Hess. Thresholds of Impact Ionization in Semiconductors. J. Appl. Phys., 72(8):3554–61, 1992.CrossRefGoogle Scholar
  41. [1.41]
    M. Büttiker. Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett., 57:1761–64, 1986.CrossRefGoogle Scholar
  42. [1.42]
    D. E. Burk and V. Del La Torre. An Empirical Fit to Minority Hole Mobilities. IEEE Electron Device Letters, EDL-5(7):231–33, 1984.CrossRefGoogle Scholar
  43. [1.43]
    C. Canali, G. Majni, R. Minder, and G. Ottaviani. Electron and Hole Drift Velocity Measurements in Silicon and their Empirical Relation to Electric Field and Temperature. IEEE Trans. Electron Devices, ED-22:1045–47, 1975.CrossRefGoogle Scholar
  44. [1.44]
    F. Capasso. Physics of Avalanche Photodiodes. Semiconductors and Semimetals, D-22:1–171, 1985.CrossRefGoogle Scholar
  45. [1.45]
    F. Capasso, T. P. Pearsall, and K. K. Thornber. The Effect of Collisional Broadening on Monte Carlo Simulations of High-field Transport in Semiconductor Devices. IEEE Electron Device Letters, EDL-2(11):295–97, 1981.CrossRefGoogle Scholar
  46. [1.46]
    E. Cartier, M. V. Fischetti, E. A. Eklund, and F. R. McFeely. Impact Ionization in Silicon. Appl. Phys. Lett., 62(25):3339–41, 1993.CrossRefGoogle Scholar
  47. [1.47]
    D. M. Caughey and R. E. Thomas. Carrier Mobilities in Silicon Empirically Related to Doping and Field. Proc. IEEE, pp. 2192–93, December 1967.Google Scholar
  48. [1.48]
    D. Chen, E. Sangiorgi, M. R. Pinto, E. C. Kan, U. Ravaioli, and R. W. Dutton. An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Trans. Electron Devices, 13:26–28, January 1992.Google Scholar
  49. [1.49]
    D. Chen, Z. Yu, K.-C. Wu, R. Goossens, and R. W. Dutton. Dual energy transport model with coupled lattice and carrier temperatures. In SISDEP, pp. 157–160, 1993.Google Scholar
  50. [1.50]
    J. T. C. Chen and R. S. Muller. Carrier Mobilities at Weakly Inverted Silicon Surfaces. J. Appl. Phys., 45:828, 1974.CrossRefGoogle Scholar
  51. [1.51]
    Y.-Z. Chen and T. W. Tang. Impact Ionization Coefficient and Energy Distribution Function at High Fields in Semiconductors. J. Appl. Phys., 65(11):4279–86, 1989.CrossRefGoogle Scholar
  52. [1.52]
    Y. C. Cheng and E. A. Sullivan. On the Role of Scattering by Surface Roughness in Silicon Inversion Layers. Surface Science, 34:717–731, 1973.CrossRefGoogle Scholar
  53. [1.53]
    S. M. Cho and H. H. Lee. Impact Ionization Coefficient and Energy Distribution Function in Polar and Nonpolar Semiconductors. J. Appl. Phys., 71(3): 1298–1305, 1992.CrossRefGoogle Scholar
  54. [1.54]
    S. C. Choo. Theory of a Forward-Biased Diffused-Junction P-L-N Rectifier. Part I: Exact Numerical Solutions. IEEE Trans. Electron Devices, ED-19(8):954–66, 1972.CrossRefGoogle Scholar
  55. [1.55]
    R. Chwang, Chung-Whei Kao, and C. R. Crowell. Normalized Theory of Impact Ionization and Velocity Saturation in Nonpolar Semiconductors via a Markov Chain Approach. Solid-State Electronics, 22(7):599–620, 1979.CrossRefGoogle Scholar
  56. [1.56]
    A. G. Chynoweth. Ionization Rates for Electrons and Holes in Silicon. Phys. Rev., 109(5): 1537–40, 1958.CrossRefGoogle Scholar
  57. [1.57]
    R. W. Coen and R. S. Muller. Velocity of Surface Carriers in Inversion Layers on Silicon. Solid-State Electronics, 23(10):35–40, 1980.CrossRefGoogle Scholar
  58. [1.58]
    M. L. Cohen and T. K. Bergstresser. Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures. Phys. Rev., 141(2):789–805, 1966.CrossRefGoogle Scholar
  59. [1.59]
    R. K. Cook and J. Frey. An Efficient Technique for Two-Dimensional Simulation of Velocity Overshoot effects in Si and GaAs Devices. Compel, 1(2):65–87, 1982.CrossRefGoogle Scholar
  60. [1.60]
    J. A. Cooper, Jr. and D. F. Nelson. High-field drift velocity of Electrons at the SiSi O 2 interface as determined by a time-of-flight technique. J. Appl. Phys., 54(3): 1445–56, 1982.CrossRefGoogle Scholar
  61. [1.61]
    F. Dannhäuser and J. Krausse. Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger. Solid-State Electronics, 15:1371–81, 1972.CrossRefGoogle Scholar
  62. [1.62]
    D. C. D’Avanzo, M. Vanzi, and R. W. Dutton. One-dimensional Semiconductor Device Analysis (SEDAN). Report G-201-5. Stanford University, 1979.Google Scholar
  63. [1.63]
    P. P. Debye and E. M. Conwell. Electrical Properties of N-Type Germanium. Phys. Rev., 93(4):693–706, 1954.CrossRefGoogle Scholar
  64. [1.64]
    J. A. del Alamo and R. M. Swanson. Forward-Bias Tunneling: A Limitation to Bipolar Device Scaling. IEEE Electron Device Letters, EDL-7(11):629–31, 1986.CrossRefGoogle Scholar
  65. [1.65]
    J. A. del Alamo and R. M. Swanson. Measurement of Steady-State Minority Carrier Transport Parameters in Heavily Doped n-type Silicon. IEEE Trans. Electron Devices, ED-34(7): 1580–89, 1987.CrossRefGoogle Scholar
  66. [1.66]
    J. A. del Alamo, S. E. Swirhun, and R. M. Swanson. Measuring and Modeling Minority Carrier Transport in Heavily Doped Silicon. Solid-State Electronics, 28(1):47–54, 1985.CrossRefGoogle Scholar
  67. [1.67]
    J. A. del Alamo, S. E. Swirhun, and R. M. Swanson. Simultaneous Measuring of Hole Lifetime, Hole Mobility and Bandgap Narrowing in Heavily Doped n-type Silicon. IEDM Tech. Digest, Dec.:290–93, 1985.Google Scholar
  68. [1.68]
    S. R. Dhariwal, L. S. Kothari, and S. C. Jain. On the Recombination of Electrons and Holes at Traps with Finite Relaxation Time. Solid-State Electronics, 24(8):749–52, 1981.CrossRefGoogle Scholar
  69. [1.69]
    J. M. Dorkel and Ph. Leturcq. Carrier Mobilities in Silicon Semi-Empirically Related to Temperature, Doping and Injection Level. Solid-State Electronics, 24(9):821–825, 1981.CrossRefGoogle Scholar
  70. [1.70]
    J. D. Dow. Excitonic Effects in the Electroabsorption of Semiconductors. Phys. Stat. Sol., 34:K71–K73, 1969.CrossRefGoogle Scholar
  71. [1.71]
    C. Y. Duh and J. L. Moll. Electron Drift Velocitiy in Avalanching Silicon Diodes. IEEE Trans. Electron Devices, ED-14:46–49, 1967.CrossRefGoogle Scholar
  72. [1.72]
    W. P. Dumke. Comparison of Band-gap Shrinkage Observed in Luminescence from n +-Si with that from Transport and Optical Absorption Measurements. Appl. Phys. Lett., 42(2): 196–98, 1983.CrossRefGoogle Scholar
  73. [1.73]
    J. Dziewior and W. Schmid. Auger Coefficients for Highly Doped and Highly Excited Silicon. Appl. Phys. Lett., 31(5):346–48, 1977.CrossRefGoogle Scholar
  74. [1.74]
    J. Dziewior and D. Silber. Minority-Carrier Diffusion Coefficients in Highly Doped Silicon. Appl. Phys. Lett., 35:170–72, 1979.CrossRefGoogle Scholar
  75. [1.75]
    W. L. Engl and H. Dirks. Models of Physical Parameters. In Introduction to the Numerical Analysis of Semiconductor Devices and Integrated Circuits, pp. 42–46. Boole Press Dublin, 1981.Google Scholar
  76. [1.76]
    C. Erginsoy. Neutral Impurity Scattering in Semiconductors. Physical Review, 79:1013–14, 1950.CrossRefGoogle Scholar
  77. [1.77]
