Advertisement

Abstract

The Leguminosae is an economically important family in the Dicotyledonae with many cultivated species, e.g., beans and peas. The family also contains many well-known medicinal plants. It is composed of 17,000 or more species that constitute nearly one twelfth of the world’s flowering plants (1). Traditionally the family has been divided into three subfamilies, Caesalpinioideae, Mimosoideae and Papilionoideae, which are sometimes recognized as separate families Caesalpinia ceae, Mimosaceae and Papilionaceae. The International Code of Botanical Nomenclature permits alternative nomenclatures, the family names being replaced by Fabaceae, Fabales and Faboideae, and this usage will be common (2).

Keywords

Aerial Part Hairy Root Culture Glycyrrhizic Acid Cotton Effect Glycyrrhetinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harborne, J.B.: Phytochemistry of the Leguminosae, In: Phytochemical Dictionary of the Leguminosae, vol. 1. Plants and their Constituents. (Bisby, F.A., J. Buckingham, and J.B. Harborne, eds.), pp. xx–xxiii. London: Chapman and Hall, 1994.Google Scholar
  2. 2.
    Polhill, R.M.: Classification of the Leguminosae. In: Phytochemical Dictionary of the Leguminosae, vol. 1. Plants and their Constituents (Bisby, F.A., J. Buckingham, and J.B. Harborne, eds.), pp. xxxv–xlii. London: Chapman and Hall, 1994.Google Scholar
  3. 3.
    Schofield, M.: The History of Glycyrrhiza. Pharm. J., 165, 76 (1950).Google Scholar
  4. 4.
    Gibson, M.R.: Glycyrrhiza in Old and New Perspectives. J. Nat. Prod. (Lloydia), 41, 348 (1978).Google Scholar
  5. 5.
    Fenwick, G.R., J. Lutomski, and C. Nieman: Liquorice, Glycyrrhiza glabra L. Composition, Uses and Analysis. Food Chem., 38, 119 (1990).CrossRefGoogle Scholar
  6. 6.
    Lutomski, J., C. Nieman, and G.R. Fenwick: Liquorice, Glycyrrhiza glabra L. Biological Properties. Herba Polonica, 37, 163 (1991).Google Scholar
  7. 7.
    Takahashi, S.: Kanpo-yaku to Sono Hattensi (Chinese Medicine and History of its Development), Toyama (Japan): Kougensha, 1976.Google Scholar
  8. 8.
    Kubo, M., and T. Tani: Kanpoh Iyaku-gaku (Traditional Sino-Medication), pp. 1–25, Tokyo: Hirokawa-Shoten, 1985.Google Scholar
  9. 9.
    Otsuka, Y.: Introductory Remarks on Licorice from the Viewpoint of Medical History. Taisha (Metabolism Disease, Japan), 10, 613 (1973).Google Scholar
  10. 10.
    Ootuka, K.: Rinshou Ouyou Shokan-Ron Kaisetu (Clinical Application and Annotation of Shang Han Lun). Tokyo: Sogensha, 1966.Google Scholar
  11. 11.
    Maeda, T.: Licorice. Koryo (Flavor, Japan), 134, 53 (1981).Google Scholar
  12. 12.
    Vora, P.S.: Characteristics and Applications of Licorice Products in Tobacco. Tab. Int., 186, 13 (1984).Google Scholar
  13. 13.
    Tatusaki, T.: Licorice in Phytochemical Industry. In: Records of Lecture in 2nd Meeting on Crude Drugs; Licorice, p. 58. Tokyo: Tokyo Soc. Pharmacognosy, 1986.Google Scholar
  14. 14.
    Kusano, G., and M. Shibano: A Try to Revive Glycyrrhiza uralensis in Kanzoh-yashiki. Foods Food Ingredients J. Jpn., 161, 73 (1994).Google Scholar
  15. 15.
    Kuramoto, T., and M. Yamamoto: Monoglucuronylglycyrrhetic Acid (MGGR) from Glycyrrhizic Acid by β-Glucuronidase and Its Use as a Sweetener in Foods. Shokuhin Kogyo (Food Ind., Japan), 33, 46 (1990); Chem. Abstr., 115, 90834v (1991).Google Scholar
  16. 16.
    Jiang, H.-X., Y. Ma, and S.-Q. Zhao: Glycyrrhiza Sweeteners. Shipin Kexue (Food Science, China), 83, 10 (1986); Chem. Abstr., 106, 154836w (1987).Google Scholar
  17. 17a.
    Kawaguchi, Y.: The Inhibitory Effects of Licorice Extracts on Melanogenesis. 1. In Vitro Studies. Jpn. J. Dermatol., 102, 679 (1992); Chem. Abstr., 117, 143385z (1992).Google Scholar
  18. 17b.
    Kawaguchi, Y., K. Goh, Y. Kawa, M. Kashima, and M. Mizoguchi: The Inhibitory Effects of Licorice Extracts on Melanogenesis. 2. In Vivo Studies. Jpn. J. Dermatol., 102, 689 (1992); Chem. Abstr., 117, 143386a (1992).Google Scholar
  19. 18a.
    Ooyama, Y.: Liquiritin for the Removal of Stains from the Skin. Jpn. patent; Chem. Abstr., 117, 55948e (1992).Google Scholar
  20. 18b.
    Shimada, T., and T. Yokoi: Skin-lightening Preparations for Prevention of Freckles and Blemishes. Jpn. patent; Chem. Abstr., 122, 64016e (1995).Google Scholar
  21. 18c.
    Ogawa, K.: Cosmetics Containing Glabridin and Ingredients from Animal Source. Jpn. patent; Chem. Abstr., 122, 64005a (1995).Google Scholar
  22. 18d.
    Magara, T., Y. Shibata, M. Naganuma, M. Fukuda, and R. Kako: Skin-lightening Preparations Containing Antiinflammatory Agents and Alkoxy-salicylates. Jpn. patent; Chem. Abstr., 123, 265807h (1995).Google Scholar
  23. 19.
    Haramoto, I.: Licorice Extract has an Inhibitory Effect on Melanogenesis and Improves Melasma Other Pigmented Lesions by Its Topical Use. St. Marianna Med. J. (Japan), 22, 941 (1994); Chem. Abstr., 123, 25299a (1995).Google Scholar
  24. 20.
    Okabe, S., and H. Ohtsuki: New Drugs of Peptic Ulcer, Pirenzepine, Aspalon, and Cetraxate. Farumashia (J. Pharmac. Soc. Japan), 15, 802 (1979).Google Scholar
  25. 21.
    Department Of Pharmaceutical Sciences, Royal Pharmaceutical Society Of Great Britain. Martindale the Extra Pharmacopoeia, 3rd edn. (Reynolds, J.E.F., ed.), pp. 758, 873, 888, London: The Pharmaceutical Press, 1993.Google Scholar
  26. 22a.
    Tanaka, S., A. Takahashi, K. Onoda, K. Kawashima, S. Nakaura, S. Nagao, Y. Ohno, T. Kawanishi, Y. Nakaji, K. Kobayashi, S. Suzuki, K. Naito, O. Uchida, K. Yasuhara, K. Takada, M. Saito, S. Sekita, Y. Ozaki, H. Suzuki, A. Takanaka, M. Tobe, and M. Harada: Toxicological Studies on Biological Effects of the Herbal Drug Extracts in Rats and Mice. 2. Moutan Bark, Glycyrrhiza and Bupleurum Root. Yakugaku Zasshi, 106, 671 (1986).Google Scholar
  27. 22b.
    Mirsalis, J.C., C.M. Hamilton, J.E. Schindler, C.E. Green, and J.E. Dabbs: Effects of Soya Bean Flakes and Liquorice Root Extract on Enzyme Induction and Toxicity in B6C3F1 Mice. Food Chem. Toxicol., 31, 343 (1993); Chem. Abstr., 119, 94442w (1993).CrossRefGoogle Scholar
  28. 23a.
    Tanaka, M., N. Mano, E. Akazai, Y. Narui, F. Kato, and Y. Koyama: Inhibition of Mutagenicity by Glycyrrhiza Extract and Glycyrrhizin. J. Pharmacobio.-Dyn. (Japan), 10, 685 (1987).CrossRefGoogle Scholar
  29. 23b.
    Ngo, H.N., R.W. Teel, and B.H.S. Lau: Modulation of Mutagenesis, DNA Binding, and Metabolism of Aflatoxin B1 by Licorice Compounds. Nutrition Res., 12, 247 (1992).CrossRefGoogle Scholar
  30. 23c.
    Zani, F., M.T. Cuzzoni, M. Daglia, S. Benvenuti, G. Vampa, and P. Mazza: Inhibition of Mutagenicity in Salmonella typhimurium by Glycyrrhiza glabra Extract, Glycyrrhizinic Acid, 18α-and 18β-Glycyrrhetinic Acids. Planta Med., 59, 502 (1993).CrossRefGoogle Scholar
  31. 23d.
    Niikawa, M., A.-F. Wu, T. Sato, H. Nagase, and H. Kito: Effects of Chinese Medicinal Plant Extracts on Mutagenicity of Trp-P-1. Nat. Med. (Jpn. J. Pharmacognosy), 49, 329 (1995); Chem. Abstr., 124, 76471d (1996).Google Scholar
  32. 24a.
    Takagi, K., and Y. Ishii: Peptic Ulcer Inhibiting Properties of a New Fraction from Licorice Root (FM 100). 1. Experimental Peptic Ulcer and General Pharmacology. Arzneim. Forsch., 17, 1544 (1967).Google Scholar
  33. 24b.
    Takagi, K.: The Pharmacological Action of Glycyrrhizae Radix. Gendai Toyo Igaku (J. Traditional Sino-Japanese Med., Japan), 2, 34 (1981).Google Scholar
  34. 25a.
    Nose, M., M. Ito, K. Kamimura, M. Shimizu, and Y. Ogihara: A Comparison of the Antihepatotoxic Activity between Glycyrrhizin and Glycyrrhetinic Acid. Planta Med., 60, 136 (1994).CrossRefGoogle Scholar
  35. 25b.
    Wang, G.-S., and Z.-W. Han: The Protective Action of Glycyrrhiza Flavonoids against Carbon Tetrachloride Hepatotoxicity in Mice. Yaoxue Xuebao (Acta Pharm. Sinica, China), 28, 572 (1993); Chem. Abstr., 120, 95683h (1994).Google Scholar
  36. 26.
    Wang, Z.-Y., R. Agarwal, W.A. Khan, and H. Mukhtar: Protection against Benzo[a]pyrene-and N-nitrosodiethylamine-Induced Lung and Forestomach Tum-origenesis in A/J Mice by Water Extracts of Green Tea and Licorice. Carcinogenesis, 13, 1491 (1992).CrossRefGoogle Scholar
  37. 27a.
    Toors, F.A., and J.I.B. Herczog: Acid Production from a Nonsugar Licorice and Different Sugar Substitutes in Streptococcus mutans Monoculture and Pooled Plaque-Saliva Mixtures. Caries Res., 12, 60 (1978); Chem. Abstr., 88, 101498r (1978).CrossRefGoogle Scholar
  38. 27b.
    Edgar, W.M.: Reduction in Enamel Dissolution by Liquorice and Glycyrrhizinic Acid. J. Dent. Res., 57, 59 (1978).CrossRefGoogle Scholar
  39. 27c.
    Namba, T., M. Tsunezuka, D.M.R.B. Dissanayake, U. Pilapitiya, K. Saito, N. Kakiuchi, and M. Hattori: Studies on Dental Caries Prevention by Traditional Medicines. 7. Screening of Ayurvedic Medicines for Anti-Plaque Action. Shoya-kugaku Zasshi (Jpn. J. Pharmacognosy), 39, 146 (1985); Chem. Abstr., 104, 31601s (1986).Google Scholar
  40. 27d.
    Suido, H., T. Makino, Y. Yamane, and H. Naeshiro: Dentifrice Containing Substances Extracted from Licorice and Analogous Plants. Jpn. patent; Chem. Abstr., 117, 157447h (1992).Google Scholar
  41. 28.
    Isshiki, K., T. Nishinomiya, N. Nozaka, and K. Tokuoka: Growth Inhibition of Microorganisms by Plant Extracts. Nippon Shokuhin Kogyo Gakkaishi (J. Jpn. Soc. Food Sci. Tech.), 40, 525 (1993); Biol. Abstr., 96, 86549 (1993).CrossRefGoogle Scholar
  42. 29.
    Yoneda, K.: Production and Resources of Licorice. J. Traditional Sino-Japanese Med. (Japan), 14, 74 (1993).Google Scholar
  43. 30.
    Satake, M.: Glycyrrhiza plants. In: Records of Lecture in 2nd Meeting on Crude Drugs; Licorice, p. 1. Tokyo: Tokyo Soc. Pharmacognosy, 1986.Google Scholar
  44. 31.
    International Legume Database And Information Service and Chapman and Hall Chemical Database: Phytochemical Dictionary of the Leguminosae, vol. 1. Plants and their Constituents. (Bisby, F.A., J. Buckingham, and J.B. Harborne, eds.), pp. 338–344. London: Chapman and Hall, 1994.Google Scholar
  45. 32.
    Amirova, G.S., and N.P. Kiryalov: On Chemotaxonomy of Glycyrrhiza L. and Meristotropis Fisch, et Mey. Gen. Zhurn. Obshchei Biol. (USSR), 50, 184 (1989); Chem. Abstr., 111, 36668y (1989).Google Scholar
  46. 33.
    Li, P.-C.: Two New Species of the Genus Glycyrrhiza Linn. (Leguminosae) from China. Xi Bei Zhi Wu Yan Jiu (Act. Bot. Bor.-Occ. Sinica, China), 4, 117 (1984).Google Scholar
  47. 34.
    Jiang Su Xin Yi Xue Yuan: Zhong Yao Da Cidaian (Dictionary of Chinese Crude Drugs), vol. 1, pp. 567–573. Shanghai: Shanghai Ke Xue Ji Shu Chu Ban She, 1977.Google Scholar
  48. 35.
    Zeng, L., S.-H. Li, and Z.-C. Lou: Morphological and Histological Studies of Chinese Licorice. Yaoxue Xuebao (Acta Pharm. Sinica, China), 23, 200 (1988); Biol. Abstr., 86, 72912 (1988).Google Scholar
  49. 36.
    Zeng, L., Z.-C., Lou, and R.-Y. Zhang: Quality Evaluation of Chinese Licorice. Yaoxue Xuebao (Acta Pharm. Sinica, China), 26, 788 (1991); Chem. Abstr., 116, 46404b (1992).Google Scholar
  50. 37.
    The Department Of Statistics, The Tariff Bureau Of The Finance Ministry: Import Data of Foodstuff. Gekkan Fudo Kemikaru (J. Food Chemical, Japan), 15–17, No. 3 (1994–1996).Google Scholar
  51. 38.
    Miyazawa, M., and H. Kameoka: Volatile Flavor Components of Glycyrrhizae Radix (Glycyrrhiza glabra L. var. glandulifera Regel et Herder) from China. Flavor Fragrance J., 5, 157 (1990); Biol. Abstr., 90, 139187 (1990).CrossRefGoogle Scholar
  52. 39.
    Sakagami, H., J. Iseda, M. Kusama, and Y. Ishizu: Volatile Components of Licorice Roots Produced in Different Countries. Nippon Shokuhin Kogyo Gakkaishi (J. Food Ind. Jpn.), 39, 257 (1992); Chem. Abstr., 117, 147229z (1992).CrossRefGoogle Scholar
  53. 40.
    Sakagami, H., K. Hayashi, M. Kusama, and Y. Ishizu: Improvement of Quality of Licorice Extract by Heat Treatment. Nippon Shokuhin Kogyo Gakkaishi (J. Food Ind. Jpn.), 39, 976 (1992); Chem. Abstr., 118, 232172w (1993).CrossRefGoogle Scholar
  54. 41.
    Zolotnitskaya, S. YA.: New Alkaloid-Bearing Plants of the Armenian Flora. Izvest. Akad. Nauk. Armyan SSR, Biol. i Sel’khoz. Nauki, 7, 27 (1954); Chem. Abstr., 48, 11727d (1954).Google Scholar
  55. 42.
    Han, Y.-N., M.-S. Chung, T.-H. Kim, and B.-H. Han: Two Tetrahydroquinoline Alkaloids from Glycyrrhiza uralensis. Arch. Pharm. Res., 13, 101 (1990).CrossRefGoogle Scholar
  56. 43.
    Han, Y.-N., and M.-S. Chung: A Pyrrolo-pyrimidine Alkaloid from Glycyrrhiza uralensis. Arch. Pharm. Res., 13, 103 (1990).CrossRefGoogle Scholar
  57. 44.
    Benetti, G., and R. Renzetti: Alkylpyrazines: Important Aroma Components of Licorice Extracts. Ind. Aliment. (Pinerolo, Italy), 33, 639 (1994); Chem. Abstr., 122, 29983W (1995).Google Scholar
  58. 45.
    Hu, J.-F., and F.-J. Shen: Structure of a New Alkaloid from the Roots of Glycyrrhiza yunnanensis. Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 16, 1245 (1995); Chem. Abstr., 124, 50632g (1996).Google Scholar
  59. 46.
    Dzhumamuratova, A., E. Seitmuratov, D.A. Rakhimov, and Z.F. Ismailov: Polysaccharides of Some Species of Glycyrrhiza. Khim. Prir. Soedin., 1978, 513; Chem. Nat. Comp. (Engl. transl.), 14, 437 (1979).Google Scholar
  60. 47a.
    Shi, Y., and G.-Z. Yang: Effect of GPS on Stimulating Murine Lymphocyte Proliferation. Zhongguo Mianyixue Zazhi (China), 2, 295 (1986); Chem. Abstr., 107, 75921n (1987).Google Scholar
  61. 47b.
    Chang, Y.-P., W.-X. Bi, and G.-Z. Yang: Studies on the Antiviral Effect of Polysaccharide (GPS) from Glycyrrhiza uralensis Fisch. Zhongguo Zhongyao Zazhi (China), 14, 236 (1989); Chem. Abstr., 111, 17206e (1989).Google Scholar
  62. 48.
    Tomoda, M., N. Shimizu, M. Kanari, R. Gonda, S. Arai, and Y. Okuda: Characterization of Two Polysaccharides Having Activity on the Reticuloendothelial System from the Root of Glycyrrhiza uralensis. Chem. Pharm. Bull. (Japan), 38, 1667 (1990).CrossRefGoogle Scholar
  63. 49.
    Shimizu, N., M. Tomoda, M. Kanari, R. Gonda, A. Satoh, and N. Satoh: A Novel Neutral Polysaccharide Having Activity on the Reticuloendothelial System from the Root of Glycyrrhiza uralensis. Chem. Pharm. Bull. (Japan), 38, 3069 (1990).CrossRefGoogle Scholar
  64. 50.
