Advertisement

One-Chip Evolvable Hardware: 1C-EHW

  • H. de Garis
Conference paper

Abstract

This paper aims at stimulating discussion and research into a new concept called ‘one-chip evolvable hardware (1C-EHW)’ by proposing a generic architecture and methodology to generate the ultimate in evolvable hardware speed, where all the evolvable hardware components are placed on a single chip.

Keywords

Cellular Automaton Logic Gate Evolvable Hardware Artificial Brain Fabrication Fault 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. F. Codd. Cellular Automata. Academic Press, NY, 1968.MATHGoogle Scholar
  2. [2]
    H. de Garis. Genetic programming: Building artificial nervous systems using genetically programmed neural network modules. In B. W. Porter and R. J. Mooney, editors, Proc. 7th. Int. Conf. on Machine Learning, pages 132–139. Morgan Kaufmann, 1990.Google Scholar
  3. [3]
    H. de Garis. Genetic programming: Modular evolution for Darwin machines. In Proc. Int. Joint Conf. on Neural Networks, 1990.Google Scholar
  4. [4]
    H. de Garis. Genetic Programming, chapter 8. John Wiley, NY, 1991.Google Scholar
  5. [5]
    H. de Garis. Evolvable hardware: Genetic programming of a Darwin machine. In N. C. Steele, R. F. Abrecht. C. R. Reeves, editors, Artificial Neural Networks and Genetic Algorithms, pages 441–449. Springer-Verlag, Wien New York, 1993.CrossRefGoogle Scholar
  6. [6]
    H. de Garis. An Artificial Brain — ATR’s CAM-Brain Project Aims to Build/Evolve an Artificial Brain with a Million Neural Net Modules Inside a Trillion Cell Cellular Automata Machine, volume 12, pages 215–221. Ohmsha Ltd. and Springer-Verlag, 1994.Google Scholar
  7. [7]
    H. de Garis. Genetic Programming: Evolutionary Approaches to Multistrategy Learning, chapter 21. Morgan Kauffman, 1994.Google Scholar
  8. [8]
    H. de Garis. CAM-BRAIN: The Evolutionary Engineering of a Billion Neuron Artificial Brain by 2001 Which Grows/Evolves at Electronic Speeds Inside a Cellular Automata Machine (CAM). In D.W. Pearson, N.C. Steele, R.F. Albrecht, editors, Artificial Neural Networks and Genetic Algorithms, pages 84–87. Springer-Verlag, Wien New York, 1995.CrossRefGoogle Scholar
  9. [9]
    A. de Hon. DPGA utilization and application. In Proc. of the 1996 Int. Symp. on Field Programmable Gate Arrays, ACM/SIGDA, February 1996.Google Scholar
  10. [10]
    F. Gers and H. de Garis. Cam-brain: A new model for ATR’s cellular automata based artificial brain project. In Proc. Int. Conf. on Evolvable Systems ICES96, 1996.Google Scholar
  11. [11]
    F. Gers and H. de Garis. Porting a cellular automata based artificial brain to MIT’s cellular automata machine CAM-8. In Proc. Int. Conf. on Simulated Evolution & Learning, SEAL96, 1996.Google Scholar
  12. [12]
    D.E. Goldberg. Genetic Algorthims in Search Optimization and Machine Learning. Addison Wesley, 1989.Google Scholar
  13. [13]
    T. Higuchi, D. Mange, H. Kitano, and H. Iba, editors. 1996. http://www.etl.go.jp:8080/etl/kikou/ICES96.Google Scholar
  14. [14]
    A. Thompson. Silicon evolution. In Proc. 1st Int. Conf. on Genetic Programming, Cambridge, MA, 1996. MIT Press.Google Scholar
  15. [15]
    T. Toffoli and N. Margolus. Cellular Automata Machines. MIT Press, Cambridge, MA, 1987.Google Scholar
  16. [16]
    T. Toffoli and N. Margolus. Cellular Automata Machines. Addison-Wesley, 1990.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • H. de Garis
    • 1
  1. 1.Brain Builder Group, Evolutionary Systems DepartmentATR Human Information Processing Research LaboratoriesSeika-cho, Soraku-gun, Kansai Science City, Kyoto 619-02Japan

Personalised recommendations