    H. Ezawa. Inversion Layer Mobility with Intersubband Scattering. Surface Science, 58:25–32, 1976.CrossRefGoogle Scholar
  78. [1.78]
    H. Ezawa, S. Kawaji, T. Kuroda, and K. Nakamura. Electron Mobility in a Semiconductor Inversion Layer (Possible Contribution from Bulk Phonons). Surface Science, 24:659–62, 1971.CrossRefGoogle Scholar
  79. [1.79]
    H. Ezawa, S. Kawaji, and K. Nakamura. Surfons and the Electron Mobility in Silicon Inversion Layers. Jap. J. Appl. Phys., 13(1): 126–55, 1974.CrossRefGoogle Scholar
  80. [1.80]
    F. F. Fang and A. B. Fowler. Transport Properties of Electrons in Inverted Silicon Surfaces. Phys. Rev., 169(3):619–31, 1968.CrossRefGoogle Scholar
  81. [1.81]
    F. F. Fang and A. B. Fowler. Hot Electron Effects and Saturation Velocities in Silicon Inversion Layers. J. Appl. Phys., 41(4): 1825–31, 1970.CrossRefGoogle Scholar
  82. [1.82]
    C. Fiegna, F. Venturi, M. Melanotte, E. Sangiorgi, and B. Ricco. Simple and Efficient Modeling of EPROM Writing. IEEE Trans. Electron Devices, ED-38(3):603–10, 1991.CrossRefGoogle Scholar
  83. [1.83]
    M. V. Fischetti. Effect of the Electron-Plasmon Interaction on the Electron Mobility in Silicon. Phys. Rev., B 44:5527–34, 1991.Google Scholar
  84. [1.84]
    M. V. Fischetti. Monte Carlo Simulation of Transport in Technologically Significant Semiconductors of the Diamond and Zinc-Blende Structures — Part I: Homogeneous Transport. IEEE Trans. Electron Devices, 38:634–49, March 1991.Google Scholar
  85. [1.85]
    M. V. Fischetti and S. E. Laux. Monte Carlo Analysis of Electron Transport in Small Semiconductor Devices Including Band-Structure and Space-Charge Effects. Phys. Rev., B 38(14):9721–45, 1988.Google Scholar
  86. [1.86]
    M. V. Fischetti and S. E. Laux. Monte Carlo Study of Sub-Band-Gap Impact Ionization in Small Silicon Field-Effect Transistors. In IEDM, pp. 305–08, 1995.Google Scholar
  87. [1.87]
    M. V. Fischetti, S. E. Laux, and E. Crabbé. Understanding Hot-Electron Transport in Silicon Devices: Is There a Shortcut? J. Appl. Phys., 78(2): 1058–87, 1995.CrossRefGoogle Scholar
  88. [1.88]
    D. J. Fitzgerald and A. S. Grove. Surface Recombination in Semiconductors. Surface Science, 9:347–69, 1968.CrossRefGoogle Scholar
  89. [1.89]
    N. H. Fletcher. The High Current Limit for Semiconductor Junction Devices. Proc. Institution of Radio Engineers, 45:862–72, 1957.CrossRefGoogle Scholar
  90. [1.90]
    A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan, and G. Baccarani. A New Discretization Strategy of the Semiconductor Equations Comprising Momentum and Energy Balance. IEEE Trans. on CAD, 7(2):231–242, 1988.Google Scholar
  91. [1.91]
    J. G. Fossum. Computer-Aided Numerical Analysis of Silicon Solar Cells. Solid-State Electronics, 19:269–77, 1976.CrossRefGoogle Scholar
  92. [1.92]
    J. G. Fossum and D. S. Lee. A Physical Model for the Dependence of Carrier Lifetime on Doping Density in Nondegenerate Silicon. Solid-State Electronics, 25(8):741–47, 1982.CrossRefGoogle Scholar
  93. [1.93]
    J. G. Fossum, R. P. Mertens, D. S. Lee, and J. F. Nijs. Carrier Recombination and Lifetime in Highly Doped Silicon. Solid-State Electronics, 26(6):569–76, 1983.CrossRefGoogle Scholar
  94. [1.94]
    J. Frenkel. On Pre-Breakdown Phenomena in Insulators and Electronic Semi-Conductors. Phys. Rev., 54:647–48, 1938.CrossRefGoogle Scholar
  95. [1.95]
    M. Fukuma and R. H. Uebbing. Two-dimensional MOSFET Simulation with energy transport phenomena. In IEDM Technical Digest 184, pp. 621–624, 1984.Google Scholar
  96. [1.96]
    W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves, and D. L. McElroy. Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300K. Phys. Rev., 167(3):765–82, 1968.CrossRefGoogle Scholar
  97. [1.97]
    F. Gamiz, J. A. Lopez-Villanueva, J. Banqueri, J. E. Carceller, and P. Cartujo. Universality of Electron Mobility Curves in MOSFETs: A Monte Carlo Study. IEEE Trans. Electron Devices, 42(2):258–65, 1995.CrossRefGoogle Scholar
  98. [1.98]
    F. Gamiz, J. A. Lopez-Villanueva, J. A. Jimenez-Tejada, I. Melchor, and A. Palma. A Comprehensive Model for Coulomb Scattering in Inversion Layers. J. Appl. Phys., 75(2):924–34, 1994.CrossRefGoogle Scholar
  99. [1.99]
    S. P. Gaur, G. R. Srinivasan, and I. Antipov. Verification of Heavy Doping Parameters in Semiconductor Device Modeling. IEEE, pp. 276–79, 1980.Google Scholar
  100. [1.100]
    N. Goldsman and J. Frey. Efficient and Accurate Use of the Energy Transport Method in Device Simulation. IEEE Trans. Electron Devices, 35(9): 1524–29, 1988.CrossRefGoogle Scholar
  101. [1.101]
    N. Goldsman, Y.-J. Wu, and J. Frey. Efficient Calculation of Ionization Coefficients in Silicon from the Energy Distribution Function. J. Appl. Phys., 68(3): 1075–81, 1990.CrossRefGoogle Scholar
  102. [1.102]
    W. N. Grant. Electron and Hole Ionization Rates in Epitaxial Silicon at High Electric Fields. Solid-State Electronics, 16:1189–1203, 1973.MathSciNetCrossRefGoogle Scholar
  103. [1.103]
    M. A. Green. Intrinsic Concentration, Effective Densities of States, and Effective Mass in Silicon. J. Appl. Phys., 67(6):2944–54, 1990.CrossRefGoogle Scholar
  104. [1.104]
    R. F. Greene. Surface Transport. Surface Science, 2:101–112, 1964.CrossRefGoogle Scholar
  105. [1.105]
    R. N. Hall. Electron-Hole Recombination in Germanium. Phys. Rev., 87(5):387, 1952.CrossRefGoogle Scholar
  106. [1.106]
    B. I. Halperin and M. Lax. Impurity-Band Tails in the High-Density Limit. I. Minimum Counting Methods. Phys. Rev., 148(2):722–39, 1966.CrossRefGoogle Scholar
  107. [1.107]
    B. I. Halperin and M. Lax. Impurity-Band Tails in the High-Density Limit. II. Higher Order Corrections. Phys. Rev., 153(3):802–14, 1967.CrossRefGoogle Scholar
  108. [1.108]
    W. Hänsch. The Drift Diffusion Equation and Its Applications in MOSFET Modeling. Springer-Verlag, Wien New York, 1991.CrossRefGoogle Scholar
  109. [1.109]
    J. L. Hartke. The Three-Dimensional Poole-Frenkel Effect. J. Appl. Phys., 39:4871, 1968.CrossRefGoogle Scholar
  110. [1.110]
    A. Hartstein, T. H. Ning, and A. B. Fowler. Electron Scattering in Silicon Inversion Layers by Oxide and Surface Roughness. Surf. Science, 58:178–81, 1976.CrossRefGoogle Scholar
  111. [1.111]
    A. Haug. Carrier Density Dependence of Auger Recombination. Solid-State Electronics, 21:1281–84, 1978.CrossRefGoogle Scholar
  112. [1.112]
    A. Haug. Auger Recombination with Traps. Phys. Stat. Sol. (b), 97:481–89, 1980.CrossRefGoogle Scholar
  113. [1.113]
    A. Haug. Auger Recombination with Deep Impurities in Indirect Band Gap Semiconductors. Phys. Stat. Sol. (b), 108:443–48, 1981.CrossRefGoogle Scholar
  114. [1.114]
    A. Haug and W. Schmid. Recombination Mechanism in Heavily Doped Silicon. Solid-State Electronics, 25(7):665–67, 1982.CrossRefGoogle Scholar
  115. [1.115]
    L. Hedin and S. Lundqvist. Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids. Solid State Physics, 23:1, 1969.CrossRefGoogle Scholar