    Mestechnika, N.M., K. Dovletmuradov, and V.D. Shcherbukhin: Seed Galactomannan in the Common Licorice (Glycyrrhiza glabra). Prikl. Biokhim. Mikrobiol., 27, 435 (1991); Applied Biochem. Microbiol. (Engl. transl.), 27, 331 (1991).Google Scholar
  65. 51.
    Zhao, J.-F., H. Kiyohara, X.-B. Sun, T. Matsumoto, J.-C. Cyong, H. Yamada, N. Takemoto, and H. Kawamura: In Vitro Immunostimulating Polysaccharide Fractions from Roots of Glycyrrhiza uralensis Fisch. et D.C. Phytother. Res., 5, 206 (1991).CrossRefGoogle Scholar
  66. 52.
    J.-F. Zhao, H. Kiyohara, H. Yamada, N. Takemoto, and H. Kawamura: Heterogeneity and Characterization of Mitogenic and Anti-Complementary Pectic Polysaccharides from the Roots of Glycyrrhiza uralensis Fisch et D.C. Carbohyd. Res., 219, 149 (1991).CrossRefGoogle Scholar
  67. 53.
    Liu, B.-C., and J.-N. Fang: Isolation, Purification and Chemical Structure of a Glucan from Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 26, 672 (1991); Chem. Abstr., 116, 10278e (1992).Google Scholar
  68. 54.
    Shimizu, N., M. Tomoda, M. Satoh, R. Gonda, and N. Ôhara: Characterization of a Polysaccharide Having Activity on the Reticuloendothelial System from the Stolon of Glycyrrhiza glabra var. glandulifera. Chem. Pharm. Bull. (Japan), 39, 2082 (1991).CrossRefGoogle Scholar
  69. 55.
    Yamada, H., and H. Kiyohara: Antiallergic Polysaccharides Isolated from Plant Roots and Drug Formulation Containing the Same. Jpn. patent; Chem. Abstr., 117, 29140r (1992).Google Scholar
  70. 56.
    Yamada, H., H. Kiyohara, N. Takemoto, J.-F. Zhao, H. Kawamura, Y. Komatsu, J.-C. Cyong, M. Aburada, and E. Hosoya: Mitogenic and Complement Activating Activities of the Herbal Components of Juzen-Taiho-To. Planta Med., 58, 166 (1992).CrossRefGoogle Scholar
  71. 57.
    Shimizu, N., M. Tomoda, K. Takada, and R. Gonda: The Core Structure and Immunological Activities of Glycyrrhizan UA, the Main Polysaccharide from the Root of Glycyrrhiza uralensis. Chem. Pharm. Bull. (Japan), 40, 2125 (1992).CrossRefGoogle Scholar
  72. 58.
    Takada, K., M. Tomoda, and N. Shimizu: Core Structure of Glycyrrhizan GA, the Main Polysaccharide from the Stolon of Glycyrrhiza glabra var. glandulifera; Anti-Complementary and Alkaline Phosphatase-Inducing Activities of the Polysaccharide and Its Degradation Products. Chem. Pharm. Bull. (Japan), 40, 2487 (1992).CrossRefGoogle Scholar
  73. 59.
    Tomoda, T., K. Tsuchiya, N. Shimizu, and N. Ohara: Two Polysaccharides with Biological Activities from the Stolon of Glycyrrhiza glabra var. glandulifera. Pharm. Pharmacol. Letters, 4, 36 (1994); Chem. Abstr., 122, 177862w (1995).Google Scholar
  74. 60.
    Hirano, M., T. Matsumoto, H. Kiyohara, and H. Yamada: Lipopolysaccharide-Independent Limulus Amebocyte Lysate Activating, Mitogenic and Anti-Complementary Activities of Pectic Polysaccharides from Chinese Herbs. Planta Med., 60, 248 (1994).CrossRefGoogle Scholar
  75. 61.
    Hirano, M., H. Kiyohara, and H. Yamada: Existence of a Rhamnogalacturonan II-like Region in Bioactive Pectins from Medicinal Herbs. Planta Med., 60, 450 (1994).CrossRefGoogle Scholar
  76. 62.
    Kiyohara, H., N. Takemoto, J.-F. Zhao, H. Kawamura, and H. Yamada: Pectic Polysaccharides from Roots of Glycyrrhiza uralensis: Possible Contribution of Neutral Oligosaccharides in the Galacturonase-Resistant Region to Anti-Complementary and Mitogenic Activities. Planta Med., 62, 14 (1996).CrossRefGoogle Scholar
  77. 63.
    Higuch, K., K. Kamibaba, O. Matsumoto, M. Cho, Y. Ohtsuka, and Y. Matsumoto: Polyamines of Oriental Drugs. Wakan Iyaku Gakkaishi (J. Traditional Jpn.-Chin. Med. Pharm. Soc., Japan), 2, 250 (1985); Chem. Abstr., 104, 39570b (1986).Google Scholar
  78. 64.
    Zayed, S.M.A., A. Hassan, and M.I. Elghamry: Estrogenic Substances from Egyptian Glycyrrhiza glabra. 2. β-Sitosterol as an Estrogenic Principle. Zentr. Veterinaermed., A11, 476 (1964); Chem. Abstr., 61, 14976a (1964).Google Scholar
  79. 65.
    Jain, S.C., R. Kamal, and A.K. Rathore: A Note on Phytosterols in Some Species. Indian Drugs., 17, 145 (1980); Chem. Abstr., 93, 66139d (1980).Google Scholar
  80. 66.
    Hayashi, H., H. Fukui, and M. Tabata: Distribution Pattern of Saponins in Different Organs of Glycyrrhiza glabra. Planta Med., 59, 351 (1993).CrossRefGoogle Scholar
  81. 67.
    Hu, J.-F., Z.-L. Ye, and F.-J. Shen: New Triterpenoidal Sapogenins from the Roots of Glycyrrhiza yunnanensis. Yaoxue Xuebao (Acta Pharm. Sinica, China), 30, 27 (1995); Chem. Abstr., 123, 22884p (1995).Google Scholar
  82. 68a.
    Gorunovic, M., D. Stosic, D. Runjajic-Antic, and P. Lukic: Glycyrrhiza echinata Seed and Seed Oil. Plant Med. Phytother., 17, 161 (1983); Chem. Abstr., 101, 51726c (1984).Google Scholar
  83. 68b.
    Shirinyan, E.A., A.G. Panosyan, M.L. Barikyan, and O.M. Avakyan: 9,12,13-Trihydroxy-10-octadecanoic and 9,12,13-Trihydroxy-10,11-epoxyoctadecanoic Acids. New Anti-stressor Compounds from Licorice. Izv. Akad. Nauk SSSR, Ser. Biol., 1988, 932; Chem. Abstr., 110, 108136c (1989).Google Scholar
  84. 69a.
    Nishi, H., and I. Morishita: Studies on the Components of Licorice Root Used for Tobacco Flavoring. 1. Fractionation of the Substances in Licorice Root Effective in Improving the Tobacco Smoking Quality. Nippon Nogei Kagaku Kaishi (J. Agric. Chem. Soc. Jpn.), 45, 507 (1971); Chem. Abstr., 76, 151016e (1972).CrossRefGoogle Scholar
  85. 69b.
    Rudolph, A., R. Becker, G. Scholz, Z. Prochazka, J. Toman, T. Macek, and V. Herout: The Normalizing Factor for the Tomato Mutant “Chloronerva”. 22. The Occurrence of the Amino Acid Nicotiamine in Plants and Microorganisms. A Reinvestigation. Biochem. Physiol. Pflanz., 180, 557 (1985); Chem. Abstr., 103, 102083s (1985).Google Scholar
  86. 70.
    Russo, G.: Triterpenes of Glycyrrhiza glabra L. Fitoterapia, 38, 98 (1967); Chem. Abstr., 69, 93590e (1968).Google Scholar
  87. 71.
    Kumagai, A.: Hormone-Like Action of Licorice and Glycyrrhizin. Taisha (Metabolism Disease, Japan), 10, 632 (1973).Google Scholar
  88. 72.
    Watanabe, K.: Pharmacology of Licorice Root. Taisha (Metabolism Disease, Japan), 10, 626 (1973).Google Scholar
  89. 73.
    Oura, H., S. Nakashima, A. Kumagai, and M. Takata: Immunosuppressive Effect of Licorice Root Extracts. Taisha (Metabolism Disease, Japan), 10, 651 (1973).Google Scholar
  90. 74.
    Shibata, S., and T. Saitoh: The Chemical Constituents of Licorice Roots. Taisha (Metabolism Disease, Japan), 10, 619 (1973); Chem. Abstr., 81, 101792n (1974).Google Scholar
  91. 75.
    Yamamoto, M.: Liquorice and Lipid Metabolism. Taisha (Metabolism Disease, Japan), 10, 646 (1973).Google Scholar
  92. 76.
    Yano, S.: Clinical Application of Licorice and Its Historical Background. Taisha (Metabolism Disease, Japan), 10, 659 (1973).Google Scholar
  93. 77.
    Baltassat-Millet, F., and S. Ferry: Pharmacology and Toxicology of Licorice, Glycyrrhiza glabra L. Lyon Pharm., 27, 49 (1976); Chem. Abstr., 84, 144362b (1976).Google Scholar
  94. 78.
    Shibata, S., and T. Saitoh: Flavonoid Compounds in Licorice Root. J. Indian Chem. Soc., 55, 1184(1978).Google Scholar
  95. 79.
    Liu, G.-J.: Xinjiang Gan Cao (Xinjiang Licorice). Urumchi: Xinjiang People’s Publishing House (China), 1982.Google Scholar
  96. 80.
    Nisimoto, K., and I. Yasuda: The Quality of Glycyrrhiza. Gendai Toyo Igaku (J. Traditional Sino-Japanese Med., Japan), 2, 56 (1981); Chem. Abstr., 94, 214409e (1981).Google Scholar
  97. 81.
    Shibata, S.: Chemistry of Licorice Root. Gendai Toyo Igaku (J. Traditional Sino-Japanese Med., Japan), 2, 46 (1981); Chem. Abstr., 94, 214408d (1981).Google Scholar
  98. 82.
    Lutomski, J.: Chemistry and Therapeutic Use of Licorice (Glycyrrhiza glabra L.). Pharm. unserer Zeit, 12, 49 (1983).CrossRefGoogle Scholar
  99. 83.
    Shibata, S.: A Retrospect on the Studies of Naturally Occurring Medicinal Materials. Shoyakugaku Zasshi (Jpn. J. Pharmacognosy), 40, 1 (1986); Chem. Abstr., 105, 84992X (1986).Google Scholar
  100. 84.
    Cai, L., R.-Y. Zhang, and J.-H. Zhang: Advance in Triterpenoids from Glycyrrhiza Plants. Tianran Chanwu Yanjiu Yu Kaifa (Nat. Prod. Research Develop., China), 1 (1), 47 (1989); Chem. Abstr., 115, 275684q (1991).Google Scholar
  101. 85.
    Liu, Q., and Y.-L. Liu: Flavonoids from Glycyrrhiza genus. Zhongguo Yaoxue Zazhi (Chin. Pharm. Bull.), 24, 705 (1989); Chem. Abstr., 113, 20844h (1990).Google Scholar
  102. 86.
    Ayabe, S.: Regulation of Flavonoid Biosynthesis in Cultured Glycyrrhiza echinata Cells. Shokubutu Soshiki Baiyo (Plant Tissue Culture Letters, Japan), 6, 113 (1989); Chem. Abstr., 113, 130602k (1990).CrossRefGoogle Scholar
  103. 87.
    Bielenberg, J.: Licorice can also Induce Intoxication. Pharm. Ztg., 49, 9 (1989); Chem. Abstr., 112, 71703y (1990).Google Scholar
  104. 88.
    Kikuti, H.: Licorice Extract as a Sweetening Agent with Useful Functions. Gekkan Fudo Kemikaru (J. Food Chemistry, Japan), 10, 79 (1989); Chem. Abstr., 112, 34463z (1990).Google Scholar
  105. 89.
    Kitagawa, I.: Chemical Investigation of Naturally Occurring Drug Materials. Elucidation of Scientific Basis for Traditional Medicines and Exploitation of New Naturally Occurring Drugs. Yakugaku Zasshi, 112, 1 (1992).Google Scholar
  106. 90.
    Hiai, S., and T. Nagasawa: Biochemical and Pharmacological Studies on Licorice. Gendai Toyo Igaku (J. Traditional Sino-Japanese Med., Japan), 14, 90 (1993).Google Scholar
  107. 91.
    Kitagawa, I., and K. Hori: Chemical Constituents of Licorice-Roots. Gendai Toyo Igaku (J. Traditional Sino-Japanese Med., Japan), 14, 80 (1993).Google Scholar
  108. 92.
    Baker, M.E.: Licorice and Enzymes Other than 11β-Hydroxysteroid Dehydrogenase: An Evolutionary Perspective. Steroids, 59, 136 (1994).CrossRefGoogle Scholar
  109. 93.
    Yin, J., and L.-G. Guo (eds.): Zhong Yao Xian Dai Yan Jiu Yu Lin Chuang Ying Yong (Modern Chinese Crude Drugs and Its Clinical Applications), pp. 196–212. Beijing (China): Xue Yuan, 1993.Google Scholar
  110. 94.
    Hu, J.-F., and F.-J. Shen: The Deep Exploitation and Comprehensive Utilization of Licorice (Glycyrrhiza L.) in Medicine and Other Parties Concerned. Zhongcaoyao (Chin. Herbal Med.), 26, 39 (1995).Google Scholar
  111. 95.
    Jia, S.-S., and G.-F. Qiu: Active Constituents and Their Exploitation of the Aerial Part of Licorice. Zhongcaoyao (Chin. Herbal Med.), 25, 106 (1994); Chem. Abstr., 121, 5030m (1994).Google Scholar
  112. 96.
    Saito, K.: Molecular Genetics and Biotechnology in Medicinal Plants: Studies by Transgenic Plants. Yakugaku Zasshi, 114, 1 (1994).Google Scholar
  113. 97.
    Feng, X.-Z.: Recent Studies on Flavonoids from Chinese Traditional and Herb Drugs. UNESCO Regional Seminar on the Chemistry, Pharmacology and Clinical Use of Flavonoid Compounds, Abstract Papers, p. 72. Taejon (Korea), October 1995.Google Scholar
  114. 98.
    Zeng, L., R.-Y. Zhang, D. Wang, C.-Y. Gao, and Z.-C. Lou: The Chemical Constituents of Glycyrrhiza aspera Root. Zhiwu Xuebao (Acta Bot. Sinica, China), 33, 124 (1991); Chem. Abstr., 115, 228388m (1991).Google Scholar
  115. 99.
    Kir’yalov, N.P.: New Triterpene Acids from Glycyrrhiza. Vop. Izuch. Ispol’z. Solodki v SSSR, 1966, 123; Chem. Abstr., 68, 66396u (1968).Google Scholar
  116. 100.
    Kitagawa, I., K. Hori, T. Taniyama, J.-L. Zhou, and M. Yoshikawa: Saponin and Sapogenol. 47. On the Constituents of the Roots of Glycyrrhiza uralensis Fischer from Northeastern China. 1. Licorice-Saponins A3, B2, and C2. Chem. Pharm. Bull. (Japan), 41, 43 (1993).CrossRefGoogle Scholar
  117. 101.
    Ruzicka, L., and A.G. van Veen: Saponins, Sapogenins and Analogous Compounds. 2. Relationships between Sapogenins, Higher Terpene Compounds and Sterols. Z. Physiol. Chem., 184, 69 (1929); Chem. Abstr., 24, 856 (1930).CrossRefGoogle Scholar
  118. 102.
    Beovide, D.S.: Licorice Extract and Glycyrrhizic and Glycyrrhetic Acid. Rev. Acad. Cienc. Madrid., 30, 555 (1933); Chem. Abstr., 28, 27196 (1934).Google Scholar
  119. 103.
    Ruzicka, L., and H. Leuenberger: Polyterpenes and Polyterpenoids. 109. Glycyrrhetic Acid. Helv. Chini. Acta, 19, 1402 (1936).CrossRefGoogle Scholar
  120. 104.
    Voss, W., and J. Pfirschke: Glycyrrhizin. 2. A Novel Disaccharide as the Sugar Component of Glycyrrhizin. Chem. Ber., 70, 132 (1937).Google Scholar
  121. 105.
    Ruzicka, L., M. Furter, and H. Leuenberger: Polyterpenes and Polyterpenoids. 111. Empirical Formula of Glycyrrhetic Acid. Helv. Chim. Acta, 20, 312 (1937).CrossRefGoogle Scholar
  122. 106.
    Bergmann, E., and F. Bergmann: Glycyrrhetic Acid. Helv. Chim. Acta, 20, 207 (1937).CrossRefGoogle Scholar
  123. 107.
    Voss, W., P. Klein, and H. Sauer: Glycyrrhizin. Chem. Ber., 70, 122 (1937).Google Scholar
  124. 108.
    Voss, W., and G. Butter: Glycyrrhizin. 3. Isomerism of the Glycyrrhetinic Acids. Chem. Ber., 70, 1212 (1937).Google Scholar
  125. 109.
    Ruzicka, L., and S.L. Cohen: Polyterpenes and Polyterpenoids. 113. Oxidation in the Oleanolic Acid Series without Rupture of the Ring System. Nature of the Fourth Oxygen Atom of Glycyrrhetic Acid. Helv. Chim. Acta, 20, 804 (1937).CrossRefGoogle Scholar
  126. 110.
    Ruzicka, L., H. Leuenberger, and H. Schellenberg: Polyterpenes and Polyterpenoids. 118. Catalytic Hydrogenation of the α,β-Unsaturated Keto Group in Glycyrrhetic Acid and Keto-α-amyrin. Helv. Chim. Acta, 20, 1271 (1937).CrossRefGoogle Scholar
  127. 111.
    Kariyone, T., and O. Nonaka: On the Sweet Constituents of Liquorice Root. 1. Yakugaku Zasshi, 57, 166 (1937).Google Scholar
  128. 112.
    Takeda, K.: Glycyrrhetic Acid. Yakugaku Zasshi, 58, 731 (1938).Google Scholar
  129. 113.
    Kurono, G.: On the Sweet Constituents of Liquorice Root. Yakugaku Zasshi, 58, 770 (1938).Google Scholar
  130. 114.
    Ruzicka, L., and A. Marxer: Studies of Triterpene. 44. Conversion of Glycyrrhetinic Acid into β-Amyrin. Helv. Chim. Acta, 22, 195 (1939).CrossRefGoogle Scholar
  131. 115.
    Viratelle, R.: The Constitution of Glycyrrhizic Acid. Bull. Sci. Pharmacol., 45, 346 (1938); Chem. Abstr., 33, 25281 (1939).Google Scholar
  132. 116.
    Giacomello, G.: Structure of Various Triterpenes. Atti. Acad. Lincei, Classe Sci. Fis. Mat. Nat., 27, 574 (1938); Chem. Abstr., 33, 15678 (1939).Google Scholar
  133. 117.
