Obstacle Identification by an Ultrasound Sensor Using Neural Networks

  • D. Diep
  • A. Johannet
  • P. Bonnefoy
  • F. Harroy
Conference paper


This paper presents a method for obstacle recognition to be used by a mobile robot. Data are made of range measurements issued from a phased array ultrasonic sensor, characterized by a narrow beam width and an electronically controlled scan. Different methods are proposed: a simulation study using a neural network, and a signal analysis using an image representation. Finally, a solution combining both approaches has been validated.


Neural Network Mobile Robot Learning Rule Obstacle Avoidance Mean Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139, 1991.CrossRefGoogle Scholar
  2. [2]
    G. Cauvy. Etude par réseau de neurones d’un sonar pour robot mobile. Technical report, DEA-USTL, Montpellier, 1995.Google Scholar
  3. [3]
    D. Diep and K. El Kherdali. Un radar ultra-sons pour la localisation d’un robot mobile. In Journées SEE Capteurs en Robotique, 1993.Google Scholar
  4. [4]
    K. El Kherdali. Etude, conception et réalisation d’un radar ultra-sonore. PhD thesis, USTL, Montpellier, 1992.Google Scholar
  5. [5]
    S. Knerr, L. Personnaz, and G. Dreyfus. Handwritten digit recognition by neural networks with single-layer training. IEEE Trans. Neural Networks, 1992.Google Scholar
  6. [6]
    R. Kuc and M.W. Siegel. Physically based simulation model for acoustic sensor robot navigation. IEEE Trans., PAMI 9(6), November 1987.Google Scholar
  7. [7]
    C. Moschetti. Neural network — a connectionist way for artificial intelligence & application to acoustic recognition of shapes. Technical report, IMRA-ESSI DESS, Sophia-Antipolis, 1994.Google Scholar
  8. [8]
    D. Roux, D. Diep, P. Bonnefoy, and F. Harroy. Reconnaissance d’obstacles avec un capteur ultrasonore. In 4 ieme Congrès Français d’Acoustique, Marseille, 1997.Google Scholar
  9. [9]
    I. Sarda and A. Johannet. Behaviour learning by ARP: Prom Gait learning to obstacle avoidance by neural networks. In D. W. Pearson, N. C. Steele, R. F. Albrecht (editors), Artificial Neural Networks and Genetic Algorithms, pages 464–467. Springer-Verlag, Wien New York, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • D. Diep
    • 1
  • A. Johannet
    • 1
  • P. Bonnefoy
    • 2
  • F. Harroy
    • 2
  1. 1.LGI2P — EMA/EERIENîmesFrance
  2. 2.IMRA EuropeSophia AntipolisFrance

Personalised recommendations