  116. [1.116]
    H. H. Heimeier. Zweidimensionale numerische Lösung eines nichtlinearen Randwertproblems am Beispiel des Transistors im stationären Zustand. PhD thesis, Technische Hochschule Aachen, 1973.Google Scholar
  117. [1.117]
    J. C. Hensel, H. Hasegawa, and M. Nakayama. Cyclotron Resonance in Uniaxially Stressed Silicon. II. Nature of the Covalent Bond. Phys. Rev. A, 138(1):225–38, 1965.Google Scholar
  118. [1.118]
    K. Hess. Comment on “The Effect of Collisional Broadening on Monte Carlo Simulations of High-field Transport in Semiconductor Devices. IEEE Electron Device Letters, EDL-2(11):297–98, 1981.CrossRefGoogle Scholar
  119. [1.119]
    K. Hess. Advanced Theory of Semiconductor Devices. Solid state physical electronics. Prentice Hall, Englewood Cliffs, N. J., 1988.Google Scholar
  120. [1.120]
    K. Hess and C. T. Sah. The Ultimate Limits of CCD Performance Imposed by Hot Electron Effects. Solid-State Electronics, 22:1025–33, 1979.CrossRefGoogle Scholar
  121. [1.121]
    A. Hiroki, S. Odanaka, K. Ohe, and H. Esaki. A Mobility Model for Submicrometer MOSFET Simulations Including Hot-Carrier-Induced Device Degradation. IEEE Trans. Electron Devices, 35(9): 1487–93, 1988.CrossRefGoogle Scholar
  122. [1.122]
    A. Hori, A. Hiroki, K. M. Akamatsu, and S. Odanaka. An Experimental Study of Impact Ionization Phenomena in Sub-0.1 µm Si MOSFETs. In Ext. Abstracts Solid State Devices and Materials SSDM, pp. 881–83, Osaka, Japan, 1995.Google Scholar
  123. [1.123]
    C.-L. Huang, J. V. Fancelli, and N. D. Arora. A New Technique for Measuring MOSFET Inversion Layer Mobility. IEEE Trans. Electron Devices, ED-40(6): 1134–39, 1993.CrossRefGoogle Scholar
  124. [1.124]
    L. Huldt. Band-to-Band Auger Recombination in Indirect Gap Semiconductors. Phys. Stat. Sol. (a), 8:173–87,1971.CrossRefGoogle Scholar
  125. [1.125]
    R. G. Humphreys. Valence Band Averages in Silicon: Anisotropy and Nonparabolicity. J. Phys. C, 14(21):2935–42, 1981.CrossRefGoogle Scholar
  126. [1.126]
    G. A. M. Hurkx, D. B. M. Klaassen, M. P. G. Knuvers, and F. G. O’Hara. A New Recombination Model Describing Heavy-Doping Effects and Low-Temperature Behaviour. IEDM Tech. Digest, Dec.:307–10, 1989.Google Scholar
  127. [1.127]
    G. A. M. Hurkx, F. G. O’Hara, and M. P. G. Knuvers. Modelling Forward-Biased Tunneling. In Proc. ESSDERC, pp. 793–96, Berlin, 1989.Google Scholar
  128. [1.128]
    J. C. Inkson. The Effect of Electron Interaction on the Band Gap of Extrinsic Semiconductors. J. Phys. C, 9:1177–83, 1976.CrossRefGoogle Scholar
  129. [1.129]
    K. Irmscher, A. Schenk, R. Enderlein, H. Klose, and D. Suisky. Electric Field Enhanced Thermal Emission from Charged Deep Levels in Si. In Proc. 18th ICPS, pp. 903–06, Stockholm, 1986. Springer-Verlag New York Berlin Heidelberg Tokyo.Google Scholar
  130. [1.130]
    J. C. Irvin. Resistivity of Bulk Silicon and Diffused Layers in Silicon. Bell. Sys. Tech. J., March:387–410, 1962.Google Scholar
  131. [1.131]
    ISE Integrated Systems Engineering AG, Zurich, Switzerland. DESSIS 3.0: Manual, 1996.Google Scholar
  132. [1.132]
    H. Ishikuro, T. Saraya, T. Hiramoto, and T. Ikoma. Extremely Large Amplitude of Random Telegraph Signals in a Very Narrow Split-Gate MOSFET at Low Temperatures. In Ext. Abstracts Solid State Devices and Materials SSDM, pp. 342–44, Osaka, Japan, 1995.Google Scholar
  133. [1.133]
    C. Jacoboni, C. Canali, G. Ottaviani, and A. Alberigi Quaranta. A Review of some Charge Transport Properties of Silicon. Solid-State Electronics, 20:77–89, 1977.CrossRefGoogle Scholar
  134. [1.134]
    C. Jacoboni and P. Lugli. The Monte Carlo Method for Semiconductor Device Simulation. In S. Selberherr (ed.), Computational Microelectronics. Springer-Verlag Wien, 1989.Google Scholar
  135. [1.135]
    C. Jacoboni and L. Reggiani. The Monte Carlo Method for the Solution of Charge Transport in Semiconductor with Applications to Covalent Materials. Review Modern Phys., 55(3):645–705, 1983.CrossRefGoogle Scholar
  136. [1.136]
    R. Jaggi and H. Weibel. High-Field Electron Drift Velocities and Current Densities in Silicon. Helv. phys. Acta, 42:631–633, 1969.Google Scholar
  137. [1.137]
    S. C. Jain and D. J. Roulston. A Simple Expression for Band Gap Narrowing (BGN) in Heavily Doped Si, Ge, GaAs and Ge x Si 1-x Strained Layers. Solid-State Electronics, 34(5):453–465, 1991.CrossRefGoogle Scholar
  138. [1.138]
    H. J. Kafka and K. Hess. A Carrier Temperature Model Simulation of a Double-Drift IMPATT Diode. IEEE Trans. Electron Devices, ED-28(7):831–34, 1981.CrossRefGoogle Scholar
  139. [1.139]
    Y. Kamakura, H. Mizuno, M. Yamaji, M. Morifuji, K. Taniguchi, and C. Hamaguchi. Impact Ionization Model for Full Band Monte Carlo Simulation. J. Appl. Phys., 75(7):3500–06, 1994.CrossRefGoogle Scholar
  140. [1.140]
    D. E. Kane and R. M. Swanson. The Effect of Excitons on the Band Gap Narrowing and Transport in Semiconductors. J. Appl. Phys., 73(3): 1193–97, 1993.CrossRefGoogle Scholar
  141. [1.141]
    E. O. Kane. Thomas-Fermi Approach to Impure Semiconductor Band Structure. Phys. Rev., 131(1):79–88, 1963.MATHCrossRefGoogle Scholar
  142. [1.142]
    E. O. Kane. Electron Scattering by Pair Production in Silicon. Phys. Rev., 159(3):624–31, 1967.CrossRefGoogle Scholar
  143. [1.143]
    E. O. Kane. Band Tails in Semiconductors. Solid-State Electronics, 28(1):3–10, 1985.CrossRefGoogle Scholar
  144. [1.144]
    S. Kawaji. The Two-Dimensional Lattice Scattering Mobility in a Semiconductor Inversion Layer. J. Phys. Soc. Japan, 27(4):906–08, 1969.CrossRefGoogle Scholar
  145. [1.145]
    L. V. Keldysh. Kinetic Theory of Impact Ionization in Semiconductors. Soviet Physics JETP, 10(3):509–518, 1960.Google Scholar
  146. [1.146]
    L. V. Keldysh. Concerning the Theory of Impact Ionization in Semiconductors. Soviet Physics JETP, 21(6): 1135–44, 1965.MathSciNetGoogle Scholar
  147. [1.147]
    Kevin Kells. General Electrothermal Semiconductor Device Simulation. PhD thesis, Swiss Federal Institute of Technology, 1994.Google Scholar
  148. [1.148]
    D. Kendall. Presented at the Conf. Physics and Application of Lithium Diffused Silicon, NASA, Goddard Space Flight Center, Dec. 1969.Google Scholar
  149. [1.149]
    R. R. King, R. A. Sinton, and R. M. Swanson. Studies of Diffused Phosphorus Emitters: Saturation Current, Surface Recombination Velocity, and Quantum Efficiency. IEEE Trans. Electron Devices, 37(2):365–70, 1990.CrossRefGoogle Scholar
  150. [1.150]
    R. R. King and R. M. Swanson. Studies of Diffused Boron Emitters: Saturation Current, Bandgap Narrowing, and Surface Recombination Velocity. IEEE Trans. Electron Devices, 38(6): 1399–1409, 1990.CrossRefGoogle Scholar
  151. [1.151]
    G. Kirczenow. Hall Effect and Ballistic Conduction in One-Dimensional Quantum Wires. Phys. Rev., B 38:10958–61, 1988.Google Scholar
  152. [1.152]