    Bilham, P., G.A.R. Kon, and W.C.J. Ross: Sapogenins. 14. The Constitution of Glycyrrhetic Acid and Its Relation to Oleanolic Acid. J. Chem. Soc. (London), 1942, 535.Google Scholar
  134. 118.
    Kon, G.A.R., and W.C.J. Ross: Sapogenins. 17. The Position of the Carboxyl Group in Oleanolic and Glycyrrhetic Acids. J. Chem. Soc. (London), 1942, 741.Google Scholar
  135. 119.
    Ruzicka, L., and O. Jeger: Studies of Triterpenes. 67. Position of the Carbonyl Group in Glycyrrhetinic Acid. Helv. Chim. Acta, 25, 775 (1942).CrossRefGoogle Scholar
  136. 120.
    Ruzicka, L., O. Jeger, and M. Winter: Studies of Triterpene. 75. The Position of the Carbonyl Group in Oleanolic Acid and Glycyrrhetinic Acid. Helv. Chim. Acta, 26, 265 (1943).CrossRefGoogle Scholar
  137. 121.
    Ruzicka, L., O. Jeger, and W. Ingold: Studies of Triterpenes. 84. New Proof for the Difference in Position of the Carboxylic Acid Group in Oleanolic and Glycyrrhetinic Acids. Helv. Chim. Acta, 26, 2278 (1943).CrossRefGoogle Scholar
  138. 122.
    Jeger, O., J. Norymberski, and L. Ruzicka: Studies of Triterpenes. 90. An Oxidation Product C32H46O5 from Acetyl-β-amyrin and Two Isomeric Oxidation Products C33H46O7 from Methyl Acetyloleanolate and Methyl Acetylglycyrrhetinate. Helv. Chim. Acta, 27, 1532 (1944).CrossRefGoogle Scholar
  139. 123.
    Lythgoe, B., and S. Trippett: The Constitution of the Disaccharide of Glycyrrhinic Acid. J. Chem. Soc. (London), 1950, 1983.Google Scholar
  140. 124.
    Beaton, J.M., and F.S. Spring: Triterpenoids. 42. The Configuration of the Carboxyl Group in Glycyrrhetic Acid. J. Chem. Soc. (London), 1955, 3126.Google Scholar
  141. 125.
    Murav’ev, I.A., V.D. Ponomarev, and É.K. Kravchenko: The Structure of the Monoammonium Salt of Glycyrrhizic Acid. Khim. Prir. Soedin., 1971, 121; Chem. Nat. Comp. (Engl. transl.), 7, 114 (1973).Google Scholar
  142. 126a.
    Khalilov, L.M., L.A. Baltina, L.V. Spirikhin, E.V. Vasil’eva, R.M. Kondratenko, A.A. Panasenko, and G.A. Tolstikov: 13C NMR Spectra of Biologically Active Compounds. 8. Stereochemistry of a Triterpene Glycoside, Glycyrrhizic Acids, and Its Derivatives. Khim. Prir. Soedin., 1989, 500; Chem. Nat. Comp. (Engl, transl.), 25, 426 (1990).Google Scholar
  143. 126b.
    Shibata, S.: Antitumor-promoting and Anti-inflammatory Activities of Licorice Principles and Their Modified Compounds. In: ACS Symposium Series 547, Food Phytochemicals for Cancer Prevention II. Teas, Spices, and Herbs (Ho, C.-T., T. Osawa, M.-T. Huang, and R. T. Rosen, eds.), pp 308–321. Washington D.C.: American Chemical Society, 1994.CrossRefGoogle Scholar
  144. 127.
    Zhang, R.-Y., J.-H. Zhang, and M.-T. Wang: Studies on the Saponins from the Roots of Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 21, 510 (1986); Chem. Abstr., 105, 187603a (1986).Google Scholar
  145. 128.
    Liu, Q., and Y.-L. Liu: Chemical Constituents of Glycyrrhiza eurycarpa P. C. Li. 2. Zhiwu Xuebao (Acta Bot. Sinica, China), 33, 314 (1991); Chem. Abstr., 116, 102644u (1992).Google Scholar
  146. 129.
    Ayabe, S., H. Takano, T. Fujita, T. Furuya, H. Hirota, and T. Takahashi: Studies on Plant Tissue Cultures. 72. Triterpenoid Biosynthesis in Tissue Cultures of Glycyrrhiza glabra var. glandulifera. Plant Cell Rep., 9, 181 (1990).CrossRefGoogle Scholar
  147. 130.
    Hayashi, H., H. Fukui, and M. Tabata: Examination of Triterpenoids Produced by Callus and Cell Suspension Cultures of Glycyrrhiza glabra. Plant Cell Rep., 7, 508 (1988).CrossRefGoogle Scholar
  148. 131.
    Arias-Castro, C., A.H. Scragg, and M.A. Rodriguez-Mendiola: The Effect of Cultural Conditions on the Accumulation of Formononetin by Suspension Cultures of Glycyrrhiza glabra. Plant Cell, Tissue Organ Cult., 34, 63 (1993).CrossRefGoogle Scholar
  149. 132.
    Henry, M., A.-M. Edy, and B. Marty: Isolation of Licorice Protoplasts (Glycyrrhiza glabra L. var. typica Reg. et Hed.) from Cell Suspension Cultures Not Producing Glycyrrhetinic Acid. C.R. Acad. Sci., Ser. 3, 299, 899 (1984); Chem. Abstr., 102, 182523c (1985).Google Scholar
  150. 133.
    Wu, C.-H., E.M. Zabawa, and P.M. Townsley: The Single Cell Suspension Culture of the Licorice Plant, Glycyrrhiza glabra. Can. Inst. Food. Sci. Tech. J., 7, 105 (1974).Google Scholar
  151. 134.
    Sakamoto, K., K. Iida, and T. Koyano: Glycyrrhizin Manufacture by Tissue Culture of Licorice. Jpn. patent; Chem. Abstr., 114, 80082p (1990).Google Scholar
  152. 135.
    Himi, M., K. Fujita, and S. Yonetani: Glycyrrhizin Manufacture Enhancement by Licorice with Physical Stress. Jpn. patent; Chem. Abstr., 117, 149467z (1992).Google Scholar
  153. 136.
    Tamaki, E., I. Morishita, K. Nishida, K. Kato, and T. Matsumoto: Licorice-like Products as Tobacco Aromatics. Ger. Patent; Chem. Abstr., 77, 85879f (1972).Google Scholar
  154. 137.
    Fujita, Y., K. Teranishi, and T. Furukawa: Glycyrrhizin. Jpn. Patent; Chem. Abstr., 89, 194145g (1978).Google Scholar
  155. 138.
    Hayashi, H., T. Sakai, H. Fukui, and M. Tabata: Formation of Soyasaponins in Licorice Cell Suspension Cultures. Phytochem., 29, 3127 (1990).CrossRefGoogle Scholar
  156. 139.
    Ko, K.-S., H. Noguchi, Y. Ebizuka, and U. Sankawa: Oligoside Production by Hairy Root Cultures Transformed by Ri Plasmids. Chem. Pharm. Bull. (Japan), 37, 245 (1989).CrossRefGoogle Scholar
  157. 140.
    Kojima, K.: Natural Sweetening. Shoku no Kagaku (Food Sci., Japan), 56, 40 (1980).Google Scholar
  158. 141.
    Onishi, T.: Studies again to Sweets Used in Soy Sauce. Chomi Kagaku (Seasoning Sci., Japan), 17, 31 (1970); Chem. Abstr., 76, 2644f (1972).Google Scholar
  159. 142.
    Kuramoto, T., Y. Ito, M. Oda, Y. Tamura, and S. Kitahara: Microbial Production of Glycyrrhetic Acid 3-O-Mono-β-D-glucuronide from Glycyrrhizin by Cryptococcus magnus MG-27. Biosci. Biotech. Biochem. (Japan), 58, 455 (1994).CrossRefGoogle Scholar
  160. 143.
    Mizutani, K., T. Kuramoto, Y. Tamura, N. Ohtake, S. Doi, M. Nakaura, and O. Tanaka: Sweetness of Glycyrrhetic Acid 3-O-β-D-Monoglucuronide and the Related Glycosides. Biosci. Biotech. Biochem. (Japan), 58, 554 (1994).CrossRefGoogle Scholar
  161. 144.
    Swiss Pharmaceutical Society: International Drug Directory 1992/1993, pp. 201, 430. Stuttgart: Medpharm Scientific Publishers, 1992.Google Scholar
  162. 145.
    Japan Pharmaceutical Information Center: Drugs in Japan, Ethical Drugs, 1995-August, pp. 21, 384, 385, 944. Tokyo: Yakugyo Jiho, 1995.Google Scholar
  163. 146.
    Suzuki, H., Y. Ohta, T. Takino, K. Fujisawa, C. Hirayama, N. Shimizu, and Y. Aso: Effects of Stronger Neo-Minophagen C in Chronic Hepatitis, Assessment with Double Blind Test. Igaku no Ayumi (J. Clinical Exper. Med., Japan), 102, 562 (1977).Google Scholar
  164. 147.
    Sekiguchi, S., S. Sakamoto, M. Kaneko, E. Sasaki, and Y. Kasai: Studies of Precaution against Transfusion Hepatitis with Intravenous of Stronger Neo-Minophagen C at High Doses. Gendai Iryou (Modern Therapy, Japan), 14, 341 (1982).Google Scholar
  165. 148.
    Ito, M., H. Nakashima, M. Baba, R. Pauwels, E.D. Clercq, S. Shigeta, and N. Yamamoto: Inhibitory Effect of Glycyrrhizin on the in vitro Infectivity and Cyto-pathic Activity of the Human Immunodeficiency Virus [HIV (HTLV-III/LAV)]. Antiviral Res., 7, 127 (1987).CrossRefGoogle Scholar
  166. 149.
    Gotoh, Y., K. Tada, K. Yamada, M. Minamitani, M. Negishi, M. Fujimaki, S. Ikematsu, M. Hada, K. Mori, M. Ito, S. Shigeta, H. Nakashima, N. Yamamoto, and Y. Shiokawa: Administration of Glycyrrhizin to Patients with Human Immunodeficiency Virus Infection. Igaku no Ayumi (J. Clinical Exper. Med., Japan), 140, 619 (1987).Google Scholar
  167. 150.
    Mori, K., H. Sakai, S. Suzuki, K. Tutui, Y. Akutsu, M. Ishikawa, Y. Seino, Y. Satoh, Y. Gotou, T. Uchida, S. Kariyone, Y. Endo, and A. Miura: Effects of Intravenous Glycyrrhizin (SNMC: Stronger Neo-Minophagen C®) at High Dose for HIV Carrier in Hemophilia Patients. 1. Rinsho to Kenkyu (Jpn. J. Clin. Exp. Med.), 65, 981 (1988).Google Scholar
  168. 151.
    Mori, K., H. Sakai, S. Suzuki, K. Sugai, Y. Akutsu, M. Ishikawa, Y. Seino, N. Ishida, T. Uchida, S. Kariyone, Y. Endo, and A. Miura: Effects of Glycyrrhizin (SNMC: Stronger Neo-Minophagen C®) in Hemophilia Patients with HIV Infection. Tohoku J. Exp. Med. (Japan), 158, 25 (1989); Biol. Abstr., 88, 82439 (1989).CrossRefGoogle Scholar
  169. 152.
    Mori, K., H. Sakai, S. Suzuki, Y. Akutsu, M. Ishikawa, M. Aihara, M. Yokoyama, Y. Sato, S. Okaniwa, Y. Endo, H. Sasaki, S. Saito, T. Hayashi, K. Niikawa, S. Suzuki, T. Uchida, and K. Hiwatashi: The Present Status in Prophylaxis and Treatment of HIV Infected Patients with Hemophilia in Japan. Rinsho Byori (Jpn. J. Clin. Pathol.), 37, 1200 (1989).Google Scholar
  170. 153.
    Endo, Y., S. Mamiya, K. Iwamoto, H. Nirrsu, T. Ito, and A. Miura: The Frequency of the Patients with Positive HIV-Antibody in the Various Groups and the Prognosis of these Patients Treated with Glycyrrhizin (SNMC). Rinsho to Yakuri (Jpn. J. Clin. Pathol.), 38, 188 (1990).Google Scholar
  171. 154.
    Mori, K., H. Sakai, S. Suzuki, K. Sugai, Y. Akutsu, M. Ishikawa, Y. Seino: Effects of High-Dose Glycyrrhizin (SNMC: Stronger Neo-Minophagen C®) in Hemophilia Patients with HIV Infection. 2. Rinsho to Kenkyu (Jpn. J. Clin. Exp. Med.), 66, 1653 (1989).Google Scholar
  172. 155.
    James, J.S.: Berlin Conference: HIV Miscellaneous, Part I. AIDS Treatment News, No. 181 (1993).Google Scholar
  173. 156.
    Mori, K., H. Sakai, S. Suzuki, Y. Akutsu, M. Ishikawa, K. Tada, M. Aihara, Y. Sawada, M. Yokoyama, Y. Sato, Y. Endo, Z. Suzuki, S. Sato, H. Sasaki, S. Yokoyama, T. Hayashi, T. Uchida, K. Hiwatashi, N. Ishida, M. Fujimaki, and K. Yamada: Effects of Glycyrrhizin (SNMC: Stronger Neo-Minophagen C®) in Hemophilia Patients with HIV-1 Infection. J. Naturopathic Med., 4, 2 (1993).Google Scholar
  174. 157.
    Smith, D.: Glycyrrhiza: Research Still Promising, Still Limited. Aids Treatment News No. 103, 2nd item (1990).Google Scholar
  175. 158.
    Elgamal, M.H.A., M.B.E. Fayez, and G. Snatzke: Constituents of Local Planta. 6. Liquoric Acid, a New Triterpenoid from the Roots of Glycyrrhiza glabra L. Tetrahedron, 21, 2109 (1965).CrossRefGoogle Scholar
  176. 159.
    Canonica, L., Russo, G, and A. Bonati: Triterpenes of Glycyrrhiza glabra. 1. Two New Lactones with an Oleanane Structure. Gazz. Chim. Ital., 96, 772 (1966).Google Scholar
  177. 160.
    Canonica, L., G. Russo, and E. Bombardelli: Triterpenes of Glycyrrhiza glabra. 2. Liquiritic Acid. Gazz. Chim. Ital., 96, 833 (1966).Google Scholar
  178. 161.
    Canonica, L., B. Danieli, P. Manitto, and G. Russo: Triterpenes of Glycyrrhiza glabra. 3. Structure of Isoglabrolide. Gazz. Chim. Ital., 96, 843 (1966).Google Scholar
  179. 162.
    Canonica, L., B. Danieli, G. Russo, and A. Bonati: Triterpenes from Glycyrrhiza glabra. 4. 18α-Hydroxyglycyrrhetic Acid. Gazz. Chim. Ital., 97, 769 (1967).Google Scholar
  180. 163.
    Canonica, L., B. Danieli, P. Manitto, G. Russo, and E. Bombardelli: Glycyrrhiza glabra Triterpenes. 5. Glycyrretol and 21α-Hydroxyisoglabrolide. Gazz. Chim. Ital., 97, 1347 (1967).Google Scholar
  181. 164.
    Canonica, L., B. Danieli, P. Manitto, G. Russo, and A. Bonati: Glycyrrhiza glabra Triterpenes. 6. 24-Hydroxyglycyrrhetic Acid and 24-Hydroxy-11-deoxyglycyr-rhetic Acid. Gazz. Chim. Ital., 97, 1359 (1967).Google Scholar
  182. 165.
    Russo, G.: Triterpenoids. Corsi Semin. Chim., 1968, 20; Chem. Abstr., 72, 21799u (1970).Google Scholar
  183. 166.
    Canonica, L., B. Danieli, M. Bruno, R. Paolo, G. Russo, E. Bombardelli, and A. Bonati: Triterpenes of Glycyrrhiza glabra. 7. 24-Hydroxyliquiritic Acid [3β,24-Dihydroxy-11-oxoolean-12-en-29-oic acid] and Liquiridiolic Acid [3β,21α,24-Tri-hydroxyolean-12-en-29-oic acid]. Gazz. Chim. Ital., 98, 712 (1968).Google Scholar
  184. 167.
    Beaton, J.M., and F.S. Spring: Triterpenoids. 51. The Isolation and Characterization of Glabric Acid, a New Triterpenoid Acid from Liquorice Root. J. Chem. Soc. (London), 1956, 2417.Google Scholar
  185. 168.
    Elgamal, M.H.A., and M.B.E. Fayez: The Structure of Glabric Acid, a Further Triterpenoid Constituent of Glycyrrhiza glabra L. Acta Chim. Acad. Sci. Hungar., 58, 75 (1968); Chem. Abstr., 70, 29115x (1969).Google Scholar
  186. 169.
    Bogatkina, V.F., I.A. Murav’ev, E.F. Stepanova, and N.P. Kir’yalov: Triterpene Compounds from the Epigeal Mass of Glycyrrhiza glabra. Khim. Prir. Soedin., 1974, 101; Chem. Nat. Comp. (Engl. transl.), 10, 114 (1976).Google Scholar
  187. 170.
    Kir’yalov, N.P., and T.N. Naugol’naya: A New Triterpene Hydroxy Oxo Acid, Uralenic Acid, from Glycyrrhiza uralensis. Zhurn. Obshchei Khimii (USSR) 34, 2814 (1964); Chem. Abstr., 61, 14725e (1964).Google Scholar
  188. 171.
    Kir’yalov, N.P., and Muravev, I.A.: Triterpenoid Compounds of Glycyrrhiza glabra Grass. Khim. Prir. Soedin., 1970, 770; Chem. Abstr., 74, 95466w (1971).Google Scholar
  189. 172.
    Belous, V.N., L.G. Matyukhina, and A.A. Ryabinin: Uralenic acid. Zhurn. Obshchei Khimmii (USSR), 35, 401 (1965); Chem. Abstr., 62, 13186a (1965).Google Scholar
  190. 173.
    Elgamal, M.H.A., and B.A.H. El-Tawil: Constituents of Local Plants. 18. 28-Hydroxyglycyrrhetic Acid, a New Triterpenoid Isolated from the Roots of Glycyr-rhiza glabra. Planta Med., 27, 159 (1975).CrossRefGoogle Scholar
  191. 174.
    Shu, Y.-H., Y.-I. Zhao, and R.-Y. Zhang: Isolation and Structural Identification of Triterpene Sapogenins from Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 20, 193 (1985); Chem. Abstr., 103, 119932r (1985).Google Scholar
  192. 175.
    Shu, Y.-H., R.-Y. Zhang, Y.-Y. Zhao, J.-W. Zhang, and W.-D. Tong: Isolation and Structure Determination of New Triterpene Sapogenins from Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 22, 512 (1987); Chem. Abstr., 107, 214819a (1987).Google Scholar
  193. 176.
    Jia, Q., B. Wang, Y.-H. Shu, R.-Y. Zhang, C.-Y. Gao, L. Qiao, and J.-H. Pang: The Structure of Glyuranolide, a New Triterpene of Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 24, 348 (1989); Chem. Abstr., 111, 228990u (1989).Google Scholar
  194. 177.
    Gao, C.-Y., L. Qiao, Q. Jia, and Z.-L. Zhang: Study and Identification of the Chemical Structure of a New Component in Glycyrrhiza uralensis Fisch. by NMR Method. Bopuxue Zazhi (Chin. J. Mag. Res.), 7, 11 (1990); Chem. Abstr., 113, 55907h (1990).Google Scholar
  195. 178.
    Shen, F.-J., J.-F. Hu, Y.-C. Yu, Z.-D. Xu: Studies on Chemical Constituents of Glycyrrhiza uralensis Fisch. Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 16, 572 (1995); Chem. Abstr., 123, 138758t (1995).Google Scholar
  196. 179.
    Kir’yalov, N.P., V.F. Bogatkina, and E.Yu. Barkaeva: Triterpenoids of the Roots of Glycyrrhiza uralensis. Khim. Prir. Soedin., 1974, 102; Chem. Nat. Comp. (Engl. transl.), 10, 112(1975).Google Scholar
  197. 180.
    Semenchenko, V.F.: Chemical Characteristics of Glycyrrhiza echinata Roots. Rast. Resur., 5, 394 (1969); Chem. Abstr., 72, 19117b (1970).Google Scholar
  198. 181.
    Kir’yalov, N.P., and T.N. Naugol’naya: A New Triterpene Acid (Macedonic Acid) from Glycyrrhiza macedonica. Zhurn. Obshchei Khimii (USSR), 33, 697 (1963); Chem. Abstr., 59, 679f (1963).Google Scholar
  199. 182.
    Kiryalov, N.P., and T.N. Naugol’naya: Triterpene Acid (Echinatic Acid) from the Roots of Glycyrrhiza echinata. Zhurn. Obshchei Khimii (USSR), 33, 700 (1963); Chem. Abstr., 59, 2867d (1963).Google Scholar
  200. 183.
    KI’Ryalov, N.P.: Structure of Macedonic Acid. Khim. Prir. Soedin., 1969, 448; Chem. Abstr., 72, 67136d (1970).Google Scholar
  201. 184.
    Kiryalov, N.P., and V.F. Bogatkina: Isomacedonic Acid from the Roots of Glycyrrhiza echinata. Khim. Prir. Soedin., 7, 123 (1971); Chem. Nat. Comp. (Engl. transl.), 7, 117(1971).Google Scholar
  202. 185.
    Zorina, A.D., L.G. Matyukhina, I.A. Saltykova, and A.G. Shawa: The Structures of Macedonie and Isomacedonic Acids. Zhurn. Org. Khim., 9, 1673 (1973); J. Organ. Chem. (Engl. transl.), 9, 1696 (1974).Google Scholar
  203. 186.
    Zorina, A.D., L.G. Matyukhina, A.G. Chawa, and L.A. Saltikova: Structure of Macedonic Acid, a Pentacyclic Triterpene. Tetrahedron Letters, 1972, 1841.Google Scholar
  204. 187.
    Semenchenko, V.F.: Echinatic Acid from the Roots of Glycyrrhiza macedonica. Khim. Prir. Soedin., 6, 490 (1970); Chem. Nat. Comp. (Engl. transl.), 6, 512 (1970).Google Scholar
  205. 188.
    Kir’yalov, N.P., and V.F. Bogatkina: Structure of Echinatic Acid. Khim. Prir. Soedin., 1969, 447; Chem. Abstr., 72, 67137e (1970).Google Scholar
  206. 189.
    Kir’yalov, N.P., and V.F. Bogatkina: Isoechinatic Acid from Glycyrrhiza echinata Roots. Khim. Prir. Soedin., 1971, 378; Chem. Abstr., 75, 115893j (1971).Google Scholar
  207. 190.
    Kir’yalov, N.P., and V.F. Bogatkina: Structure of Echinatic and Isoechinatic Acids. Khim. Prir. Soedin., 1977, 120; Chem. Abstr., 88, 7105p (1978).Google Scholar
  208. 191.
    Mirhom, Y.W., A.G. Hanna, M.H.A. Elgamal, K. Szendrei, and J. Reisch: A Novel Triterpenoid Isolated from the Roots of Glycyrrhiza echinata L. Z. Naturforsch., 45b, 1111 (1990).Google Scholar
  209. 192.
    Zeng, L., R.-Y. Zhang, P. Wei, D. Wang, C.-Y. Gao, and Z.-C. Lou: New Triter-penoidal Sapogenins from the Roots of Glycyrrhiza yunnanensis. Yaoxue Xuebao (Acta Pharm. Sinica, China), 25, 515 (1990); Chem. Abstr., 114, 20975x (1991).Google Scholar
  210. 193.
    Zeng, L., R.-Y. Zhang, D. Wang, and Z.-C. Lou: Two Triterpenoids from Roots of Glycyrrhiza yunnanensis. Phytochem., 29, 3605 (1990).CrossRefGoogle Scholar
  211. 194.
    Zeng, L., R.-Y. Zhang, D. Wang, J.-H. Pang, Z.-L. Zhang, C.-Y. Gao, and Z.-C. Lou: Glyyunnanprosapogenin and Glyyunnansapogenin from the Roots of Glycyrrhiza yunnanensis. Yaoxue Xuebao (Acta Pharm. Sinica, China), 25, 750 (1990); Chem. Abstr., 117, 86657p (1992).Google Scholar
  212. 195.
    Zeng, L., R.-Y. Zhang, D. Wang, Z.-L. Zhang, and Z.-C. Lou: Glyyunnansapogenins G and H: Two New Pentacyclic Triterpenoids of the 18αH-01eana-9(11),12-diene Type from Glycyrrhiza yunnanensis Roots. Planta Med., 57, 165 (1991).CrossRefGoogle Scholar
  213. 196.
    Liu, J.-H., S.-S. Yang, Y.-Q. Fu, C.-L. Yuan, and B. Liu: Studies on Chemical Constituents from Glycyrrhiza pallidiflora Maxim. Yaoxue Xuebao (Acta Pharm. Sinica, China), 25, 689 (1990); Chem. Abstr., 114, 160672w (1991).Google Scholar
  214. 197.
    Murav’ev, I.A., V.F. Semenchenko, and L.V. Kukhareva: Macedonic Acid from the Roots of Glycyrrhiza pallidiflora. Khim. Prir. Soedin., 1971, 122; Chem. Nat. Comp. (Engl. transl.), 7, 116 (1973).Google Scholar
  215. 198.
    Kan, Y.-M., H.-B. Zhao, X.-H. Liu, Y. Zhu, R. Xia, Y.-P. Zhu, and M. Lin: Chemical Constituents of Glycyrrhiza pallidiflora (Prickly Fruit Licorice). Zhongcaoyao (Chin. Herbal Med.), 25, 3 (1994); Chem. Abstr., 121, 91431x (1994).Google Scholar
  216. 199.
    Kan, Y.-M., and R.-G. Wang: Constituents of Glycyrrhiza pallidiflora. Fitoterapia, 65, 91 (1994); Chem. Abstr., 121, 153319c (1994).Google Scholar
  217. 200.
    Kir’yalov, N.P., V.F. Bogatkina, and T.P. Nadezhina: Glabrolide from Glycyrrhiza aspera Roots. Khim. Prir. Soedin., 1973, 277; Chem. Abstr., 79, 40014v (1973).Google Scholar
  218. 201.
    Kir’yalov, N.P., V.F. Bogatkina, and T.P. Nadezhina: 24-Hydroxyglycyrrhetic Acid from the Roots of Glycyrrhiza korshinskyi. Khim. Prir. Soedin., 1972, 395; Chem. Nat. Comp. (Engl. transl.), 8, 393 (1974).Google Scholar
  219. 202.
    Liang, H., and R.-Y. Zhang: Studies on the Triterpenoids from Roots of Glycyrrhiza squamulosa Froanch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 28, 116 (1993); Chem. Abstr., 119, 91203h (1993).Google Scholar
  220. 203.
    Kitagawa, I., J.-L. Zhou, M. Sakagami, T. Taniyama, and M. Yoshikawa: Licorice-Saponins A3, B2, C2, D3, and E2, Five New Oleanene-Type Triterpene Oligoglyco-sides from Chinese Glycyrrhizae Radix. Chem. Pharm. Bull. (Japan), 36, 3710 (1988).CrossRefGoogle Scholar
  221. 204.
    Kitagawa, I., J.-L. Zhou, M. Sakagami, E. Uchida, and M. Yoshikawa: Licorice-saponins F3, G2, H2, J2, and K2, Five New Oleanene-Triterpene Oligoglycosides from the Root of Glycyrrhiza uralensis. Chem. Pharm. Bull. (Japan), 39, 244 (1991).CrossRefGoogle Scholar
  222. 205.
    Kitagawa, I., K. Hori, M. Sakagami, J.-L. Zhou, and M. Yoshikawa: Saponin and Sapogenol. 48. On the Constituents of the Roots of Glycyrrhiza uralensis Fischer from Northeastern China. 2. Licorice-Saponins D3, E2, F3, G2, H2, J2, and K2. Chem. Pharm. Bull. (Japan), 41, 1337 (1993).CrossRefGoogle Scholar
  223. 206.
    Kitagawa, I., K. Hori, E. Uchida, W.-Z. Chen, M. Yoshikawa, and J. Ren: Saponin and Sapogenol. 50. On the Constituents of the Roots of Glycyrrhiza uralensis Fischer from Xinjiang, China. Chemical Structures of Licorice-Saponin L3 and Isoliquiritin Apioside. Chem. Pharm. Bull. (Japan), 41, 1567 (1993).CrossRefGoogle Scholar
  224. 207.
    Sasaki, Y., K. Mizutani, R. Kasai, and O. Tanaka: Solubilizing Properties of Glycyrrhizin and Its Derivatives: Solubilization of Saikosaponin-a, the Saponin of Bupleuri Radix. Chem. Pharm. Bull. (Japan), 36, 3491 (1988).CrossRefGoogle Scholar
  225. 208.
    Cai, L.-N., R.-Y. Zhang, Z.-L. Zhang, B. Wang, L. Qiao, L.-R. Huang, and J.-R. Cheng: The Structure of Glyeurysaponin. Yaoxue Xuebao (Acta Pharm. Sinica, China), 26, 447 (1991); Chem. Abstr., 115, 252089k (1991).Google Scholar
  226. 209.
    Kitagawa, I., M. Sakagami, F. Hashiuchi, J.-L. Zhou, M. Yoshikawa, and J.-L. Ren: Apioglycyrrhizin and Araboglycyrrhizin, Two New Sweet Oleanene-Type Triter-pene Oligoglycosides from the Root of Glycyrrhiza inflata. Chem. Pharm. Bull. (Japan), 37, 551 (1989).CrossRefGoogle Scholar
  227. 210.
    Kitagawa, I., K. Hori, M. Sakagami, F. Hashiuchi, M. Yoshikawa, and J. Ren: Saponin and Sapogenol. 49. On the Constituents of the Roots of Glycyrrhiza inflata Batalin from Xinjiang, China. Characterization of Two Sweet Oleanane-Type Triterpene Oligoglycosides, Apioglycyrrhizin and Araboglycyrrhizin. Chem. Pharm. Bull. (Japan), 41, 1350 (1993).CrossRefGoogle Scholar
  228. 211.
    Zou, K., and R.-Y. Zhang: Constituents from Glycyrrhiza inflata and Antioxidant Activities of Phenols from the Roots of Glycyrrhiza Spp. (Abstract of Master thesis of K. Zou). J. Chin. Pharm. Sci., 3, 90 (1994); Chem. Abstr., 122, 51291r (1995).Google Scholar
  229. 212.
    Zou, K., L.-N. Cai, and R.-Y. Zhang: Structure Identification of Inflasaponin III and Inflasaponin V. Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.), 15, 845 (1994); Chem. Abstr., 121, 297132j (1994).Google Scholar
  230. 213.
    Zou, K., Y.-Y. Zhao, and R.-Y. Zhang: Structure Determination of Two Saponins from Glycyrrhiza inflata Bat. Yaoxue Xuebao (Acta Pharm. Sinica, China), 29, 393 (1994); Chem. Abstr., 121, 251348f (1994).Google Scholar
  231. 214.
    Zou, K., Y.-Y. Zhao, and R.-Y. Zhang: Structure Determination of Inflasaponin II and VI from Glycyrrhiza inflata Root. J. Chin. Pharm. Sci., 4, 113 (1995); Chem. Abstr., 124, 50610y (1996).Google Scholar
  232. 215.
    Varshney, I.P., D.C. Jain, and H.C. Srivastava: Study of Saponins from Glycyrrhiza glabra Root. Int. J. Crude Drug Res., 21, 169 (1983); Chem. Abstr., 101, 187933a (1984).Google Scholar
  233. 216.
    Gao, D.-Y., R.-Y. Zhang, and B. Yao: Structure Identification of Yunnanglysaponin A and B. J. Chin. Pharm. Sci., 3, 1 (1994); Chem. Abstr., 122, 76495y (1995).Google Scholar
  234. 217.
    Ohtani, K., K. Ogawa, R. Kasai, C.-R. Yang, K. Yamasaki, J. Zhou, and O. Tanaka: Studies on the Constituents of Glycyrrhiza yunnanensis. 1. Oleanane Glycosides from Glycyrrhiza yunnanensis Roots. Phytochem., 31, 1747 (1992).CrossRefGoogle Scholar
  235. 218.
    Ohtani, K., R. Kasai, C.-R. Yang, K. Yamasaki, J. Zhou, and O. Tanaka: Studies on the Constituents of Glycyrrhiza yunnanensis. 2. Oleanane Glycosides from Roots of Glycyrrhiza yunnanensis. Phytochem., 36, 139 (1994).CrossRefGoogle Scholar
  236. 219.
    Shibano, M., Y. Matumoto, G. Kusano, and T. Shibata: Researches of Glycyrrhiza Species Grown at Medicinal Plant Gardens in Japan and Basic Studies for Identification. 42nd Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 237. Fukuyama, September 1995.Google Scholar
  237. 220.
    Hayashi, H., H. Fukui, and M. Tabata: Biotransformation of 18-β-Glycyrrhetinic Acid by Cell Suspension Cultures of Glycyrrhiza glabra. Phytochem., 29, 2149 (1990).CrossRefGoogle Scholar
  238. 221.
    Hayashi, H., K. Yamada, H. Fukui, and M. Tabata: Metabolism of Exogenous 18β-Glycyrrhetinic Acid in Cultured Cells of Glycyrrhiza glabra. Phytochem., 31, 2729 (1992).CrossRefGoogle Scholar
  239. 222a.
    Hayashi, H., S. Hanaoka, S. Tanaka, H. Fukui, and M. Tabata: Glycyrrhetinic Acid 24-Hydroxylase Activity in Microsomes of Cultured Licorice Cells. Phytochem., 34, 1303 (1993).CrossRefGoogle Scholar
  240. 222b.
    Hayashi, H., Y. Nishiyama, N. Tomizawa, N. Hiraoka, and Y. Ikeshiro: UDP-Glucurinic Acid: Triterpene Glucuronosyltransferase Activity in Cultured Licorice Cells. Phytochem., 42, 665 (1996).CrossRefGoogle Scholar
  241. 223.
    Dorisse, P., J. Gleye, P. Loiseau, P. Puig, A.M. Edy, and M. Henry: Papaverine Biotransformation in Plant Cell Suspension Cultures. J. Nat. Prod., 51, 532 (1988).CrossRefGoogle Scholar
  242. 224.
    Asada, Y., H. Saito, T. Yoshikawa, K. Sakamoto, and T. Furuya: Biotransformation of 18β-Glycyrrhetinic Acid by Ginseng Hairy Root Culture. Phytochem., 34, 1049 (1993).CrossRefGoogle Scholar
  243. 225.
    Zeng, L., R.-Y. Zhang, and Z.-C. Lou: Separation and Quantitative Determination of Three Saponins in Licorice Root by High-Performance Liquid Chromatography. Yaoxue Xuebao (Acta Pharm. Sinica, China), 26, 53 (1990); Chem. Abstr., 114, 192690s (1991).Google Scholar
  244. 226.
    Kattaev, N.S., and G.K. Nikonov: Glabranin, a New Flavanone from Glycyrrhiza glabra. Khim. Prir. Soedin., 1972, 805; Chem. Nat. Comp. (Engl, transl.), 8, 790 (1974).Google Scholar
  245. 227a.
    Ishii, Y., and N. Sugawara: Pharmacological Studies of FM 100, an Antiulcer Fraction of Licorice Root. Ouyou Yakuri (Applied Pharmacology, Japan), 7, 871 (1973); Chem. Abstr., 80, 66677j (1974).Google Scholar
  246. 227b.
    Itoh, M., N. Asakawa, Y. Hashimoto, M. Ishibashi, and H. Miyazaki: Quantitative Analysis of Glycyrrhizin and Glycyrrhetinic Acid in Plasma after Administration of FM-100 by Using Gas Chromatography-Selected Ion Monitoring. Yakugaku Zasshi, 105, 1150(1985).Google Scholar
  247. 228.
    Hatano, T., T. Fukuda, Y.-Z. Liu, T. Noro, and T. Okuda: Phenolic Constituents of Licorice. 4. Correlation of Phenolic Constituents and Licorice Specimens from Various Sources, and Inhibitory Effects of Licorice Extracts on Xanthine Oxidase and Monoamine Oxidase. Yakugaku Zasshi, 111, 311 (1991).Google Scholar
  248. 229.
    Shinoda, J., and S. Ueeda: A New Flavanone Glycoside from Glycyrrhiza glabra L. var. glandulifera Regel et Herder. Yakugaku Zasshi, 54, 707 (1934).Google Scholar
  249. 230.
    Shinoda, J., and S. Ueeda: The Flavanone Glycoside in Glycyrrhiza glabra L. var. glandulifera Regel et Herder. Chem. Ber., 67, 434 (1934).Google Scholar
  250. 231.
    Puri, B., and T.R. Seshadri: Survey of Anthoxanthines. 5. Coloring Matter of Liquorice Roots. J. Sci. Ind. Res., 13B, 475 (1954).Google Scholar
  251. 232a.
    Litvinenko, V.I., and G.V. Obolentseva: Chemical and Pharmacological Investigation of Flavonoids from Licorice (Glycyrrhiza glabra and Glycyrrhiza uralensis). Med. Prom. SSSR, 18, 20 (1964); Chem. Abstr., 62, 8286a (1965).Google Scholar
  252. 232b.
    Arakawa, H., and M. Nakazaki: Absolute Configuration of (-)-Hesperetin and (-)-Liquiritigenin. Chem. Ind. (London), 1960, 73; Chem. Abstr., 54, 9901a (1960).Google Scholar
  253. 233.
    Gaffield, W.: Circular Dichroism, Optical Rotatory Dispersion and Absolute Configuration of Flavanones, 3-Hydroxyflavanones and Their Glycosides; Determination of Aglycone Chirality in Flavanone Glycosides. Tetrahedron, 26, 4093 (1970).CrossRefGoogle Scholar
  254. 234.
    LITVINENKO, V.I., N.P. Maksyutina, and I.G. Kolesnikov: Flavonoid Compounds of Glycyrrhiza glabra. Zhurn. Obshchei Khimii (USSR), 33, 296 (1963); Chem. Abstr., 59, 1744b (1963).Google Scholar
  255. 235.
    Hoton-Dorge, M.: Identification of Some Flavonoid Aglycone Extracts of Glycyrrhiza glabra Roots. J. Pharm. Belg., 29, 560 (1974); Chem. Abstr., 83, 111099x (1975).Google Scholar
  256. 236.
    Litvinenko, V.I.: Chalcone Glycoside of Glycyrrhiza glabra. Dokl. Akad. Nauk (SSSR), 155, 600 (1964); Chem. Abstr., 60, 14579d (1964).Google Scholar
  257. 237.
    Afchar, D., A. Cave, and J. Vaquette: Study of Licorices of Iran. 1. Flavonoids of Glycyrrhiza glabra var. glandulifera. Plant. Med. Phytother., 14, 46 (1980); Chem. Abstr., 93, 91865v (1980).Google Scholar
  258. 238.
    Nakanishi, T., A. Inada, K. Kambayashi, and K. Yoneda: Flavonoid Glycosides of the Roots of Glycyrrhiza uralensis. Phytochem., 24, 339 (1985).CrossRefGoogle Scholar
  259. 239.
    Miething, H., A. Speicher-Brinker, and R. Haensel: HPLC Analysis of Flavonoids from Licorice Root and their Pharmaceutical Preparations. PZ Wiss., 3, 253 (1990); Chem. Abstr., 115, 99427x (1991).Google Scholar
  260. 240.
    van Hulle, C., P. Braeckman, and M. Vandewalle: Isolation of Two New Flavonoids from the Root of Glycyrrhiza glabra var. typica. Planta Med., 20, 278 (1971).CrossRefGoogle Scholar
  261. 241.
    Litvinenko, V.I.: Flavonoid Compounds of Glycyrrhiza uralensis. Farmatsevt. Zh. (Kiev), 18, 20 (1963); Chem. Abstr., 60, 6700g (1964).Google Scholar
  262. 242.
    Litvinenko, V.I., and I.P. Kovalev: Licuraside, a New Flavonoid Glycoside of Glycyrrhiza glabra. Dokl. Akad. Nauk (SSSR), 169, 347 (1966); Doklady (Engl. transl.), 169, 691 (1966), Chem. Abstr., 65, 13811c (1966).Google Scholar
  263. 243.
    Miething, H., and A. Speicher-Brinker: Neolicuroside, a New Chalcone Glycoside from the Roots of Glycyrrhiza glabra. Arch. Pharm. (Weinheim), 322, 141 (1989); Chem. Abstr., 111, 4253t (1989).CrossRefGoogle Scholar
  264. 244.
    Asahina, Y.: Shosoin Yakubutu (The Shosoin Medicinais, Report on Scientific Researches), Osaka (Japan): Shokubutu Bunnkenn Kankokai, 1955.Google Scholar
  265. 245.
    Shibata, S.: Chemical Investigation of the Crude Drugs Stored in Shosoin for over Twelve Hundred Years. Int. J. Pharmacog., 32, 75 (1994); Biol. Abstr., 97, 160380 (1994).CrossRefGoogle Scholar
  266. 246.
    Bhardwaj, D.K., R. Murari, T.R. Seshadri, and R. Singh: Occurrence of 2-Methylisoflavones in Glycyrrhiza glabra. Phytochem., 15, 352 (1976).CrossRefGoogle Scholar
  267. 247.
    Bhardwaj, D.K., R. Murari, T.R. Seshadri, and R. Singh: Liqcoumarin, a Novel Coumarin from Glycyrrhiza glabra. Phytochem., 15, 1182 (1976).CrossRefGoogle Scholar
  268. 248.
    Bhardwaj, D.K., and R. Singh: Glyzaglabrin, a New Isoflavone from Glycyrrhiza glabra. Curr. Sci. (India), 46, 753 (1977); Chem. Abstr., 88, 19048k (1978).Google Scholar
  269. 249.
    Bhardwaj, D.K., T.R. Seshadri, and R. Singh: Glyzarin, a New Isoflavone from Glycyrrhiza glabra. Phytochem., 16, 402 (1977).CrossRefGoogle Scholar
  270. 250.
    Saitoh, T., T. Kinoshjta, and S. Shibata: Chemical Studies on the Oriental Plant Drugs. 39. New Isoflavan and Flavanone from Licorice Root. Chem. Pharm. Bull. (Japan), 24, 752 (1976).CrossRefGoogle Scholar
  271. 251.
    Kinoshjta, T., T. Saitoh, and S. Shibata: Chemical Studies on the Oriental Plant Drugs. 40. The Occurrence of an Isoflavene and the Corresponding Isoflavone in Licorice Root. Chem. Pharm. Bull. (Japan), 24, 991 (1976).CrossRefGoogle Scholar
  272. 252.
    Fukai, T., B.-S. Cai, T. Horikoshi, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 21. Isoprenylated Flavonoids from Underground Parts of Glycyrrhiza glabra. Phytochem., 43, 1119 (1996).CrossRefGoogle Scholar
  273. 253.
    Mitscher, L.A., Y.H. Park, S. Omoto, G.W. Clark, III, and D. Clark: Antimicrobial Agents from Higher Plants, Glycyrrhiza glabra L. (var. Spanish). 1. Some Antimicrobial Isoflavans, Isoflavenes, Flavanones and Isoflavones. Heterocycles, 9, 1533 (1978).CrossRefGoogle Scholar
  274. 254.
    Mitscher, L.A., Y.H. Park, D. Clark, and J.L. Beal: Antimicrobial Agents from Higher Plants. Antimicrobial Isoflavonoids and Related Substances from Glycyrrhiza glabra L. var. typica. J. Nat. Prod., 43, 259 (1980).CrossRefGoogle Scholar
  275. 255.
    Kinoshita, T., K. Kajiyama, Y. Hiraga, K. Takahashi, Y. Tamura, and K. Mizutani: Isoflavan Derivatives from Glycyrrhiza glabra (Licorice). Heterocycles, 43, 581 (1996).CrossRefGoogle Scholar
  276. 256.
    Kajiyama, K., Y. Hiraga, K. Takahashi, Y. Tamura, K. Mizutani, K. Okada, and T. Kinoshtta: Constituents of Licorice from Former USSR. 1. 114th Annual Meeting of Pharmaceutical Society of Japan, Abstract Papers, part 2, p. 204. Tokyo, March 1994.Google Scholar
  277. 257.
    Kinoshtta, T., K. Kajiyama, Y. Hiraga, K. Takahashi, Y. Tamura, and K. Mizutani: The Isolation of new Pyrano-2-arylbenzofuran Derivatives from the Root of Glycyrrhiza glabra. Chem. Pharm. Bull. (Japan), 44, 1218 (1996).CrossRefGoogle Scholar
  278. 258.
    Tamura, Y. K. Mizutani, and T. Kinoshtta: Constituents of Licorice from Former USSR. 3. 116th Annual Meeting of Pharmaceutical Society of Japan, Abstract Papers, part 2, p. 209. Kanazawa, March 1996.Google Scholar
  279. 259.
    Imoto, K., Y. Tamura, K. Mizutani, H. Haraguti, T. Kinoshtta: Bioactive of Phenolic Constituents of Licorice in Former USSR. 43rd Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 230. Tokyo, September 1996.Google Scholar
  280. 260.
    Kitagawa, I., W.-Z. Chen, K. Hori, E. Harada (née Uchida), N. Yasuda, M. Yoshikawa, and J. Ren: Chemical Studies of Chinese Licorice-Roots. 1. Elucidation of Five New Flavonoid Constituents from the Roots of Glycyrrhiza glabra L. Collected in Xinjiang. Chem. Pharm. Bull. (Japan), 42, 1056 (1994).CrossRefGoogle Scholar
  281. 261.
    Fukai, T., J. Nishizawa, M. Yokoyama, L. Tantai, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 16. Five New Isoprenoid-Substituted Flavonoids, Kanzonols M-P and R, from Two Glycyrrhiza Species. Heterocycles, 38, 1089 (1994).CrossRefGoogle Scholar
  282. 262.
    Fukai, T., L. Tantai, and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 8. 1H NMR Chemical Shift of the Isoflavanone 5-Hydroxyl Proton as a Characterization of 6-or 8-Prenyl Group. Heterocycles, 37, 1819 (1994).CrossRefGoogle Scholar
  283. 263.
    Fukai, T., L. Tantai, and T. Nomura: Phenolic Constituents of Glycyrrhiza species. 20. Isoprenoid-Substituted Flavonoids from Glycyrrhiza glabra. Phytochem., 43, 531 (1996).CrossRefGoogle Scholar
  284. 264.
    Yahara, S., and I. Nishioka: Flavonoid Glucoside from Licorice. Phytochem., 23, 2108 (1984).CrossRefGoogle Scholar
  285. 265.
    Takagi, M., T. Hatano, H. Itoh, and T. Yoshida: Polyphenols of Licorice. 13. 43rd Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 99. Tokyo, September 1996.Google Scholar
  286. 266.
    Zhang, H.-J., Y. Liu, and R.-Y. Zhang: Chemical Studies of Flavonoid Compounds from Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta. Pharm. Sinica, China), 29, 471 (1994); Chem. Abstr., 121, 200937q (1994).Google Scholar
  287. 267.
    Shibata, S., and T. Saitoh: The Chemical Studies on the Oriental Plant Drugs. 19. Some New Constituents of Licorice Root. 1. The Structure of Licoricidin. Chem. Pharm. Bull. (Japan), 16, 1932 (1968).CrossRefGoogle Scholar
  288. 268.
    Saitoh, T., and S. Shibata: Chemical Studies on the Oriental Plant Drugs. 22. Some New Constituents of Licorice Root. 2. Glycyrol, 5-O-Methylglycyrol and Isogly-cyrol. Chem. Pharm. Bull. (Japan), 17, 729 (1969).CrossRefGoogle Scholar
  289. 269.
    Kaneda, M., T. Saitoh, Y. Ittaka, and S. Shibata: Chemical Studies on the Oriental Plant Drugs. 36. Structure of Licoricone, a New Isoflavone from Licorice Root. Chem. Pharm. Bull. (Japan), 21, 1338 (1973).CrossRefGoogle Scholar
  290. 270.
    Kaneda, M., Y. Ittaka, and S. Shibata: The Crystal and Molecular Structure of Licoricone Monobromoacetate. Acta. Crystallogr., B29, 2827 (1973).Google Scholar
  291. 271.
    Tsukayama, M., T. Howe, K. Fujimoto, and M. Nakayama: A Convenient Synthesis of Prenylated Isoflavones: Synthesis of Licoricone and Related Compounds. Chem. Pharm. Bull. (Japan), 34, 2369 (1986).CrossRefGoogle Scholar
  292. 272.
    Fukai, T., M. Toyono, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 1. On the Structure of Licoricidin. Heterocycles, 27, 2309 (1988).CrossRefGoogle Scholar
  293. 273.
    Lam, Y.K.T., M. Sandrino-Meinz, L. Huang, R.D. Busch, T. Mellin, D. Zink, and G.Q. Han: 5-O-Methyllicoricidin: a New and Potent Benzodiazepine-Binding Stimulator from Glycyrrhiza uralensis. Planta Med., 58, 221 (1992).CrossRefGoogle Scholar
  294. 274a.
    Shizuri, Y., K. Uchida, and S. Yamamura: Isolation of Licorisoflavans A and B, Muscle Relaxant Substances in Licorice. Abstract Paper of 56th Annual Meeting of Jpn. Chem. Soc., p. 1154. Tokyo, April 1988.Google Scholar
  295. 274b.
    Kawakami, T., M. Uchida, M. Wada, T. Yamamura, and F. Harada: Novel Isoflavan Derivatives, and Their Preparation from Licorice Roots and Use as Muscle Relaxants. Jpn. patent; Chem. Abstr., 111, 167414k (1988).Google Scholar
  296. 275.
    Shih, T.L., M.J. Wyvratt, and H. Mrozik: Total Synthesis of (±)-5-O-Methyllicor-icidin. J. Organ. Chem. (USA), 52, 2029 (1987).CrossRefGoogle Scholar
  297. 276.
    Fukai, T., and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 5. 1H-NMR Chemical Shift of the Flavonol 5-Hydroxy Proton as a Characterization of 6-or 8-Isoprenoid Substitution. Heterocycles, 34, 1213 (1992).CrossRefGoogle Scholar
  298. 277.
    Fukai, T., Q.-H. Wang, T. Kitagawa, K. Kusano, T. Nomura, and Y. Iitaka: Phenolic Constituents of Glycyrrhiza Species. 3. Structures of Six Isoprenoid-Substituted Flavonoids, Gancaonins F, G, H, I, Glycyrol, and Isoglycyrol from Xibei Licorice (Glycyrrhiza Spp.). Heterocycles, 29, 1761 (1989).CrossRefGoogle Scholar
  299. 278.
    Shiozawa, T., S. Urata, T. Kinoshita, and T. Saitoh: Revised Structures of Glycyrol and Isoglycyrol, Constituents of the Root of Glycyrrhiza uralensis: Chem. Pharm. Bull. (Japan), 37, 2239 (1989).CrossRefGoogle Scholar
  300. 279.
    Chang, X.-R., Q.-H. Xu, D.-Y. Zhu, G.-Q. Song, and R.-S. Xu: Constituents of Licorice. 1. Antimicrobial Active Compound, Structure of Licobenzofuran (Abstract of 1st Japan-China Congress of Chemistry of Natural Products, Nagoya (Japan), 1981. Zhongcaoyao (Chin. Herbal Med.), 12, 530 (1981); Chem. Abstr., 97, 20701k (1982).Google Scholar
  301. 280.
    Chang, X.-R., Q.-H. XU, D.-Y. Zhu, G.-Q. Song, and R.-S. Xu: The Isolation and Structural Elucidation of Liconeolignan from Glycyrrhiza uralensis. Yaoxue Xuebao (Acta Pharm. Sinica, China), 18, 45 (1983); Chem. Abstr., 99, 67496d (1983).Google Scholar
  302. 281.
    Zhu, D.-Y., G.-Q. Song, F.-X. Jian, X.-R. Chang, and W.-B. Guo: Studies on Chemical Constituents of Glycyrrhiza uralensis Fisch. The Structures of Isolico-flavonol and Glycycoumarin. Huaxue Xuebao (Acta. Chem. Sinica, China), 42, 1080 (1984); Chem. Abstr., 102, 75705s (1985).Google Scholar
  303. 282.
    Kiuchi, F., X. Chen, and Y. Tsuda: Four New Phenolic Constituents from Licorice (Root of Glycyrrhiza sp.). Heterocycles, 31, 629 (1990).CrossRefGoogle Scholar
  304. 283.
    Kinoshita, T., T. Saitoh, and S. Shibata: Chemical Studies on the Oriental Drugs. 42. A New 3-Arylcoumarin from Licorice Root. Chem. Pharm. Bull. (Japan), 26, 135 (1978).CrossRefGoogle Scholar
  305. 284.
    Fukai, T., J. Nishizawa, M. Yokoyama, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 13. Five New Isoprenoid-Substituted Flavonoids, Kanzonols F-J, from Glycyrrhiza uralensis. Heterocycles, 36, 2565 (1993).CrossRefGoogle Scholar
  306. 285.
    Fukai, T., J. Nishizawa, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. l4. Variations in the Chemical Shift of the 5-Hydroxyl Proton of Isoflavones; Two Isoflavones from Licorice. Phytochem., 36, 225 (1994).CrossRefGoogle Scholar
  307. 286.
    Takagi, M, M. Mizuno, T. Hatano, and T. Yoshida: Polyphenols of Licorice. 11. 42nd Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 206. Fukuyama, September 1995.Google Scholar
  308. 287.
    Saitoh, T., H. Noguchi, and S. Shibata: Chemical Studies on the Oriental Plant Drugs. 44. A New Isoflavone and the Corresponding Isoflavanone of Licorice Root. Chem. Pharm. Bull. (Japan), 26, 144 (1978).CrossRefGoogle Scholar
  309. 288.
    Zeng, L., T. Fukai, T. Nomura, R.-Y. Zhang, and Z.-C. Lou: Phenolic Constituents of Glycyrrhiza Species. 8. Four New Prenylated Flavonoids, Glyasperins A, B, C, and D from the Roots of Glycyrrhiza aspera. Heterocycles, 34, 575 (1992).CrossRefGoogle Scholar
  310. 289.
    Zeng, L., T. Fukai, T. Nomura, R.-Y. Zhang, and Z.-C. Lou: Phenolic Constituents of Glycyrrhiza Species. 10. Glyasperin E, a New 3-Phenoxychromen-4-one Derivative from the Roots of Glycyrrhiza aspera. J. Chem. Soc., Perkin Trans. I. (London), 1993, 1153.Google Scholar
  311. 290.
    Zeng, L., T. Fukai, T. Nomura, R.-Y. Zhang, and Z.-C. Lou: Phenolic Constituents of Glycyrrhiza Species. 9. Five New Isoprenoid-Substituted Flavonoids, Glyasperins F, G, H, I, and J from the Roots of Glycyrrhiza aspera. Heterocycles, 34, 1813 (1992).CrossRefGoogle Scholar
  312. 291.
    Fukai, T., L. Zeng, J. Nishizawa, Y.-H. Wang, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 15. Four Isoprenoid-Substituted Flavonoids from Glycyrrhiza aspera. Phytochem., 36, 233 (1994).CrossRefGoogle Scholar
  313. 292.
    Vince, S., and A. Kiss: Synthesis of C-3-Substituted Chromones. 6. Preparation of 2-Phenoxy-2’-hydroxyacetophenones and Cyclization to 3-Phenoxychromones. Magy. Kern. Foly. (Hungary) 85, 353 (1979); Chem. Abstr., 92, 110775p (1980).Google Scholar
  314. 293.
    Kitagawa, K., W.-Z. Chen, and K. Hori: Chemical Studies on Crude Drug Processing: Licorice. 9. Flavonoids from Glycyrrhiza aspera collected in Xinjiang, China. 40th Annual Meeting of the Japanese Society of Pharmacognosy, Abstract Papers, p. 96. Osaka, September 1993.Google Scholar
  315. 294.
    Fukai, T., J. Nishizawa, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 12. Five Isoprenoid-Substituted Flavonoids from Glycyrrhiza eurycarpa. Phytochem., 35, 515 (1994).CrossRefGoogle Scholar
  316. 295.
    Zeng, L., T. Fukai, T. Kaneki, T. Nomura, R.-Y. Zhang, and Z.-C. Lou: Phenolic Constituents of Glycyrrhiza Species. 7. Four New Isoprenoid-Substituted Diben-zoylmethane Derivatives, Glyinflanins A, B, C, and D from the Roots of Glycyrrhiza inflata. Heterocycles, 34, 85 (1992).CrossRefGoogle Scholar
  317. 296.
    Saitoh, T., and S. Shibata: New Type Chalcone from Licorice Root. Tetrahedron Letters, 1975, 4461.Google Scholar
  318. 297.
    Saitoh, T., S. Shibata, U. Sankawa, T. Furuya, and S. Ayabe: Biosynthesis of Echinatin. A New Biosynthetical Scheme of Retrochalcone. Tetrahedron Letters, 1975, 4463.Google Scholar
  319. 298.
    Xu, R.-S., K.-L. Wen, S.-F. Jiang, C.-G. Wang, F.-X. Jiang, Y.-Y. Xie, and Y.-S. Gao: The Isolation, Structure and Total Synthesis of Licochalcone. Hua Hsueh Hsueh Pro (Acta Chim. Sinica, China), 37, 289 (1978); Chem. Abstr., 92, 198060k (1980).Google Scholar
  320. 299.
    Fukai, T., and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 18. Isoprenoid-Substituted Flavonoids from Roots of Glycyrrhiza inflata. Phytochem., 38, 759 (1995).CrossRefGoogle Scholar
  321. 300.
    Gowan, J.E., and T.S. Wheeler: Further Experiments on the Mechanism of the Baker-Venkataraman Transformation. J. Chem. Soc. (London), 1950, 1925.Google Scholar
  322. 301.
    Seshadri, T.R.: Recent Developments in the Chemistry of Flavonoids. Tetrahedron, 6, 169 (1959).CrossRefGoogle Scholar
  323. 302.
    Kajiyama, K., S. Demizu, Y. Hiraga, K. Kinoshita, K. Koyama, K. Takahashi, Y. Tamura, K. Okada, and T. Kinoshita: New Prenylflavones and Dibenzoylmethane from Glycyrrhiza inflata. J. Nat. Prod., 55, 1197 (1992).CrossRefGoogle Scholar
  324. 303.
    Demizu, S., K. Kajiyama, Y. Hiraga, K. Kinoshita, K. Koyama, K. Takahashi, Y. Tamura, K. Okada, and T. Kinoshita: Prenylated Dibenzoylmethane Derivatives from the Root of Glycyrrhiza inflata (Xinjiang Licorice). Chem. Pharm. Bull. (Japan), 40, 392 (1992).CrossRefGoogle Scholar
  325. 304.
    Kajiyama, K., S. Demizu, Y. Hiraga, K. Kinoshita, K. Koyama, K. Takahashi, Y. Tamura, K. Okada, and T. Kinoshita: TWO Prenylated Retrochalcones from Glycyrrhiza inflata. Phytochem., 31, 3229 (1992).CrossRefGoogle Scholar
  326. 305.
    Christensen, S.B., C. Ming, L. Andersen, U. Hjørne, C.E. Olsen, C. Cornett, T.G. Theander, and A. Kharazmi: An Antileishmanial Chalcone from Chinese Licorice Roots. Planta Med., 60, 121 (1994).CrossRefGoogle Scholar
  327. 306.
    Zou, K., R.-Y. Zhang, and X.-B. Yang: Structure Determination of Inflacoumarin A from Glycyrrhiza inflata. Yaoxue Xuebao (Acta Pharm. Sinica, China), 29, 397 (1994); Chem. Abstr., 121, 226362y (1994).Google Scholar
  328. 307.
    Yang, Y.-B., K. Zou, B. Yao, R.-Y. Zhang: NMR Study of Inflacoumarin A. Bopuxue Zazhi (Chin. J. Mag. Res.), 11, 399 (1994); Chem. Abstr., 122, 101601q (1995).Google Scholar
  329. 308.
    Liu, Q., and Y.-L. Liu: Studies on Chemical Constituents of Glycyrrhiza eurycarpa P. C. Li. Yaoxue Xuebao (Acta Pharm. Sinica, China), 24, 525 (1989); Chem. Abstr., 112, 115711f (1990).Google Scholar
  330. 309.
    Liu, Q., and Y.-L. Liu: Application of 13C NMR to Structural Identification of the Flavonoid Glycoside. Zhonggno Yixue Kexyeyuan Xuebao (Acta Academica Med. Sinica, China), 12, 359 (1990); Chem. Abstr., 115, 178517e (1991).Google Scholar
  331. 310.
    Liu, M., Q. Lin, Y.-L. Liu, C.-Y. Hou, and T.J. Mabry: An Acylated Flavone C-Glycoside from Glycyrrhiza eury carpa. Phytochem., 36, 1089 (1994).CrossRefGoogle Scholar
  332. 311.
    Zhang, Y.-M., X.-D. Xu, B.-H. Hu, Q. Liu, C.-Y. Hou, Y.-L. Liu, and J.-S. Yang: Eurycarpin A, a New Isoflavone from Glycyrrhiza eurycarpa. Chin. Chem. Letters, 6, 477 (1995); Chem. Abstr., 123, 138814h (1995).Google Scholar
  333. 312.
    Fukai, T., Q.-H. Wang, R. Inami, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 5. Structures of Prenylated Dihydrochalcone, Gancaonin J and Homoisoflavanone, Gancaonin K from Glycyrrhiza pallidiflora. Heterocycles, 31, 643 (1990).CrossRefGoogle Scholar
  334. 313.
    Dewick, P.M.: Biosynthesis of the 3-Benzylchroman-4-one Eucomin in Eucomis bicolor. Phytochem., 14, 983 (1975).CrossRefGoogle Scholar
  335. 314.
    Ayabe, S., T. Yoshikawa, M. Kobayashi, and T. Furuya: Studies on Plant Tissue Culture. 34. Biosynthesis of a Retrochalcone, Echinatin: Involvement of O-Methyl-transferase to Licodione. Phytochem., 19, 2331 (1980).CrossRefGoogle Scholar
  336. 315.
    Kajiyama, K., Y. Hiraga, K. Takahashi, S. Hirata, S. Kobayashi, U. Sankawa, and T. Kinoshita: Flavonoids and Isoflavonoids of Chemotaxonomic Significance from Glycyrrhiza pallidiflora (Leguminosae). Biochem. Syst. Ecol., 21, 785 (1993); Chem. Abstr., 120, 212563g (1994).CrossRefGoogle Scholar
  337. 316.
    Cai, L.-N., R.-Y. Zhang, B. Wang, L. Qiao, L.-R. Huang, and Z.-L. Zhang: Chemical Constituents of Glycyrrhiza pallidiflora Maxim. Yaoxue Xuebao (Acta Pharm. Sinica, China), 27, 748 (1992); Chem. Abstr., 118, 165182d (1993).Google Scholar
  338. 317.
    Motegi, J.: Licorice on Japanese Market, In: Records of Lecture in 2nd Meeting on Crude Drugs; Licorice, p. 31. Tokyo: Tokyo Soc. Pharmacognosy, 1986.Google Scholar
  339. 318.
    Mitsuhashi, H. (ed.): Shoyakugaku (Pharmacognosy), p. 141, Tokyo: Nankoudo, 1983.Google Scholar
  340. 319.
    Nihon Yakukyokuho Kaisetusho Henshu Iinkai (Editorial Board of the Manual of Japanese Pharmacopoeia): Dai 13-Kaisei Nihon Yatkyokuho Kaisetusho (Manual of Japanese Pharmacopeia; 13th edn.), p. D–227, Tokyo: Hirokawa, 1996.Google Scholar
  341. 320.
    Namba, T.: Genshoku Hyatuka, Sekai No Yakuyou Shokubutu (The Encyclopedia of Herbs and Herbalism; original book edited by Stuart, M., London: Orbis, 1979, Notes of Traditional Shino-Japanese Medicine were added by Namba, T.), Vol. 2, p. 212, Tokyo: Enterprise, 1988.Google Scholar
  342. 321.
    Kitagawa, K., U. Sankawa, J. Shouji, M. Takido, M. Tomoda, and I. Nishioka: Shoyaku Gaku (Pharmacognosy), p. 218, Tokyo: Hirokawa, 1980.Google Scholar
  343. 322.
    Kariyone, T.: Wakan Shoyaku (The Traditional Sino-Japanese Crude Drugs). p. 167, Tokyo: Hirokawa, 1971.Google Scholar
  344. 323.
    Sugaya, I., and N. Sahashi (eds.): Yakuyou Shokubutu Gaku (Medicinal Plants), p. 203, Tokyo: Hirokawa, 1990.Google Scholar
  345. 324.
    Sato, J.: Kanyaku No Gen-shokubutu (On Chinese Medical Plants). p. 58, Tokyo: Nihon Gakujutu Sinko-kai, 1959.Google Scholar
  346. 325.
    Namba, T.: Genshoku Wakanyaku Zukan (Colored Illustrations of Wakan-Yaku; The Crude Drugs in Japan, China and the neighboring Countries), vol. 1, p. 43, Osaka: Hoikusha, 1980.Google Scholar
  347. 326.
    Yoneda, K., E. Yamagata, and M. Tsujimura: Studies on Resources of Crude Drugs. 5. Comparison of the Constituents of Wild Glycyrrhiza uralensis and Various Chinese Licorices Obtained in Japanese Market. Shoyakugaku Zasshi (Jpn. J. Pharmacognosy), 44, 202 (1990); Chem. Abstr., 114, 128867c (1991).Google Scholar
  348. 327.
    Yoneda, K., E. Yamagata, and M. Teruya: Studies on Resources of Crude Drugs. 6. Comparison of the Constituents of Glycyrrhiza Radix (Licorice) from Various Countries. 2. Shoyakugaku Zasshi (Jpn. J. Pharmacognosy), 45, 220 (1991); Chem. Abstr., 116, 158674W (1992).Google Scholar
  349. 328.
    Amagaya, S., E. Sugishtta, Y. Ogihara, S. Ogawa, K. Okada, and T. Aizawa: Separation and Quantitative Analysis of 18a-Glycyrrhetinic Acid and 18β-Glycyr-rhetinic Acid in Glycyrrhizae Radix by Gas-Liquid Chromatography. J. Chroma-togr., 320, 430 (1985).CrossRefGoogle Scholar
  350. 329.
    Hiraga, Y., H. Endo (née Kaizuka), K. Takahashi, and S. Shtbata: High-Performance Liquid Chromatographic Analysis of Licorice Extracts. J. Chromatogr., 292, 451 (1984).CrossRefGoogle Scholar
  351. 330.
    Hattori, M., K. Miyachi, Y.-Z. Shu, N. Kakiuchi, and T. Namba: Studies on Dental Caries Prevention by Traditional Medicines. 9. Potent Antibacterial Action of Coumarin Derivatives from Licorice Roots against Streptococcus mutants. Shoyakugaku Zasshi (Jpn. J. Pharmacognosy), 40, 406 (1986); Chem. Abstr., 107, 46132a (1987).Google Scholar
  352. 331.
    Shibata, S., and T. Hiraga: Analysis of Herb Medicines by Three-dimensional High-Performance Liquid Chromatography. Analysis of Glycyrrhiza Components. Pharm. Tech. Jpn., 2, 569 (1986); Chem. Abstr., 106, 125947c (1987).Google Scholar
  353. 332.
    Demizu, S., K. Kajiyama, K. Takahashi, Y. Hiraga, S. Yamamoto, Y. Tamura, K. Okada, and T. Kinoshita: Antioxidant and Antimicrobial Constituents of Licorice: Isolation and Structure Elucidation of a New Benzofuran Derivative. Chem. Pharm. Bull. (Japan), 36, 3474 (1988).CrossRefGoogle Scholar
  354. 333.
    Saitoh, T., T. Kinoshtta, and S. Shibata: Chemical Studies on the Oriental Plant Drugs, 41. Flavonols of Licorice Root. Chem. Pharm. Bull. (Japan), 24, 1242 (1976).CrossRefGoogle Scholar
  355. 334.
    Kinoshtta, T., T. Saitoh, and S. Shibata: Chemical Studies on the Oriental Plant Drugs. 43. A New Isoflavone from Licorice Root. Chem. Pharm. Bull. (Japan), 26, 141 (1978).CrossRefGoogle Scholar
  356. 335.
    Hatano, T., H. Kagawa, T. Yasuhara, and T. Okuda: Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects. Chem. Pharm. Bull. (Japan), 36, 2090 (1988).CrossRefGoogle Scholar
  357. 336.
    Aga, Y., K. Tutumi, T. Hatano, and T. Okuda: Polyphenols of Licorice. 9. 39th Annual Meeting of the Japanese Society of Pharmacognosy, Abstract Papers, p. 141. Tokyo, September 1992.Google Scholar
  358. 337.
    Hatano, T., T. Yasuhara, T. Fukuda, T. Noro, and T. Okuda: Phenolic Constituents of Licorice. 2. Structure of Licopyranocoumarin, Licoarylcoumarin and Glisofla-vone, and Inhibitory Effects of Licorice Phenolics on Xanthine Oxidase. Chem. Pharm. Bull. (Japan), 37, 3005 (1989).CrossRefGoogle Scholar
  359. 338.
    Hatano, T., T. Fukuda, T. Miyase, T. Noro, and T. Okuda: Phenolic Constituents of Licorice. 3. Structures of Glicoricone and Licofuranone, and Inhibitory Effects of Licorice Constituents on Monoamine Oxidase. Chem. Pharm. Bull. (Japan), 39, 1238 (1991).CrossRefGoogle Scholar
  360. 339.
    Fukai, T., H. Kato, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 11. A New Prenylated 3-Arylcoumarin, Gancaonin W, from Licorice. Shoyakugaku Zasshi (Jpn. J. Pharmacognosy), 47, 326 (1993); Chem. Abstr., 120, 294089u (1994).Google Scholar
  361. 340.
    Fukai, T., Y.-H. Wang, J. Nishizawa, S.-R. Xing, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 17. Three Isoprenoid-Substituted Isoflavans, Gancaonins X — Z, from Chinese Folk Medicine “Tiexin Gancao” (Root Xylems of Glycyrrhiza Species). Nat. Med. (Jpn. J. Pharmacognosy), 48, 203 (1994); Chem. Abstr., 122, 114727k (1995).Google Scholar
  362. 341.
    Fukui, H., K. Goto, and M. Tabata: Two Antimicrobial Flavanones from the Leaves of Glycyrrhiza glabra. Chem. Pharm. Bull. (Japan), 36, 4174 (1988).CrossRefGoogle Scholar
  363. 342.
    Litvinenko, V.I., and T.P Nadezhina: Flavonoids from the Aboveground Part of Glycyrrhiza glabra. Rast. Resur., 8, 35 (1972); Chem. Abstr., 76, 124123f (1972).Google Scholar
  364. 343.
    Bohm, B.A.: Flavanones and Dihydroflavonols. In: The Flavonoids, 1 (Harborne, J.B., T.J. Mabry, and H. Mabry, eds.), p. 597, London: Chapman and Hall, 1975.Google Scholar
  365. 344.
    Litvinenko, V.I.: Glyphoside, a New Flavonoid Glycoside obtained from Glycyrrhiza glabra. Rast. Resur., 2, 531 (1966); Chem. Abstr., 66, 73264m (1967).Google Scholar
  366. 345.
    Ingham, J.L.: An Isoflavan Phytoalexin from Leaves of Glycyrrhiza glabra. Phytochem., 16, 1457 (1977).CrossRefGoogle Scholar
  367. 346.
    Fukai, T., Q.-H. Wang, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 2. Four New Prenylated Flavonoids from Aerial Parts of Glycyrrhiza uralensis. Heterocycles, 29, 1369 (1989).CrossRefGoogle Scholar
  368. 347.
    Fukai, T., Q.-H. Wang, M. Takayama, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 4. Structures of Five New Prenylated Flavonoids, Gancaonins L, M, N, O, and P from Aerial Parts of Glycyrrhiza uralensis. Heterocycles, 31, 373 (1990).CrossRefGoogle Scholar
  369. 348.
    Fukai, T., Q.-H. Wang, and T. Nomura: Phenolic Constituents of Glycyrrhiza Species. 6. Six Prenylated Phenols from Glycyrrhiza uralensis. Phytochem., 30, 1245 (1991).CrossRefGoogle Scholar
  370. 349.
    Takayama, M., T. Fukai, K. Ichikawa, and T. Nomura: Identification of Prenylated Flavonoids Using Fast-Atom Bombardment Mass Spectrometry. Rapid Commun. Mass Spectro., 5, 67 (1991).CrossRefGoogle Scholar
  371. 350.
    Takayama, M., T. Fukai, Y. Hano, and T. Nomura: Mass Spectrometry of Prenylated Flavonoids. Heterocycles, 33, 405 (1992).CrossRefGoogle Scholar
  372. 351.
    Breitmaier, E., and W. Voelter: Carbon-13 NMR Spectroscopy, 3rd edn., Chapter 5, Weinheim: VCH, 1987.Google Scholar
  373. 352.
    Fukai, T., and T. Nomura: Variations in the Chemical Shift of Benzylic Methylene Carbon of Prenyl Group on Heterocyclic Prenylphenols. Heterocycles, 42, 911 (1996).CrossRefGoogle Scholar
  374. 353.
    Jia, S.-S., C.-M. Ma, and J.-M. Wang: Studies of Flavonoid Constituents Isolated from the Leaves of Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 25, 758 (1990); Chem. Abstr., 117, 86658q (1992).Google Scholar
  375. 354.
    Jia, S.-S., D. Liu, X.-P. Zheng, Y. Zhang, and Y.-K. Li: Two New Isoprenyl Flavonoids from the Leaves of Glycyrrhiza uralensis Fisch. Chin. Chem. Letters, 3, 189 (1992); Chem. Abstr., 121, 226357a (1994).Google Scholar
  376. 355.
    Jia, S.-S., D. Liu, X.-P. Zheng, Y. Zhang, and Y.-K. Li: Two New Isoprenyl Flavonoids from the Leaves of Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 28, 28 (1993); Chem. Abstr., 119, 221612d (1993).Google Scholar
  377. 356.
    Jia, S.-S., D. Liu, H.-Q. Wang, and Z.-X. Suo: Isolation and Identification of Gancaonin P 3′-Methyl Ether from the Leaves of Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 28, 623 (1993); Chem. Abstr., 120, 4628e (1994).Google Scholar
  378. 357.
    Jia, S.-S., C.-M. Ma, Y.-H. Li, and J.-H. Hao: Glycosides of Phenolic Acid and Flavonoids from the Leaves of Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 27, 441 (1992); Chem. Abstr., 117, 178168h (1992).Google Scholar
  379. 358.
    Ghisalberti, E.L., P.R. Jefferies, and D. Mcadam: Isoprenylated Resorcinol Derivatives from Glycyrrhiza acanthocarpa. Phytochem., 20, 1959 (1981).CrossRefGoogle Scholar
  380. 359.
    Fukai, T., L. Zeng, T. Nomura, R.-Y. Zhang, and Z.-C. Lou: Phenolic Constituents of Glycyrrhiza Species. 19. Phenolic Constituents of Aerial Parts of Glycyrrhiza eurycarpa. Nat. Med. (Jpn. J. Pharmacognosy), 50, 274 (1996); Chem. Abstr., 125, 163282g (1996).Google Scholar
  381. 360.
    Mitscher, L.A., G.S. Raghav Rao, I. Khanna, T. Veysoglu, and S. Drake: Antimicrobial Agents from Higher Plants: Prenylated Flavonoids and Other Phenols from Glycyrrhiza lepidota. Phytochem., 22, 573 (1983).CrossRefGoogle Scholar
  382. 361.
    Gollapudi, S.R., H. Telikepalli, A. Keshavarz-Shokri, D.V. Velde, and L.A. Mitscher: Glepidotin C: a Minor Antimicrobial Bibenzyl from Glycyrrhiza lepidota. Phytochem., 28, 3556 (1989).CrossRefGoogle Scholar
  383. 362.
    Jain, A.C., and M.K. Zutshi: The Synthesis of Sericetin and Related Flavonols. Tetrahedron, 29, 3347 (1973).CrossRefGoogle Scholar
  384. 363.
    Furuya, T., K. Matsumoto, and M. Hikichi: Studies on Plant Tissue Cultures. 11. Echinatin, a New Chalcone from Tissue Culture of Glycyrrhiza echinata. Tetrahedron Letters, 1971, 2567.Google Scholar
  385. 364.
    Furuya, T., S. Ayabe, and M. Kobayashi: Studies on Plant Tissue Cultures. 29. Licodione, a New Dibenzoylmethane Derivative from Cultured Cells of Glycyrrhiza echinata. Tetrahedron Letters, 1976, 2539.Google Scholar
  386. 365.
    Ayabe, S., and T. Furuya: 13C NMR Studies on Licodione and Related Compounds in Equilibrium Mixture of Keto and Enol Forms. Tetrahedron Letters, 21, 2965 (1980).CrossRefGoogle Scholar
  387. 366.
    Ayabe, S., K. Iida, and T. Furuya: Studies on Plant Tissue Cultures. 46. Stress-Induced Formation of Echinatin and a Metabolite, 5′-Prenyl-licodione, in Cultured Glycyrrhiza echinata Cells. Phytochem., 25, 2803 (1986).CrossRefGoogle Scholar
  388. 367.
    Ayabe, S., M. Kobayashi, M. Hikichi, K. Matsumoto, and T. Furuya: Studies on Plant Tissue Cultures. 33. Flavonoids from the Cultured Cells on Glycyrrhiza echinata. Phytochem., 19, 2179 (1980).CrossRefGoogle Scholar
  389. 368.
    Ayabe, S., and T. Furuya: Studies on Plant Tissue Cultures. 35. Biosynthesis of a Retrochalcone, Echinatin: a Feeding Study with Advanced Precursors. Tetrahedron Letters, 22, 2097 (1981).CrossRefGoogle Scholar
  390. 369.
    Ayabe, S., and T. Furuya: Studies on Plant Tissue Cultures. 36. Biosynthesis of a Retrochalcone, Echinatin, and Other Flavonoids in the Cultured Cells of Glycyrrhiza echinata. A New Route to a Chalcone with Transposed A-and B-Rings. J. Chem. Soc. Perkin Trans. I (London), 1982, 2725.Google Scholar
  391. 370.
    Ayabe, S., T. Yoshikawa, and T. Furuya: Biosynthesis of Retrochalcone and Related Flavonoids; the Tissue Culture of Glycyrrhiza echinata, In: Plant Tissue Culture 1982. Proc. 5th Intl. Cong. Plant Tissue and Cell Culture. (Fujiwara, A, ed.), pp. 379–380. Tokyo: Maruzen, 1982; Chem. Abstr., 99, 155308z (1983).Google Scholar
  392. 371.
    Ayabe, S., K. Iida, and T. Furuya: Studies on Plant Tissue Cultures. 45. Induction of Stress Metabolites in Immobilized Glycyrrhiza echinata Cultured Cells. Plant Cell. Rep., 5, 186 (1986).CrossRefGoogle Scholar
  393. 372.
    Ayabe, S., A. Udagawa, K. Iida, T. Yoshikawa, and T. Furuya: Studies on Plant Tissue Cultures. 47. Regulation of Retrochalcone Biosynthesis: Activity Changes of O-Methyltransferases in the Yeast Extract-Induced Glycyrrhiza echinata Cells. Plant Cell Rep., 6, 16 (1987).CrossRefGoogle Scholar
  394. 373.
    Ayabe, S., A. Udagawa, and T. Furuya: Studies on Plant Tissue Cultures. 54. NAD(P)H-Dependent bD6-Deoxychalcone Synthase Activity in Glycyrrhiza echinata Cells Induced by Yeast Extract. Arch. Biochem. Biophys., 261, 458 (1988).CrossRefGoogle Scholar
  395. 374.
    Ayabe, S., A. Udagawa, and T. Furuya: Studies on Plant Tissue Cultures. 52. Stimulation of Chalcone Synthase Activity by Yeast Extract in Cultured Glycyrrhiza echinata Cells and 5-Deoxyflavanone Formation by Isolated Protoplasts. Plant Cell Rep., 7, 35 (1988).CrossRefGoogle Scholar
  396. 375.
    Haranô, K., N. Okada, T. Furuno, T. Takahashi, S. Ayabe, and R. Welle: Enzymatic Synthesis of 6′-Deoxychalcone in Cultured Glycyrrhiza echinata Cells. Plant Cell Rep., 12, 66 (1993).CrossRefGoogle Scholar
  397. 376.
    Otani, K., T. Takahashi, T. Furuya, and S. Ayabe: Licodione Synthase, a Cytochrome P450 Monooxygenase Catalyzing 2-Hydroxylation of 5-Deoxyflavanone, in Cultured Glycyrrhiza echinata L. Cells. Plant Physiol., 105, 1427 (1994).Google Scholar
  398. 377.
    Kobayashi, A., S. Yata, and K. Kawazu: A β-Hydroxychalcone and Flavonoids from Alfalfa Callus Stimulated by a Fungal Naphthoquinone, PO-1. Agric. Biol. Chem., 52, 3223 (1988).CrossRefGoogle Scholar
  399. 378.
    Kirikae, Y., M. Sakurai, T. Furuno, T. Takahashi, and S. Ayabe: Biosynthesis of a Dibenzoylmethane, Licodione, in Cultured Alfalfa Cells Induced by Yeast Extract. Biosci. Biotech. Biochem., 57, 1353 (1993).CrossRefGoogle Scholar
  400. 379.
    Zeng, L., R.-Y. Zhang, T. Meng, and Z.-C. Lou: Determination of Nine Flavonoids and Coumarins in Licorice Root by High-Performance Liquid Chromatography. J. Chromatogr., 513, 247 (1990).CrossRefGoogle Scholar
  401. 380.
    Yang, L., Y.-L. Liu, and S.-Q. Lin: HPLC Analysis of Flavonoids in the Root of Six Glycyrrhiza Species. Yaoxue Xuebao (Acta Pharm. Sinica, China), 25, 840 (1990); Biol. Abstr., 91, 100324 (1991).Google Scholar
  402. 381.
    Kinoshita, T., U. Sankawa, T. Takuma, K. Asahi, and N. Takahashi: Induction of Differentiation in Murine Erythroleukemia Cells by Flavonoids. Chem. Pharm. Bull. (Japan), 33, 4109 (1985).CrossRefGoogle Scholar
  403. 382.
    Fukai, T., and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 1. Constituents of the Moraceae Plants. 5. Revised Structures of Broussoflavonols C and D, and the Structure of Broussoflavonol E. Heterocycles, 29, 2379 (1989).CrossRefGoogle Scholar
  404. 383.
    Nomura, T.: Phenolic Compounds of the Mulberry Tree and Related Plants. In: Progress Chem. Org. Nat. Prod. (Fortschr. Chem. organ. Naturstoffe), Vol. 53 (Herz, W., H. Grisebach, G. W. Kirby, and CH. Tamm, eds.), p. 87. Wien: Springer-Verlag, 1988.CrossRefGoogle Scholar
  405. 384.
    Nomura, T., and Y. Hano: Isoprenoid-substituted Phenolic Compounds of Morac-eous Plants. Nat. Prod. Reports, 11, 205 (1994).CrossRefGoogle Scholar
  406. 385.
    Nomura, T., Y. Hano, and M. Aida: Chemistry and Biological Activity of Iso-prenoid-Substituted Phenolic Compounds from Artocarpus Plants (Moraceae). NRCT-JSPS Core University System, Pharmaceutical Sciences and Chemistry of Natural Products and Polymer Sciences, The 3rd Joint-Seminar “Current Advances in Natural Product Research”, Abstract Papers, p. 145. Bangkok, November 1996.Google Scholar
  407. 386.
    Kato, S., Y. Hano, T. Fukai, Y. Kosuge, and T. Nomura: Kazinol P, a Novel Isoprenylated Spiro-Compound from Broussonetia kazinoki Sieb. Heterocycles, 24, 2141 (1986).CrossRefGoogle Scholar
  408. 387.
    Fukai, T., and T. Nomura: Variations in the Chemical Shift of Methylene Carbon of Prenyl Group on Naturally Occurring Phenols. 1995 International Chemical Congress of Pacific Basin Societies, Abstract Papers, part 2, p. 9–672. Honolulu, December 1995.Google Scholar
  409. 388.
    Dhami, K.S., and J.B. Stothers: 13C NMR Studies. 8. 13C spectra of Some Substituted Anisoles, Can. J. Chem., 44, 2855 (1966).CrossRefGoogle Scholar
  410. 389.
    Markham, K.R., and V.M. Chari: Carbon-13 NMR Spectroscopy of Flavonoids. In: The Flavonoids: Advances in Research. (Harborne, J.B., and T.J. Mabry, eds.), pp. 19–51, London: Chapman and Hall, 1982.Google Scholar
  411. 390.
    Tahara, S., M. Moriyama, J.L. Ingham, and J. Mizutani: Structure Revision of Piscidone, a Major Isoflavonoid in the Root Bark of Piscidia erythrina. Phytochem., 31, 679 (1992).CrossRefGoogle Scholar
  412. 391.
    Lin, C.-H., P.-N. Chiu, S.-C. Fang, B.-J. Shieh, and R.-R. Wu: Revised Structure of Broussoflavonol G and the 2D NMR Spectra of Some Related Prenylflavonoids. Phytochem., 41, 1215 (1996).CrossRefGoogle Scholar
  413. 392.
    Tahara, S.: Structural Diversity in Isoflavonoids and Erroneously Proposed Structures. Kagaku to Seibutsu (Chem. Biol.; J. Jpn. Agrical. Chem. Soc), 29, 493 (1991); Chem. Abstr., 115, 203246a (1991).Google Scholar
  414. 393.
    Furukawa, H., M. Yogo, and T.-S. Wu: Acridone Alkaloids. 10. 13C-Nuclear Magnetic Resonance Spectra of Acridone Alkaloids. Chem. Pharm. Bull. (Japan), 31, 3084 (1983).CrossRefGoogle Scholar
  415. 394.
    Harborne, J.B., and T.J. Mabry (eds.): The Flavonoids: Advances in Research. London: Chapman and Hall, 1982.Google Scholar
  416. 395.
    Harborne, J.B. (ed.): The Flavonoids: Advances in Research Since 1980. London, Chapman and Hall, 1988.Google Scholar
  417. 396.
    Harborne, J.B. (ed.): The Flavonoids: Advances in Research Since 1986. London: Chapman and Hall, 1994.Google Scholar
  418. 397.
    Barron, D., and R.K. Ibrahim: Isoprenylated Flavonoids: A Survey. Phytochem., 43, 921 (1996).CrossRefGoogle Scholar
  419. 398.
    Feigl, F., and V. Anger: Spot Tests in Organic Analysis, 7th edn. (Engl. trans. by OESPER, R.E.), p. 185. Amsterdam: Elsevier, 1966.Google Scholar
  420. 399.
    Sherif, E.A., R.K. Gupta, and M. Krishnamurti: Anomalous A1C13 Induced U.V. Shift of C-Alkylated Polyphenols. Tetrahedron Letters, 21, 641 (1980).CrossRefGoogle Scholar
  421. 400.
    Jain, A.C., R.C. Gupta, and P.D. Sarpal: Synthesis of (±) Lupinifolin, Di-O-Methyl Xanthohumol and Isoxanthohohumol and Related Compounds. Tetrahedron, 34, 3563 (1978).CrossRefGoogle Scholar
  422. 401.
    Bohlmann, F., and C. Zdero: Flavanones from Helichrysum thapsus. Phytochem., 22, 2877 (1983).CrossRefGoogle Scholar
  423. 402.
    Fukai, T., and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 6. 1H NMR Spectra of Prenylated Flavonoids and Pyranoflavonoids. Heterocycles, 36, 329 (1993).CrossRefGoogle Scholar
  424. 403.
    Arnone, A., G. Cardillo, L. Merlini, and R. Mondelli: NMR Effects of Acetylation and Long-Range Coupling as a Tool for Structural Elucidation of Hydroxychro-menes. Tetrahedron Letters, 1967, 4201.Google Scholar
  425. 404.
    Chari, V.M., S. Ahmad, and B.-G. Österdahl: 13C NMR Spectra of Chromeno-and Prenylated Flavones Structure Revision of Mulberrin, Mulberrochromene, Cyclo-mulberrin and Cyclomulberrochromene. Z. Naturforsch., 33b, 1547 (1978).Google Scholar
  426. 405.
    Shirataki, Y., M. Komatsu, I. Yokoe, and A. Manaka: Studies on the Constituents of Sophora Species. 16. Constituents of the Root of Euchre sta japonica Hook. f. ex Regel. 1. Chem. Pharm. Bull. (Japan), 29, 3033 (1981).CrossRefGoogle Scholar
  427. 406.
    Wehrli, F.W.: Proton-Coupled 13C Nuclear Magnetic Resonance Spectra Involving 13C-1H Spin-Spin Coupling to Hydroxyl-Protons, a Complementary Assignment Aid. J. Chem. Soc., Chem. Commun. (London), 1975, 663.Google Scholar
  428. 407.
    Bruno, M., G. Savona, L. Lamartina, and F. Lentini: New Flavonoids from Bonannia graeca (L.) Halacsy. Heterocycles, 23, 1147 (1985).CrossRefGoogle Scholar
  429. 408.
    Shirataki, Y., I. Yokoe, M. Endo, and M. Komatsu: Determination of C-6 or C-8 Substituted Flavanone Using 13C-1H Long Range Coupling and the Revised Structures of Some Flavanones. Chem. Pharm. Bull. (Japan), 33, 444 (1985).CrossRefGoogle Scholar
  430. 409.
    Fukai, T., and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 3. Structure of 6-or 8-Isoprenoid Substituted Flavanone: Chemical Shift of the Hydrogen-Bonded Hydroxyl Group. Heterocycles, 31, 1861 (1990).CrossRefGoogle Scholar
  431. 410.
    Fukai, T., and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 9. Variations in the Chemical Shift of the 5-Hydroxyl Proton of 7-O-Prenylated Flavanones. Heterocycles, 43, 1361 (1996).CrossRefGoogle Scholar
  432. 411.
    Wu, L.-J., T. Miyase, A. Ueno, M. Kuroyanagi, T. Noro, and S. Fukushima: Studies on the Constituents of Sophora flavescens Aiton. 2. Chem. Pharm. Bull. (Japan), 33, 3231 (1985).CrossRefGoogle Scholar
  433. 412.
    Iinuma, M., J. Yokoyama, M. Ohyama, T. Tanaka, M. Mizuno, and N. Ruangrungsi: Seven Phenolic Compounds in the Roots of Sophora exigua. Phytochem., 33, 203 (1993).CrossRefGoogle Scholar
  434. 413.
    Bohlmann, F., C. Zdero, H. Robinson, and R.M. King: Naturally Occurring Terpene Derivatives. 357. A Diterpene, a Sesquiterpene Quinone and Flavanones from Wyethia helenioides. Phytochem., 20, 2245 (1981).CrossRefGoogle Scholar
  435. 414.
    Fukai, T., and T. Nomura: NMR Spectra of Isoprenoid Substituted Phenols. 4. Revised Structures of Albanins D and E, Geranylated Flavones from Morus alba. Heterocycles, 32, 499 (1991).CrossRefGoogle Scholar
  436. 415.
    Takasugi, M., S. Ishikawa, T. Masamune, A. Shirata, and K. Takahashi: Anti-Bacterial Compounds in the Branch Bark of Mulberry Tree. 42nd Annual Meeting of the Chemical Society of Japan, Abstract Paper, p. 352. Sendai, September 1980.Google Scholar
  437. 416a.
    Ferrari, F., I. Messana, and M. Do Carmo Mesquita de Araujo: Constituents of Brosimopsis oblongifolia. 2. Structures of Three New Flavones, Brosimones G, H, and I, form Brosimopsis oblongifolia. Planta Med., 55, 70 (1989).CrossRefGoogle Scholar
  438. 416b.
    Ferrari, F., and T. Nomura: Letter to Editor. Planta Med., 58, 116 (1992).Google Scholar
  439. 417.
    Tahara, S., J.L. Ingham, F. Hanawa, and J. Mizutani: 1H NMR Chemical Shift Value of the Isoflavone 5-Hydroxyl Proton as a Convenient Indicator of 6-Substitution or 2′-Hydroxylation. Phytochem., 30, 1683 (1991).CrossRefGoogle Scholar
  440. 418.
    Schripsema, J., and D. Dagnino: Elucidation of the Substitution Pattern of 9,10-Anthraquinones Through the Chemical Shifts of peri-Hydroxyl Protons. Phyto-chem., 42, 177 (1996).Google Scholar
  441. 419.
    Ito, C., T. Mizuno, M. Matsuoka, Y. Kimura, K. Sato, I. Kajiura, M. Omura, M. Ju-Ichi, and H. Furukawa: Constituents of Domestic Citrus Plants. 7. A New Flavonoid and Other New Components from Citrus Plants. Chem. Pharm. Bull. (Japan), 36, 3292 (1988).CrossRefGoogle Scholar
  442. 420.
    Fukai, T., Y.-H. Pei, T. Nomura, C.-Q. Xu, L.-J. Wu, and Y.-J. Chen: Constituents of the Cultivated Mulberry Tree. 51. Phenolic Compounds from Morus cathayana. 2. 42nd Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 220. Fukuyama, September 1995.Google Scholar
  443. 421.
    Feeney, J., and A. Heinrich: The Use of Nuclear Magnetic Double Resonance to Detect and Characterise Phenolic OH Groups. J. Chem. Soc., Chem. Commun. (London), 1966, 295.Google Scholar
  444. 422.
    Günther, H.: NMR Spectroscopy; Basic Principles, Concepts, and Applications in Chemistry 2nd edn., Chapter 4, Chichester, John Wiley & Sons, 1995.Google Scholar
  445. 423.
    Verbit, L., and J.W. Clark-Lewis: Optically Active Aromatic Chromophores. 8. Studies in the Isoflavonoid and Rotenoid Series. Tetrahedron, 24, 5519 (1968).CrossRefGoogle Scholar
  446. 424.
    Fukai, T., and T. Nomura: Constituents of Licorice. 16. CD Spectra of Pyranoiso-flavans. 41st Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 237. Sapporo, September 1994.Google Scholar
  447. 425.
    Kurosawa, K., W.D. Ollis, B.T. Redman, I.O. Sutherland, H.M. Alves, and O.R. Gottlieb: Absolute Configurations of Isoflavans. Phytochem., 17, 1423 (1978).CrossRefGoogle Scholar
  448. 426.
    Yahara, S., T. Ogata, R. Saijo, R. Konishi, J. Yamahara, K. Miyahara, and T. Nohara: Isoflavan and Related Compounds from Dalbergia odorifera. 1. Chem. Pharm. Bull. (Japan), 37, 979 (1989).CrossRefGoogle Scholar
  449. 427.
    Hatano, T., T. Yasuhara, K. Miyamoto, and T. Okuda: Anti-Human Immunodeficiency Virus Phenolics from Licorice. Chem. Pharm. Bull. (Japan), 36, 2286 (1988).CrossRefGoogle Scholar
  450. 428.
    Shibata, S., H. Inoue, S. Iwata, R.-D. Ma, L.-J. Yu, H. Ueyama, J. Takayasu, T. Hasegawa, H. Tokuda, A. Nishino, H. Nishino, and A. Iwashima: Inhibitory Effects of Licochalcone A Isolated from Glycyrrhiza inflata Root on Inflammatory Ear Edema and Tumour Promotion in Mice. Planta Med., 57, 221 (1991).CrossRefGoogle Scholar
  451. 429.
    Chen, M., S. B. Christensen, J. Blom, E. Lemmich, L. Nadelmann, K. Fich, T.G. Theander, and A. Kharazmi: Licochalcone A, a Novel Anti-Parasitic Agent with Potent Activity against Human Pathogenic Protozoan Species of Leishmania. Antimicrob. Agents Chemother., 37, 2550 (1993); Chem. Abstr., 120, 68923e (1994).CrossRefGoogle Scholar
  452. 430.
    Kyogoku, K., K. Hatayama, S. Yokomori, R. Saziki, S. Nakane, M. Sasajima, J. Sawada, M. Ohzeki, and I. Tanaka: Anti-ulcer Effect of Isoprenyl Flavonoids. 2. Synthesis and Anti-ulcer Activity of New Chalcones related to Sophoradin. Chem. Pharm. Bull. (Japan), 27, 2943 (1979).CrossRefGoogle Scholar
  453. 431.
    Kan, Y.-M., Q. Zhu, L. Chen, R.-D. Wang, X. Li, and M.-F. Hong: Effect of Homopterocarpin Separated from Glycyrrhiza pallidiflora on Human’s Throat Cancer Cell (HEp-2). Zhongguo Yaoxue Zazhi (Chin. Pharm. Bull.), 29, 608 (1994); Chem. Abstr., 122, 23354v (1995).Google Scholar
  454. 432.
    Mitscher, L.A., S. Drake, S.R. Gollapudi, J.A. Harris, and D.M. Shankel: Isolation and Identification of Higher Plant Agents Active in Antimutagenic Assay Systems: Glycyrrhiza glabra. In: Basic Life Sci. 39: Antimutagenenesis and Anticarcinogenesis Mechanisms. (Shankel, D.M., P.E. Hartman, T. Kada, and A. Hollaender, eds.), pp. 153–165, New York: Plenum Press, 1986; Chem. Abstr., 106, 170739x (1987).Google Scholar
  455. 433.
    Kimura, Y., H. Okuda, T. Okuda, and S. Arichi: Effects of Chalcones Isolated from Licorice Roots on Leukotriene Biosynthesis in Human Polymorphonuclear Neutrophils. Phytother. Res., 2, 140 (1988); Chem. Abstr., 110, 33463w (1989).CrossRefGoogle Scholar
  456. 434.
    Okada, K, Y. Tamura, M. Yamamoto, Y. Inoue, R. Takagaki, K. Takahashi, S. Demizu, K. Kajiyama, Y. Hiraga, and T. Kinoshita: Identification of Antimicrobial and Antioxidant Constituents from Licorice of Russian and Xinjiang Origin. Chem. Pharm. Bull. (Japan), 37, 2528 (1989).CrossRefGoogle Scholar
  457. 435.
    Vakhabov, A.A., C.D. Aminov, and R.K. Hasanova: Antiinflammatory Activity of Pinocembrin. Dokl. Akad. Nauk Resp. Uzb. (USSR), 1993, 43; Chem. Abstr., 122, 96053f (1995).Google Scholar
  458. 436.
    Kobayashi, S., T. Miyamoto, I. Kimura, and M. Kimura: Inhibitory Effect of Isoliquiritin, a Compound in Licorice Root, on Angiogenesis in Vivo and Tube Formation in Vitro. Biol. Pharm. Bull. (Japan), 18, 1382 (1995).CrossRefGoogle Scholar
  459. 437.
    Yamamoto, K., H. Kakegawa, H. Ueda, H. Matsumoto, T. Sudo, T. Miki, and T. Satoh: Gastric Cytoprotective Anti-Ulcerogenic Actions of Hydroxychalcones in Rats. Planta Med., 58, 389 (1992).CrossRefGoogle Scholar
  460. 438.
    Tawata, M., K. Aida, T. Noguchi, Y. Ozaki, S. Kume, H. Sasaki, M. Chin, and T. Onaya: Anti-Platelet Action of Isoliquiritigenin, an Aldose Reductase Inhibitor in Licorice. Eu. J. Pharmac, 212, 87 (1992).CrossRefGoogle Scholar
  461. 439.
    Tawata, M., Y. Yoda, K. Aida, H. Shindo, H. Sasaki, M. Chin, and T. Onaya: Anti-Platelet Action of GU-7, a 3-Arylcoumarin Derivative, Purified from Glycyrrhizae Radix. Planta Med., 56, 259 (1990).CrossRefGoogle Scholar
  462. 440.
    Huang, L.-Y., and Y.K.T. Lam: Isolation of 3′,6′-Diisopentenyl-2′,4′-dihydroxy-5,7-dimethoxyisoflavan and Compositions Containing It and Other Related Compounds as Anxielytic Agents and Avermectin Antidotes. US patent; Chem. Abstr., 106, 189006c (1987).Google Scholar
  463. 441.
    Tanaka, S., Y. Kuwai, and M. Tabata: Isolation of Monoamine Oxidase Inhibitors from Glycyrrhiza uralensis Roots and the Structure-Activity Relationship. Planta Med., 53, 5 (1987).CrossRefGoogle Scholar
  464. 442a.
    Aida, K., M. Tawata, H. Shindo, T. Onaya, H. Sasaki, H. Nishimura, M. Chin (Z. Chen), H. Mitsuhashi: The Existence of Aldose Reductase Inhibitors in Some Kampo Medicines (Oriental Herb Prescriptions). Planta Med., 55, 22 (1989).CrossRefGoogle Scholar
  465. 442b.
    Aida, K., M. Tawata, H. Shindo, T. Onaya, H. Sasaki, T. Yamaguchi, M. Chin (Z. Chen), and H. Mitsuhashi: Isoliquiritigenin: a New Aldose Reductase Inhibitor from Glycyrrhizae Radix. Planta Med., 56, 254 (1990).CrossRefGoogle Scholar
  466. 442c.
    Benvenuti, S., F. Severi, L. Costantino, M. Melegari, and A. Mucci: Identification, Characterization, and Biological Activity of Chalcone Derivatives of Glycyrrhiza glabra L. RIV. Ital. EPPOS, 7, 13 (1996); Chem. Abstr., 126, 222831 (1997).Google Scholar
  467. 443.
    Kusano, A., T. Nikaido, T. Kuge, T. Ohmoto, G.D. Monache, B. Botta, M. Botta, and T. Saitoh: Inhibition of Adenosine 3′,5′-Cyclic Monophosphate Phosphodiesterase by Flavonoids from Licorice Roots and 4-Arylcoumarins. Chem. Pharm. Bull. (Japan), 39, 930 (1991).CrossRefGoogle Scholar
  468. 444.
    Kakegawa, H., H. Matsumoto, and T. Satoh: Inhibitory Effects of Some Natural Products on the Activation of Hyaluronidase and Their Antiallergic Actions. Chem. Pharm. Bull. (Japan), 40, 1439 (1992).CrossRefGoogle Scholar
  469. 445a.
    Sato, S., T. Yanagisawa, H. Mitsuhashi, and T. Nomura: Allergy Inhibitors Containing Flavonoids from Mulberry, Licorice, or Epimedium. Jpn. patent; Chem. Abstr., 115, 231980d (1991).Google Scholar
  470. 445b.
    Sato, S., M. Chin, H. Mitsuhashi, and T. Nomura: Sodium-potassium-activated ATPase Inhibitors Containing Flavonoids from Mulberry or Licorice. Jpn. patent; Chem. Abstr., 115, 182941f (1991).Google Scholar
  471. 446.
    Yamaguchi, T., S. Sato, H. Mitsuhashi, T. Nomura: Aldose Reductase Inhibitors Containing Benzopyrans for Treatment of Diseases associated with Diabetes. Jpn. patent; Chem. Abstr., 116, 46283m (1992).Google Scholar
  472. 447.
    Fukai, T., L. Zeng, J. Nishizawa, and T. Nomura: Studies of Prenylated Flavonoids of Chinese Licorices. 9th Symposium on the Development and Application of Naturally Occurring Drug Material, Abstract of Papers, p. 49. Shizuoka (Japan), July 1993.Google Scholar
  473. 448.
    Yang, S.-L., and Y.-L. Liu: Chemical Constituents of Glycyrrhiza inflata Bat. Zhiwu Xuebao (Acta. Bot. Sinica, China), 30, 176 (1988); Chem. Abstr., 109, 107754v (1988).Google Scholar
  474. 449.
    Elgamal, M.H.A., F.K. Abdel Hady, A.G. Hanna, G.H. Mahran, and H. Duddeck: A further Contribution to the Triterpenoid Constituents of Glycyrrhiza glabra L. Z. Naturforsch., 45c, 937 (1990).Google Scholar
  475. 450.
    Tsubone, K., S. Ohnishi, and T. Yoneya: Separation of Glycyrrhizinic Acid Isomers by High-Performance Liquid Chromatography. J. Chromatogr., 248, 469 (1982).CrossRefGoogle Scholar
  476. 451.
    Zhao, Y.-Y., R.-Y. Zhang, and M. Liu: Chemical Constituents of Glycyrrhiza inflata Bat. 1. Beijing Yike Daxue Xuebao (J. Beijing Med. Univ., China), 22, 283 (1990); Chem. Abstr., 117, 44632w (1992).Google Scholar
  477. 452.
    Pederiva, R., and O.S. Giordano: Flavonoids from Glycyrrhiza astragalina. An. Asoc. Quim. Argent, 75, 7 (1987); Chem. Abstr., 107, 112718z (1987).Google Scholar
  478. 453.
    Gao, D.-Y., and R.-Y. Zhang: Chemical Constituents of Malay Licorice (Glycyrrhiza yunnanensis). Zhongcaoyao (Chin. Herbal Med.), 25, 507 (1994); Chem. Abstr., 122, 89199e (1995).Google Scholar
  479. 454.
    Kobayashi, M., H. Noguchi, and U. Sankawa: Formation of Chalcones and Iso-flavones by Callus Culture of Glycyrrhiza uralensis with Different Production Patterns. Chem. Pharm. Bull. (Japan), 33, 3811 (1985).CrossRefGoogle Scholar
  480. 455.
    Liu, J.-H., S.-S. Yang, Y.-Q. Fu, D. Xu, C.-X. Jiang, and F.-F. Hou: Flavonoid Contents of Glycyrrhiza pallidiflora. Zhongcaoyao (Chin. Herbal Med.), 23, 349 (1992); Chem. Abstr., 117, 230157v (1992).Google Scholar
  481. 456.
    Liang, H., and R.-Y. Zhang: Chemical Constituents of Glycyrrhiza squamulosa. Beijing Yike Daxue Xuebao (J. Beijing Med. Univ., China), 24, 399 (1992); Chem. Abstr., 118, 209446z (1993).Google Scholar
  482. 457.
    Zou, K., F. Di, R.-Y. Zhang, L. Zeng, and N.-W. Fu: Constituents of Glycyrrhiza inflata Bat. 3. Tianran Chanwu Yanjiu Yu Kaifa (Nat. Prod. Research Develop., China), 5 (4), 1 (1993); Chem. Abstr., 120, 319343n (1994).Google Scholar
  483. 458.
    Hou, S.-S., S.-Y. Chen, M.-Z. Yang, X.-M. Li, D.-Y. Lu, J. Zhang, and L. Chen: Isolation and Identification of Echinatin from Cultured Cells of Glycyrrhiza uralensis. Zhowu Xuebao (Acta Bot. Sinica China), 35, 567 (1993); Chem. Abstr., 120, 73474p (1994).Google Scholar
  484. 459.
    Kattaev, N.S., and G.K. Nikonov: Flavonoids of Glycyrrhiza glabra. Khim. Prir. Soedin., 10, 93 (1974); Chem. Abstr., 81, 60809c (1974).Google Scholar
  485. 460.
    Hayashi, H., M. Yasuma, N. Hiraoka, Y. Ikeshiro, H. Yamamoto, E. Yesilada, E. Sezik, G. Honda, and M. Tabata: Field Survey of Licorice in Turkey. 3. Flavonoids Variation in the Leaves of Glycyrrhiza glabra. Phytochem., 42, 701 (1996).CrossRefGoogle Scholar
  486. 461.
    Batirov, E. K., F. Kiyamitdinova, and V.M. Malikov: Flavonoids of the Aerial Parts of Glycyrrhiza glabra. Khim. Prir. Soedin., 1986, 111; Chem. Abstr., 104, 203930s (1986).Google Scholar
  487. 462.
    Shibano, M., Y. Matsumoto, G. Kusano, and T. Shibata: Researches of Glycyrrhiza Species Grown at Medicinal Plant Gardens in Japan and Basic Studies for Selection of Pharmaceutically Fine Races. 1. Comparative Studies by HPLC Patterns and Constituents of Aerial parts. Nat. Med. (Jpn. J. Pharmacognosy), 50, 273 (1996); Chem. Abstr., 125, 338818 (1996).Google Scholar
  488. 463.
    Hu. J.-F., Z.-L. Ye, and F.-G. Shen: Constituents from the Roots of Glycyrrhiza yunnanensis. 1. Tianran Chanwu Yanjiu Yu Kaifa (Nat. Prod. Research Develop., China), 6 (4), 6 (1994); Chem. Abstr., 123, 5600p (1995).Google Scholar
  489. 464.
    Wang, C.-L., R.-Y. Zhang, Y.-S. Han, X.-G. Dong, and W.-B. Liu: Chemical Studies of Coumarins from Glycyrrhiza uralensis Fisch. Yaoxue Xuebao (Acta Pharm. Sinica, China), 26, 147 (1991); Chem. Abstr., 115, 68400d (1991).Google Scholar
  490. 465.
    Litvinenko, V.I., N.P. Maksyutina, and D.G. Kolesnikov: Flavonoidal Compounds of Glycyrrhiza glabra. 1. Flavonoid L-1. Zhurn. Obshchei Khimii (USSR), 33, 4014 (1963); Chem. Abstr., 60, 9347 (1964).Google Scholar
  491. 466.
    Afchar, D., A. Cavé, H. Guinaudeau, and J. Vaquette: Study of Licorices from Iran. 3. Flavonoids from Glycyrrhiza echinata L. Roots. Plant. Med. Phytother., 18, 170 (1984); Chem. Abstr., 102, 128851v (1985).Google Scholar
  492. 467.
    Afchar, D., A. Cavé, and J. Vaquette: Study on Licorice from Iran. 2. Flavonoids from Glycyrrhiza glabra L. var. glandulifera Waldst. et Kit. and Glycyrrhiza glabra L. var. violacea Boiss. Plant. Med. Phytother., 18, 55 (1984).Google Scholar
  493. 468.
    Litvinenko, V.I., and T.P. Nadezhina: Flavonoids of the Aerial Part of Glycyrrhiza macedonica. Rast. Resur., 6, 575 (1970); Chem. Abstr., 74, 95410y (1971).Google Scholar
  494. 469.
    Elgamal, M.H.A., and M.B.E. Fayez: Constituents of Local Plants. 16. Isolation of Formononetin from the Roots of Glycyrrhiza glabra Linn. Collected Locally. Indian J. Chem., 10, 128 (1972).Google Scholar
  495. 470.
    Arias-Castro, C., A.H. Scragg, A. Stafford, and M. Rodriguez-Mendiola: Isolation, Identification, and Kinetics of Production of Formononetin in Cell Suspension Cultures of Glycyrrhiza glabra. Planta Med., 56, 631 (1990).CrossRefGoogle Scholar
  496. 471.
    Hayashi, H., G. Honda, M. Tabata, H. Yamamoto, E. Yesilada, and E. Sezik: Field Survey of Licorice in Turkey. 2. A Survey of Distribution and Characteristics of Glycyrrhiza glabra L. in Turkey. Nat. Med. (Jpn. J. Pharmacognosy), 49, 129 (1995); Biol. Abstr., 100, 98295 (1995).Google Scholar
  497. 472.
    Saleh, M.M., M.M. El-Olemy, H.M. Metawie, A.H. Abou-Zied, and M.S. Abdel-Salam: Response of Liquorice (Glycyrrhiza glabra) Leaves to Certain Stress Factor. Planta Med., 56, 610 (1990).CrossRefGoogle Scholar
  498. 473.
    Reiners, W.: Components of Licorice Roots. 2. 7-Hydroxy-4′-methoxyisoflavone (Formononetin) from Licorice Root. Experientia, 22, 359 (1966).CrossRefGoogle Scholar
  499. 474.
    Balbaa, S.I., G.H. Mahran, G.A. El-Hossary, and M.A. Selim: A Phytochemical Study of Glycyrrhiza glabra L. Growing in Egypt. Bull. Fac. Pharm., Cairo Univ., 14, 213 (1976); Chem. Abstr., 87, 206410p (1977).Google Scholar
  500. 475.
    Oda, M., Y. Tamura, K. Mizutani, and O. Tanaka: Biological Activity and Constituents of Cell Cultures of Licorice. 42nd Annual Meeting of Japanese Society of Pharmacognosy, Abstract Papers, p. 168. Fukuyama, September 1995.Google Scholar
  501. 476.
    Raggi, M.A., F. Bugamelli, L. Nobile, V. Curcelli, R. Mandrioli, A. Rossetti, and G. Cantelli Forti: Studies on the Choleretic Effect of Licorice: Identification and Determination of Pharmacologically Active Components of Glycyrrhiza glabra. Boll. Chim. