Advertisement

Using Genetic Algorithms with Variable-length Individuals for Planning Two-Manipulators Motion

  • J. Riquelme
  • M. A. Ridao
  • E. F. Camacho
  • M. Toro

Abstract

A method based on genetic algorithms for obtaining coordinated motion plans of manipulator robots is presented. A decoupled planning approach has been used; that is, the problem has been decomposed into two subproblems: path planning and trajectory planning. This paper focuses on the second problem. The generated plans minimize the total motion time of the robots along their paths. The optimization problem is solved by evolutionary algorithms using a variable-length individuals codification and specific genetic operators.

Keywords

Path Planning Genetic Operator Lower Left Corner Collision Region Total Motion Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-velocity decomposition. The Int. J. of Robotics Research, 5(3):72–89, 1986.CrossRefGoogle Scholar
  2. [2]
    J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.Google Scholar
  3. [3]
    B. H. Lee and C. S. G. Lee. Collision-free motion planning of two robots. IEEE Trans, on SMC, 17(1):21–32, Jan-Feb 1987.Google Scholar
  4. [4]
    P.A. O’Donnell and T. Lozano-Perez. Deadlock-free and collision-free coordination of two robots manipulators. In Proc. of the IEEE Int. Conf. on Robotics and Automation, pages 484–489, 1989.Google Scholar
  5. [5]
    M. A. Ridao. Generacion Automtica de Trayectorias Libres de Colisiones para Multiples Robots Manipuladores. PhD thesis, Universidad de Sevilla, 1995.Google Scholar
  6. [6]
    M. A. Ridao, J. Riquelme, E. Camacho, and M. Toro. Coordinated motion planning of manipulators by evolution strategies. In Proc. of the 10th Int. Conf. on Applications of AI in Engineering. Udine, 1995.Google Scholar
  7. [7]
    S. F. Smith. A Learning System Based on Genetic Adaptive Algorithms. PhD thesis, University of Pittsburgh, 1980.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • J. Riquelme
    • 1
  • M. A. Ridao
    • 2
  • E. F. Camacho
    • 2
  • M. Toro
    • 1
  1. 1.Dpto. Lenguajes y Sistemas Informáticos. Facultad de Informática y EstadísticaUniversidad de SevillaSpain
  2. 2.Dpto. Ingeniería de Sistemas y Automática. Escuela Superior de IngenierosUniversidad de SevillaSpain

Personalised recommendations