    D. B. M. Klaassen. A Unified Mobility Model for Device Simulation. IEDM Tech. Digest, Dec.:357–60, 1990.Google Scholar
  153. [1.153]
    D. B. M. Klaassen. A Unified Mobility Model for Device Simulation — I. Model Equations and Concentration Dependence. Solid-State Electronics, 35(7):953–959, 1992.CrossRefGoogle Scholar
  154. [1.154]
    D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff. Unified Apparent Bandgap Narrowing in n-and p-type Silicon. Solid-State Electronics, 35(2): 125–29, 1992.CrossRefGoogle Scholar
  155. [1.155]
    M. Kohler. Behandlung von Nichtgleichgewichtsvorgängen mit Hilfe eines Extremal-prinzips. Z. Physik, 124:772–89, 1947.MathSciNetCrossRefGoogle Scholar
  156. [1.156]
    J. Kolnik, Y. Y. Wang, I. H. Oguzman, and K. F. Brennan. Theoretical Investigation of Wave-Vector-Dependent Analytical and Numerical Formulations of the Interband Impact-Ionization Transition Rate for Electrons in Bulk Silicon and GaAs. J. Appl. Phys., 76(6):3542–51, 1994.CrossRefGoogle Scholar
  157. [1.157]
    J. Kossut. The Disorder Scattering in Zincblende Narrow-Gap Semiconducting Mixed Crystals. Phys. Stat. Sol. (b), 86:593–601, 1978.CrossRefGoogle Scholar
  158. [1.158]
    R. Kuhnert, Ch. Werner, and A. Schütz. An Novel Impact-Ionization Model for 1 — µm-MOSFET Simulation. IEEE Trans. Electron Devices, ED-32(6): 1057–63, 1985.CrossRefGoogle Scholar
  159. [1.159]
    T. Lackner. Avalanche Multiplication in Semiconductors: A Modification of Chynoweth’s Law. Solid-State Electronics, 34:33–42, 1991.CrossRefGoogle Scholar
  160. [1.160]
    D. B. Laks, G. F. Neumark, A. Hangleiter, and S. T. Pantelides. Theory of Interband Auger Recombination in n-Type Silicon. Phys. Rev. Lett., 61(10): 1229–32, 1988.CrossRefGoogle Scholar
  161. [1.161]
    R. Landauer. Electrical Resistance of Disordered One-Dimensional Lattices. Philos. Mag., 21:863–67, 1970.CrossRefGoogle Scholar
  162. [1.162]
    P. T. Landsberg. Non-radiative Transitions in Semiconductors. Phys. Stat. Sol., 1:457–89, 1970.Google Scholar
  163. [1.163]
    D. V. Lang, H. G. Grimmeiss, E. Meijer, and M. Jaros. Complex Nature of Gold-related Deep Levels in Silicon. Phys. Rev. B, 22(7):3917–34, 1980.CrossRefGoogle Scholar
  164. [1.164]
    J. E. Lang, F. L. Madarasz, and P. M. Hemeger. Temperature Dependent Density of States Effective Mass in Nonparabolic p-type Silicon. J. Appl. Phys., 54(6):3612, 1983.CrossRefGoogle Scholar
  165. [1.165]
    M. E. Law, E. Solley, M. Liang, and D. E. Burk. Self-consistent Model of Minority-Carrier Lifetime, Diffusion Length, and Mobility. IEEE Electron Device Letters, 12(8):401–03, 1991.CrossRefGoogle Scholar
  166. [1.166]
    C. A. Lee, R. A. Logan, R. L. Batdorf, J. J. Kleimack, and W. Wiegmann. Ionization Rates of Holes and Electrons in Silicon. Phys. Rev., 134(3A):A761–73, 1964.CrossRefGoogle Scholar
  167. [1.167]
    O. Leistiko, A. S. Grove, and C. T. Sah. Electron and Hole Mobilities in Inversion Layers on Thermally Oxidized Silicon Surfaces. IEEE Trans. Electron Devices, ED-12(5): 248–54, 1965.CrossRefGoogle Scholar
  168. [1.168]
    I.-Y. Leu and A. Neugroschel. Minority-Carrier Transport Parameters in Heavily Doped p-type Silicon at 296 and 77 K. IEEE Trans. Electron Devices, 40(10): 1872–75, 1993.CrossRefGoogle Scholar
  169. [1.169]
    S. S. Li and W. R. Thurber. The Dopant Density and Temperature Dependence of Electron Mobility and Resistivity in n-Type Silicon. Solid-State Electronics, 20:609–16, 1977.CrossRefGoogle Scholar
  170. [1.170]
    W. Lochmann and A. Haug. Phonon-Assisted Auger Recombination in Si with Direct Calculation of the Overlap Integrals. Solid State Comm., 35:553–56, 1980.CrossRefGoogle Scholar
  171. [1.171]
    L. R. Logan and J. L. Egley. Dielectric Response in p-type Silicon: Screening and Band-gap Narrowing. Phys. Rev., B47(19): 12532–39, 1993.Google Scholar
  172. [1.172]
    C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi. A Physically Based Mobility Model for Numerical Simulation of Nonplanar Devices. IEEE Trans. on CAD, 7(11): 1164–71, 1988.Google Scholar
  173. [1.173]
    D. Long. Scattering of Conduction Electrons by Lattice Vibrations in Silicon. Phys. Rev., 120(6):2024–32, 1960.CrossRefGoogle Scholar
  174. [1.174]
    J. R. Lowney. The Effect of Electron-Hole Plasmas on the Density of States in Silicon and GaAs. J. Appl. Phys., 66(9):4279–83, 1989.CrossRefGoogle Scholar
  175. [1.175]
    J. R. Lowney and H. S. Bennett. Effect of Donor Impurities on the Conduction and Valence Bands in Silicon. J. Appl. Phys., 53(1):433–38, 1982.CrossRefGoogle Scholar
  176. [1.176]
    J. R. Lowney and J. C. Geist. Comparison of Models of the built-in Electric Field in Silicon at High Donor Densities. J. Appl. Phys., 55(10):3624–27, 1984.CrossRefGoogle Scholar
  177. [1.177]
    G. Lucovski. On the Photoionization of Deep Impurity Centers in Semiconductors. Solid State Comm., 3:299–302, 1965.CrossRefGoogle Scholar
  178. [1.178]
    M. Luong and A. W. Show. Quantum Transport Theory of Impurity-Scattering-Limited Mobility in n-Type Semiconductors Including Electron-Electron Scattering. Phys. Rev. B, 4(4):2436–41, 1971.CrossRefGoogle Scholar
  179. [1.179]
    G. G. Macfarlane, T. P. McClean, J. E. Quarrington, and V. Roberts. Fine Structure in the Absorption-edge Spectrum of Si. Phys. Rev., 111(5): 1245–54, 1958.CrossRefGoogle Scholar
  180. [1.180]
    F. L. Madarasz, J. E. Lang, and P. M. Hemeger. Effective Masses for Nonparabolic Bands in p-type Silicon. J. Appl. Phys., 52(7):4646–48, 1981.CrossRefGoogle Scholar
  181. [1.181]
    G. D. Mahan. Energy Gap in Si and Ge: Impurity Dependence. J. Appl. Phys., 51(5):2634–46, 1980.CrossRefGoogle Scholar
  182. [1.182]
    O. Manck. Numerische Analyse des Schaltverhaltens eines zweidimensionalen bipolaren Transistors. PhD thesis, Technische Hochschule Aachen, 1975.Google Scholar
  183. [1.183]
    K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase. Electron Mobility in Si Inversion Layers. Jap. J. Appl. Phys., 28(10): 1856–63, 1989.CrossRefGoogle Scholar
  184. [1.184]
    K. Masaki, K. Taniguchi, C. Hamaguchi, and M. Iwase. Temperature Dependence of Electron Mobility in Si Inversion Layers. Jap. J. Appl. Phys., 30(11A):2734–39, 1991.CrossRefGoogle Scholar
  185. [1.185]
    G. Masetti, M. Severi, and S. Solmi. Modelling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus-and Boron-Doped Silicon. IEEE Trans. Electron Devices, ED-30:764–69, 1983.CrossRefGoogle Scholar
  186. [1.186]
    K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B. Vartanian, and J. Harris. Room Temperature Operation of Single Electron Transistor Made by STM Nano-Oxydation Process. In Proc. Int. Conf. Sol. State Devices and Materials (Japan), 1995.Google Scholar
  187. [1.187]
    K. G. McKay and K. B. McAffee. Electron Multiplication in Silicon and Germanium. Phys. Rev., 91(5): 1079–84, 1953.CrossRefGoogle Scholar
  188. [1.188]
    B. Meinerzhagen. Two-Dimensional Numerical Substrate Current Modeling for n-channel MOS Transistors. Technical report, AT&T Bell Laboratories, April 1987.Google Scholar
  189. [1.189]
    B. Meinerzhagen. Consistent Gate and Substrate Current Modelling Based on Energy Transport and the Lucky Electron Concept. IEDM Tech. Digest, pp. 504–07, Dec. 1988.Google Scholar
  190. [1.190]
    B. Meinerzhagen. Two-Dimensional Numerical Substrate Current Modeling for n-channel MOS Transistors. In Proceedings of the Fifth NASECODE Conference, pp. 42–59, 1988.Google Scholar
  191. [1.191]
    R. P. Mertens, J. L. van Meerbergen, J. F. Nijs, and R. J. van Overstraeten. Measurement of the Minority-Carrier Transport Parameters in Heavily Doped Silicon. IEEE Trans. Electron Devices, ED-27(5):949–55, 1980.CrossRefGoogle Scholar
  192. [1.192]
    S. L. Miller. Avalanche Breakdown in Germanium. Phys. Rev., 99(4): 1234–41, 1955.CrossRefGoogle Scholar
  193. [1.193]
    T. Miyano, M. Fujito, M. Kato, and H. Tsuge. A Mechanism for Impact Ionization of Si n-Channel MOSFETs. Solid-State Electronics, 35(1):89–94, 1992.CrossRefGoogle Scholar
  194. [1.194]
    S. N. Mohammad. Unified Model for Drift Velocities of Electrons and Holes in Semiconductors as a Function of Temperature and Electric Field. Solid-State Electronics, 35(10): 1391–96, 1992.CrossRefGoogle Scholar
  195. [1.195]
    J. L. Moll and N. I. Meyer. Secondary Multiplication in Silicon. Solid-State Electronics, 3:155–58, 1961.CrossRefGoogle Scholar
  196. [1.196]
    J. L. Moll and R. J. van Overstraeten. Charge Multiplication in Silicon p-n Junctions. Solid-State Electronics, 6:147–57, 1963.CrossRefGoogle Scholar
  197. [1.197]
    T. N. Morgan. Broadening of Impurity Bands in Heavily Doped Semiconductors. Phys. Rev. A, 139(1):343–48, 1965.Google Scholar
  198. [1.198]
    F. J. Morin and J. P. Maita. Electrical Properties of Silicon Containing Arsenic and Boron. Phys. Rev., 96(1):28–35, 1954.CrossRefGoogle Scholar
  199. [1.199]
    N. St. J. Murphy, F. Berz, and I. Flinn. Carrier Mobility in Silicon MOST’s. Solid-State Electronics, 12:775–86, 1969.CrossRefGoogle Scholar
  200. [1.200]
    A. Nakagawa. One-Dimensional Device Model of the npn Bipolar Transistor Including Heavy Doping Effects under Fermi Statistics. Solid-State Electronics, 22:943–49, 1979.CrossRefGoogle Scholar
  201. [1.201]
    K. Natori. Ballistic Metal-Oxide-Semiconductor Field Effect Transistor. J. Appl. Phys., 76(8):4879–90, 1994.CrossRefGoogle Scholar
  202. [1.202]
    A. Neugroschel, J. S. Wang, and F. A. Lindholm. Evidence for Excess Carrier Storage in Electron-Hole Plasma in Silicon Transistors. IEEE Electron Dev. Lett., 6(5):253–55, 1985.CrossRefGoogle Scholar
  203. [1.203]
    T. Nishida and C. T. Sah. A Physically Based Mobility Model for MOSFET Numerical Simulation. IEEE Trans. Electron Devices, ED-34(2):310–20, 1987.CrossRefGoogle Scholar
  204. [1.204]
    T. Nishino, M. Takeda, and J. Hamakawa. Direct Observation of Split-off Exciton and Phonon Structures in Absorption Spectrum of Silicon. Solid State Comm., 14:627–30, 1974.CrossRefGoogle Scholar
  205. [1.205]
    K. Nishinohara, N. Sshigyo, and T. Wada. Effects of Microscopic Fluctuations in Dopant Distributions on MOSFET Threshold Voltage. IEEE Trans. Electron Devices, ED-39(3):634–39, 1992.CrossRefGoogle Scholar
  206. [1.206]
    C. B. Norris and J. F. Gibbons. Measurement of High-Field Carrier Drift Velocities in Silicon by a Time-Of-Flight Technique. IEEE Trans. Electron Devices, ED-14:38–43, 67.Google Scholar
  207. [1.207]
    P. Norton, T. Braggins, and H. Levinstein. Impurity and Lattice Scattering Parameters as Determined from Hall and Mobility Analysis in n-Type Silicon. Phys. Rev. B, 8(12):5632–53, 1973.CrossRefGoogle Scholar
  208. [1.208]
    T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita. Dependence of Electron Channel Mobility on Si-Si O 2 Interface Microroughness. IEEE Electron Device Letters, EDL-12(12):652–54, 91.Google Scholar
  209. [1.209]
    Y. Okuto and C. R. Crowell. Energy-Conservation Considerations in the Characterization of Impact Ionization in Semiconductors. Phys. Rev. B, 6(8):3076–81, 1972.CrossRefGoogle Scholar
  210. [1.210]
    Y. Okuto and C. R. Crowell. Ionization Coefficients in Semiconductors: A Nonlocalized Property. Phys. Rev. B, 10(10):4284–96, 1974.CrossRefGoogle Scholar
  211. [1.211]
    Y. Okuto and C. R. Crowell. Threshold Energy Effects on Avalanche Breakdown Voltage in Semiconductor Junctions. Solid-State Electronics, 18:161–68, 1975.CrossRefGoogle Scholar
  212. [1.212]
    L. Onsager. Reciprocal Relations in Irreversible Processes I. Phys. Rev., 37:405–26, 1931.CrossRefGoogle Scholar
  213. [1.213]
    L. Onsager. Reciprocal Relations in Irreversible Processes II. Phys. Rev., 38:2265–2279, 1931.MATHCrossRefGoogle Scholar
  214. [1.214]
    J. C. Ousset, J. Leotin, S. Askenazy, M. S. Skolnick, and R. A. Stradling. Cyclotron Resonance Measurements of the Non-parabolicity of the Conduction Bands in Silicon and Germanium. J. Phys. C, 9:2803–08, 1976.CrossRefGoogle Scholar
  215. [1.215]
    Y. Pan, S. C. Jain, M. Kleefstra, and P. Balk. Modelling of Band Tails and their Effects on Minority Carrier Transport in Heavily Doped Silicon. Solid-State Electronics, 35(6): 791–96, 1992.CrossRefGoogle Scholar
  216. [1.216]
    S. T. Pantelides, A. Selloni, and R. Car. Energy-gap Reduction in Heavily Doped Silicon: Causes and Consequences. Solid-State Electronics, 28(1): 17–24, 1985.CrossRefGoogle Scholar
  217. [1.217]
    H. C. Pao and C. T. Sah. Effects of Diffusion Current on Characteristics of Metal-Oxide (Insulator)-Semiconductor Transistors. Solid-State Electronics, 9:927–37, 1966.CrossRefGoogle Scholar
  218. [1.218]
    G. J. Parker, S. D. Brotherton, I. Gale, and A. Gill. Measurement of Concentration and Photoionization Cross Section of Indium and Silicon. J. Appl. Phys., 54(7): 3926–29, 1983.CrossRefGoogle Scholar
  219. [1.219]
    T. P. Pearsall, F. Capasso, R. E. Nahory, M. A. Pollack, and J. R. Chelikowsky. The Band Structure Dependence of Impact Ionization by Hot Carriers in Semiconductors: GaAs. Solid-State Electronics, 21:297–302, 1978.CrossRefGoogle Scholar
  220. [1.220]
    G. L. Pearson and J. Bardeen. Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus. Phys. Rev., 75(5):865–83, 1949.CrossRefGoogle Scholar
  221. [1.221]
    H. J. Peifer, B. Meinerzhagen, R. Thoma, and W. L. Engl. Evaluation of Impact Ionization Modeling in the Framework of Hydrodynamic Equations. IEDM Techn. Digest, Dec.:131–34, 1991.Google Scholar
  222. [1.222]
    A. Pierantoni, A. Liuzzo, P. Ciampolini, and G. Baccarani. Three-dimensional implementation of a unified transport model. In SISDEP, pp. 125–128, 1993.Google Scholar
  223. [1.223]
    R. F. Pierret and C. T. Sah. An MOS-oriented Investigation of Effective Mobility Theory. Solid-State Electronics, 11:279–90, 1968.CrossRefGoogle Scholar
  224. [1.224]
    J.C. Plunkett, J. L. Stone, and A. Leu. Computer Algorithm for Accurate and Repeatable Profile Analysis Using Anodization and Stripping of Silicon. Solid-State Electronics, 20:447–53, 1977.CrossRefGoogle Scholar
  225. [1.225]
    G. E. Possin, M. S. Adler, and B. J. Baliga. Measurement of Heavy Doping Parameters in Silicon by Electron-Beam-Induced Current. IEEE Trans. Electron Devices, ED-27(5):983–90, 1980.CrossRefGoogle Scholar
  226. [1.226]
    E. H. Putley and W. H. Mitchell. The Electrical Conductivity and Hall Effect of Silicon. Proc. Phys. Soc., 72:193–200, 1958.CrossRefGoogle Scholar
  227. [1.227]
    W. Quade, M. Rudan, and E. Schöll. Hydrodynamic Simulation of Impact-Ionization Effects in pn-Junctions. IEEE Trans. CAD, 10(10): 1287–94, 1991.Google Scholar
  228. [1.228]
    W. Quade, E. Schöll, and M. Rudan. Impact-Ionization within the Hydrodynamic Approach to Semiconductor Transport. Solid-State Electronics, 36(10): 1493–1505, 1993.CrossRefGoogle Scholar
  229. [1.229]
    B. K. Ridley. Lucky-Drift Mechanism for Impact Ionization in Semiconductors. J. Phys. C, 16:3373–88, 4733–51, 1983.CrossRefGoogle Scholar
  230. [1.230]
    B. K. Ridley. Quantum Processes in Semiconductors. Oxford Science Publications, 1988.Google Scholar
  231. [1.231]
    D. J. Robbins. Aspects of the Theory of Impact Ionization in Semiconductors I, II. phys. stat sol. (b), 97:9–50, 387–106, 1980.CrossRefGoogle Scholar
  232. [1.232]
    D. J. Robbins. Aspects of the Theory of Impact Ionization in Semiconductors III. phys. stat. sol. (b), 98:11–36, 1980.CrossRefGoogle Scholar
  233. [1.233]
    V. Rodriguez, H. Ruegg, and M. A. Nicolet. Measurement of Drift Velocities of Holes in Silicon at High Field Strengths. IEEE Trans. Electron Devices, ED-14:44–46, 1967.CrossRefGoogle Scholar
  234. [1.234]
    M. Rösler, F. Thuselt, and R. Zimmermann. Theory of Electron-Hole Liquid in Doped Semiconductors: Application to GaP. phys. stat. sol. (b), 118:303–317, 1983.CrossRefGoogle Scholar
  235. [1.235]
    M. Rudan and F. Odeh. Multi-Dimensional Discretization Scheme for the Hydrodynamic Model of Semiconductor Devices. COMPEL, 5(3): 149–183, 1986.MathSciNetMATHCrossRefGoogle Scholar
  236. [1.236]
    S. Rudin, G. Wachutka, and H. Baltes. Thermal effects in magnetic microsensor modeling. Sensors and Actuators A, 25-27:731–735, 1991.CrossRefGoogle Scholar
  237. [1.237]
    V. Sa-yakanit. Electron Density of States in a Gaussian Random Potential: Path Integral Approach. Phys. Rev., B 19(4):2266–75, 1979.Google Scholar
  238. [1.238]
    V. Sa-yakanit and H. R. Glyde. Impurity-band Density of States in Heavily Doped Semiconductors: A Variational Calculation. Phys. Rev., B22(12):6222–32, 1980.Google Scholar
  239. [1.239]
    V. Sa-yakanit, W. Sritrakool, and H. R. Glyde. Impurity-band Density of States in Heavily Doped Semiconductors: Numerical Results. Phys. Rev., B25(4):2776–80, 1982.Google Scholar
  240. [1.240]
    A. G. Sabnis and J. T. Clemens. Characterization of the Electron Mobility in the Inverted 〈100〉 Si Surface. IEDM Tech. Digest, Dec.:18–21, 1979.Google Scholar
  241. [1.241]
    C. T. Sah. Equivalent Circuit Models in Semiconductor Transport for Thermal, Optical, Auger-Impact, and Tunneling Recombination-Generation-Trapping Processes. Phys. Stat. Sol. (a), 7:541–59, 1971.CrossRefGoogle Scholar
  242. [1.242]
    C. T. Sah, P. C. H. Chan, C. K. Wang, R. L.-Y. Sah, K. A. Yamakawa, and R. Lutwack. Effect of Zinc Impurity on Silicon Solar-Cell Efficiency. IEEE Trans. Electron Devices, ED-28(3):304–13, 1981.Google Scholar
  243. [1.243]
    C. T. Sah, T. H. Ning, and L. L. Tschopp. The Scattering of Electrons by Surface Oxide Charges and by Lattice Vibrations at the Silicon-Silicon Dioxide Interface. Surf. Science, 32:561–75, 1972.CrossRefGoogle Scholar
  244. [1.244]
    N. Sano, T. Aoki, and A. Yoshii. Soft and Hard Ionization Thresholds in Si and GaAs. Appl. Phys. Lett., 55(14): 1418–20, 1989.CrossRefGoogle Scholar
  245. [1.245]
    N. Sano, M. Tomizawa, and A. Yoshii. Monte Carlo Analysis of Ionization Threshold in Si. Appl. Phys. Lett., 56(7):653–55, 1990.CrossRefGoogle Scholar
  246. [1.246]
    N. Sano and A. Yoshii. Impact Ionization Rate near Thresholds in Si. J. Appl. Phys., 75(10):5102–05, 1994.CrossRefGoogle Scholar
  247. [1.247]
    T. Satô, Y. Takeishi, H. Hara, and Y. Okamoto. Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces. Phys. Rev. B, 4(6): 1950–60, 1971.CrossRefGoogle Scholar
  248. [1.248]
    T. Satô, Y. Takeishi, H. Tango, H. Ohnuma, and Y. Okamoto. Drift-Velocity Saturation of Holes in Si Inversion Layers. J. Phys. Soc. Japan, 31:1846–47, 1971.CrossRefGoogle Scholar
  249. [1.249]
    D. L. Scharfetter and H. K. Gummel. Large-Signal Analysis of a Silicon Read Diode Oscillator. IEEE Trans. Electron Devices, ED-16:64–77, 1969.CrossRefGoogle Scholar
  250. [1.250]
    A. Schenk. An Improved Approach to the Shockley-Read-Hall Recombination in Inho-mogeneous Fields of Space Charge Regions. J. Appl. Phys., 71(7):3339–49, 1992.CrossRefGoogle Scholar
  251. [1.251]
    A. Schenk, D. Suisky, and R. Enderlein. The Interplay of Initial and Final State Field Effects in the Emission Rate of Deep Centres. Acta Phys. Polonica, A77(2–3):307–10, 1990.Google Scholar
  252. [1.252]
    P. E. Schmid. Optical Absorption in Heavily-doped Silicon. Phys. Rev. B, 23:5531–36, 1981.CrossRefGoogle Scholar
  253. [1.253]
    W. Schmid. Experimental Comparison of Localized and Free Carrier Auger Recombination in Silicon. Solid-State Electronics, 21:1285–87, 1978.CrossRefGoogle Scholar
  254. [1.254]
    J. R. Schrieffer. Effective Carrier Mobility in Surface-Space Charge Layers. Phys. Rev., 97(3):641–46, 1955.CrossRefGoogle Scholar
  255. [1.255]
    D. K. Schroder. The Concept of Generation and Recombination Lifetimes in Semiconductors. IEEE Trans. Electron Devices, ED-29(8): 1336–38, 1982.CrossRefGoogle Scholar
  256. [1.256]
    M. Schulz, H. H. Mueller, and U. Schirl. Single, Individual Traps at the SiO2/Si Interface in Sub-µm MOSFETs. In Ext. Abstracts Solid State Devices and Materials SSDM, pp. 458–60, Osaka, Japan, 1995.Google Scholar
  257. [1.257]
    S. A. Schwarz and S. E. Russek. Semi-empirical Formula for Channel Mobility in Si MOSFET’s. Technical report, AT&T Bell Laboratories, 1982.Google Scholar
  258. [1.258]
    S. A. Schwarz and S. E. Russek. Semi-Empirical Equations for Electron Velocity in Silicon: Part II–MOS Inversion Layer. IEEE Trans. Electron Devices, ED-30(12):1634–39, 1983.CrossRefGoogle Scholar
  259. [1.259]
    S. A. Schwarz and S. E. Russek. Semi-Empirical Equations for Electron Velocity in Silicon: Part I–Bulk. IEEE Trans. Electron Devices, ED-30(12): 1629–33, 1983.CrossRefGoogle Scholar
  260. [1.260]
    K. Seeger. Semiconductor Physics — An Introduction. Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985.Google Scholar
  261. [1.261]
    S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien New York, 1984.CrossRefGoogle Scholar
  262. [1.262]
    S. Selberherr. MOS Device Modelling at 77 K. IEEE Trans. Electron Devices, 36(8): 1464–74, 1989.CrossRefGoogle Scholar
  263. [1.263]
    S. Selberherr. Physical Models for Silicon VLSI. In C. M. Snowden, editor, Semiconductor Device Modelling, pp. 70–88. Springer-Verlag Berlin Heidelberg, 1989.CrossRefGoogle Scholar
  264. [1.264]
    S. Selberherr, W. Hänsch, M. Seavey, and J. W. Slotboom. The Evolution of the MINIMOS Mobility Model. Solid-State Electronics, 33(11): 1425–36, 1990.CrossRefGoogle Scholar
  265. [1.265]
    A. Selloni and S. T. Pantelides. Electronic Structure and Spectra of Heavily Doped n-type Silicon. Phys. Rev. Lett., 49(8):586–89, 1982.CrossRefGoogle Scholar
  266. [1.266]
    M. Reaz Shaheed and C. M. Maziar. Modeling Plasma-Induced Bandgap Narrowing Effects for Accurate Simulation of Advanced Silicon Bipolar Transistors. Solid-State Electronics, 37(9): 1589–94, 1994.CrossRefGoogle Scholar
  267. [1.267]
    H. Shichijo and K. Hess. Band-structure-dependent Transport and Impact Ionization in GaAs. Phys. Rev. B, 23(8):4197–4207, 1981.CrossRefGoogle Scholar
  268. [1.268]
    H. Shin, A. F. Tasch, Jr., C. M. Maziar, and S. K. Banerjee. A New Approach to Verify and Derive a Transverse-Field-Dependent Mobility Model for Electrons in MOS Inversion Layers. IEEE Trans. Electron Devices, ED-36(6): 1117–23, 1989.CrossRefGoogle Scholar
  269. [1.269]
    W. Shockley. Hot Electrons in Germanium and Ohm’s Law. Bell Syst. Tech. J., 30(Oct.):990–1034, 1951.Google Scholar
  270. [1.270]
    W. Shockley. Problems Related to p-n Junctions in Silicon. Solid-State Electronics, 2(1):35–67, 1961.CrossRefGoogle Scholar
  271. [1.271]
    W. Shockley and W. T. Read. Statistics of the Recombinations of Holes and Electrons. Phys. Rev., 87(5):835–42, 1952.MATHCrossRefGoogle Scholar
  272. [1.272]
    S. R. Shukla and M. N. Sen. Analytical Expressions for the Drift Velocity of Hot Charge Carriers in Silicon. Solid-State Electronics, 35(4):593–97, 1992.CrossRefGoogle Scholar
  273. [1.273]
    J. W. Slotboom. Private communication.Google Scholar
  274. [1.274]
    J. W. Slotboom. The pn-Product in Silicon. Solid-State Electronics, 20:279–83, 1977.CrossRefGoogle Scholar
  275. [1.275]
    J. W. Slotboom and H. C. de Graaff. Measurements of Bandgap Narrowing in Si Bipolar Transistors. Solid-State Electronics, 19:857–62, 1976.CrossRefGoogle Scholar
  276. [1.276]
    J. W. Slotboom and H. C. de Graaff. Bandgap Narrowing in Silicon Bipolar Transistors. IEEE Trans. Electron Devices, ED-24(8): 1123–25, 1977.CrossRefGoogle Scholar
  277. [1.277]
    J. W. Slotboom, G. Streutker, G. J. T. Davids, and P. B. Hartog. Surface Impact Ionization in Silicon Devices. IEDM Tech. Digest, Dec.:494–97, 1987.Google Scholar
  278. [1.278]
    J. W. Slotboom, G. Streutker, M. J. van Dort, P. H. Woerlee, A. Pruijmboom, and D. J. Gravesteijn. Non-local Impact Ionization in Silicon Devices. IEDM Tech. Digest, Dec.:127–30, 1991.Google Scholar
  279. [1.279]
    W. M. Soppa and H.-G. Wagemann. Investigation and Modeling of the Surface Mobility of MOSFET’s from-25°C to +150°C. IEEE Trans. Electron Devices, 35(7):970–77, 1988.CrossRefGoogle Scholar
  280. [1.280]
    F. Stern. Self-Consistent Results for N-type Si Inversion Layers. Phys. Rev. B, 5(12):4891–99, 1972.CrossRefGoogle Scholar
  281. [1.281]
    F. Stern and W. E. Howard. Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit. Phys. Rev., 163(3):816–35, 1967.CrossRefGoogle Scholar
  282. [1.282]
    M. A. Stettier, M. A. Alam, and M. S. Lundstrom. A Critical Examination of the Assumptions Underlying Macroscopic Transport Equations for Silicon Devices. IEEE Trans. Electron Devices, 40(4):733–740, 1993.CrossRefGoogle Scholar
  283. [1.283]
    R. Stratton. Diffusion of Hot and Cold Electrons in Semiconductor Barriers. Phys. Rev., 126(6):2002–14, 1962.CrossRefGoogle Scholar
  284. [1.284]
    N. Strecker, T. Feudel, and W. Fichtner. DIOS: Manual. Technical report, ETH Zurich, Integrated Systems Laboratory, ETH Zentrum, 1992.Google Scholar
  285. [1.285]
    S. C. Sun and J. D. Plummer. Electron Mobility in Inversion and Accumulation Layers on Thermally Oxidized Silicon Surfaces. IEEE Trans. Electron Devices, ED-27(8):1497–1508, 1980.CrossRefGoogle Scholar
  286. [1.286]
    S. E. Swirhun, J. A. del Alamo, and R. M. Swanson. Measurement of Hole Mobility in Heavily Doped n-type Silicon. IEEE Electron Device Letters, EDL-7(3): 168–71, 1986.CrossRefGoogle Scholar
  287. [1.287]
    S. E. Swirhun, D. E. Kane, and R. M. Swanson. Temperature Dependence of Minority Electron Mobility and Bandgap Narrowing in p + Silicon. IEDM Tech. Digest, Dec.:298–301, 1988.Google Scholar
  288. [1.288]
    S. E. Swirhun, Y.-H. Kwark, and R. M. Swanson. Measurement of Electron Lifetime, Electron Mobility and Bandgap Narrowing in Heavily Doped p-type Silicon. IEDM Tech. Digest, Dec.:24–27, 1986.Google Scholar
  289. [1.289]
    S. M. Sze. Physics of Semiconductor Devices, 2nd ed. John Wiley and Sons, New York, 1981.Google Scholar
  290. [1.290]
    S. Takagi, M. Iwase, and A. Toriumi. Effects of Surface Orientation on the Universality of Inversion-Layer Mobility in Si MOSFETs. Extended Abstracts of the Int. Conf. on Solid State Devices and Materials, Sendai, Japan, pp. 275–78, 1990.Google Scholar
  291. [1.291]
    S. Takagi, A. Toriumi, M. Iwase, and H. Tango. On the Universality of Inversion Layer Mobility in Si MOSFETs. IEEE Trans. Electron Devices, 41(12):2357–68, 1994.CrossRefGoogle Scholar
  292. [1.292]
    Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, and K. Iwadate. Novel Fabrication Technique for a Si Single-Electron Transistor and Its High Temperature Operation. In Ext. Abstracts Solid State Devices and Materials SSDM, pp. 189–191, Osaka, Japan, 1995.Google Scholar
  293. [1.293]
    D. D. Tang, F. F. Fang, M. Scheuermann, T. C. Chen, and G. Sai-Halasz. Minority Carrier Transport in Silicon. IEDM Tech. Digest, Dec.:20–23, 1986.Google Scholar
  294. [1.294]
    R. Thoma, A. Emunds, B. Meinerzhagen, H. J. Peifer, and W. L. Engl. Hydrodynamic Equations for Semiconductors with Nonparabolic Band Structure. IEEE Trans. Electron Devices, ED-38(6): 1343–53, 1991.CrossRefGoogle Scholar
  295. [1.295]
    R. Thoma, H. J. Peifer, W. L. Engl, W. Quade, R. Brunetti, and C. Jacoboni. An Improved Impact-Ionization model for High-Energy Electron Transport in Si with Monte Carlo Simulation. J. Appl. Phys., 69(4):2300–11, 1991.CrossRefGoogle Scholar
  296. [1.296]
    K. K. Thornber. Relation of Drift Velocity to Low-Field Mobility and High-Field Saturation Velocity. J. Appl. Phys., 51(4):2127–36, 1980.CrossRefGoogle Scholar
  297. [1.297]
    K. K. Thornber. Applications of Scaling to Problems in High-Field Electronic Transport. J. Appl. Phys., 52(1):279–90, 1981.CrossRefGoogle Scholar
  298. [1.298]
    W. R. Thurber, R. L. Mattis, Y. M. Liu, and J. J. Filliben. Resistivity-Dopant Density Relationship for Boron-Doped Silicon. J. Electrochem. Soc., 127(10):2291–94, 1980.CrossRefGoogle Scholar
  299. [1.299]
    T. Thurgate and N. Chan. An Impact Ionization Model for Two-dimensional Device Simulation. IEEE Trans. Electron Devices, ED-32(2):400–404, 1985.CrossRefGoogle Scholar
  300. [1.300]
    M. S. Tyagi and R. J. van Overstraeten. Minority Carrier Recombination in Heavily-Doped Silicon. Solid-State Electronics, 26(6):577–97, 1983.CrossRefGoogle Scholar
  301. [1.301]
    M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. Juffermanns, and H. Lifka. Influence of High Substrate Doping Levels on the Threshold Voltage and the Mobility of Deep-Submicrometer MOSFET’s. IEEE Trans. Electron Devices, 39(4):932–37, 1992.CrossRefGoogle Scholar
  302. [1.302]
    P. van Mieghem, G. Borghs, and R. P. Mertens. Generalized Semiclassical Model for the Density of States in Heavily Doped Semiconductors. Phys. Rev., B44(23): 12822–29, 1991.Google Scholar
  303. [1.303]
    P. van Mieghem, S. Decoutere, G. Borghs, and R. P. Mertens. Influence of Majority Carrier Bandtails on the Performance of Semiconductor Devices. Solid-State Electronics, 35(5):699–704, 1992.CrossRefGoogle Scholar
  304. [1.304]
    R. J. van Overstraeten, H. J. de Man, and R. P. Mertens. Transport Equations in Heavy Doped Silicon. IEEE Trans. Electron Devices, ED-20(3):290–98, 1973.CrossRefGoogle Scholar
  305. [1.305]
    R. J. van Overstraeten and H. De Man. Measurement of the Ionization Rates in Diffused Silicon p-n Junctions. Solid-State Electronics, 13:583–608, 1970.CrossRefGoogle Scholar
  306. [1.306]
    B. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon. Quantized Conduction of Point Contacts in a Two-Dimensional Gas. Phys. Rev. Lett., 60(9):848–50, 1988.CrossRefGoogle Scholar
  307. [1.307]
    S. H. Voldman, J. B. Johnson, T. D. Linton, and S. L. Titcomb. Unified Generation Model with Donor and Acceptor-Type Trap States for Heavily Doped Silicon. IEDM Tech. Digest, Dec.:349–52, 1990.Google Scholar
  308. [1.308]
    A. A. Volf’son and V. K. Subashiev. Fundamental Absorption Edge of Silicon Heavily Doped with Donor and Acceptor Impurities. Soviet Phys.—Semiconductors, 1:327–32, 1967.Google Scholar
  309. [1.309]
    G. Wachutka. Rigorous Thermodynamic Treatment of Heat Generation and Conduction in Semiconductor Device Modeling. IEEE Trans. Electron Devices, CAD-9:1141–1149, 1990.Google Scholar
  310. [1.310]
    J. Wagner. Photoluminescence and Excitation Spectroscopy in Heavily Doped n-and p-type Silicon. Phys. Rev., B 29(4).2002–09, 1984.Google Scholar
  311. [1.311]
    J. Wagner. Band-Gap Narrowing in Heavily Doped Silicon at 20 and 300 K Studied by Photoluminescence. Phys. Rev., B 32(2): 1323–25, 1985.Google Scholar
  312. [1.312]
    J. Wagner and J. A. del Alamo. Band-Gap Narrowing in Heavily Doped Silicon: A Comparison of Optical and Electrical Data. J. Appl. Phys., 63(2):425–29, 1988.CrossRefGoogle Scholar
  313. [1.313]
    C. H. Wang, K. Misiakos, and A. Neugroschel. Minority-Carrier Transport Parameters in n-Type Silicon. IEEE Trans. Electron Devices, 37(5): 1314–22, 1990.CrossRefGoogle Scholar
  314. [1.314]
    C. H. Wang and A. Neugroschel. Minority-Carrier Transport Parameters in Degenerate n-Type Silicon. IEEE Electron Device Letters, 11(12):576–78, 1990.CrossRefGoogle Scholar
  315. [1.315]
    S.-L. Wang, N. Goldsman, and K. Hennacy. Calculation of Impact Ionization Coefficients with a Third-Order Legendre Polynomial Expansion of the Distribution Function. J. Appl. Phys., 71(4): 1815–22, 1992.CrossRefGoogle Scholar
  316. [1.316]
    Th. Wasserrab. The Temperature Dependence of the Electronic Properties of Intrinsic Silicon. Z. Naturforsch., 32a(7):746–49, 1977.Google Scholar
  317. [1.317]
    H. T. Weaver and R. D. Nasby. Analysis of High-Efficiency Silicon Solar Cells. IEEE Trans. Electron Devices, ED-28(5):465–72, 1981.CrossRefGoogle Scholar
  318. [1.318]
    D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones. One-Dimensional Transport and the Quantization of the Ballistic Resistance. J. Phys., C 21:L209–14, 1988.Google Scholar
  319. [1.319]
    A. W. Wieder. Emitter Effects in Shallow Bipolar Devices: Measurements and Consequences. IEEE Trans. Electron Devices, ED-27(8): 1402–08, 1980.CrossRefGoogle Scholar
  320. [1.320]
    E. P. Wigner. On the Quantum Correction for Thermodynamic Equilibrium. Phys. Rev., 40:749–59, 1932.CrossRefGoogle Scholar
  321. [1.321]
    P. A. Wolff. Theory of Electron Multiplication in Silicon and Germanium. Phys. Rev., 95(6): 1415–20, 1954.CrossRefGoogle Scholar
  322. [1.322]
    H.-S. Wong. “Universal” Effective Mobility of Empirical Local Mobility Models for n-C and p-Channel Silicon MOSFETs. Solid-State Electronics, 36(2): 179–88, 93.Google Scholar
  323. [1.323]
    J. C. S. Woo, J. D. Plummer, and J. M. C. Stork. Non-Ideal Base Current in Bipolar Transistors at Low Temperatures. IEEE Trans. Electron Devices, ED-34(1): 130–38, 1987.CrossRefGoogle Scholar
  324. [1.324]
    M. H. Woods, W. C. Johnson, and M. A. Lampert. Use of a Schottky Barrier to Measure Impact Ionization Coefficients in Semiconductors. Solid-State Electronics, 16:381–94, 1973.CrossRefGoogle Scholar
  325. [1.325]
    H.-J. Wünsche and H. Wenzel. Influence of Surface Recombination on the Rate of Electron Leakage in Ridge-Waveguide Lasers. Phys. Stat. Sol. (a), 111:377–86, 1989.CrossRefGoogle Scholar
  326. [1.326]
    K. Yamaguchi. Field Dependent Mobility Model for Two-dimensional Numerical Analysis of MOSFET’s. IEEE Trans. Electron Devices, ED-26(7): 1968–74, 1979.Google Scholar
  327. [1.327]
    K. Yamaguchi. A Mobility Model for Carriers in the MOS Inversion Layer. IEEE Trans. Electron Devices, ED-30(6):658–63, 1983.CrossRefGoogle Scholar
  328. [1.328]
    S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli. Study of Interface Roughness Dependence of Electron Mobility in Si Inversion Layers Using the Monte Carlo Method. J. Appl. Phys., 79(2):911–16, 1996.CrossRefGoogle Scholar
  329. [1.329]
    T. Yamanaka, S. J. Fang, H.-C. Lin, J. P. Snyder, and C. R. Helms. Correlation between Inversion Layer Mobility and Surface Roughness Measured by AFM. IEEE Electron Device Letters, 17(4): 178–80, 1996.CrossRefGoogle Scholar
  330. [1.330]
    K. Yano, T. Ishii, T. Hashimoto, T. Kobayashi, F. Murai, and K. Seki. Room-Temperature Single Electron Devices. In Proc. Int. Conf. Sol. State Devices and Materials (Japan), 1994.Google Scholar
  331. [1.331]
    J.-R. Zhou and D. K. Ferry. 3D Simulation of Deep-Submicron Devices. IEEE Computational Science and Engineering, Summer: 30–37, 1995.Google Scholar
  332. [1.332]
    R. Zimmermann. Many Particle Theory of Highly Excited Semiconductors. Texte zur Physik, Band 18. BSB Teubner Verlagsgesellschaft Leipzig, 1988.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • Andreas Schenk
    • 1
  1. 1.Institut für Integrierte SystemeETH ZürichSchweiz

Personalised recommendations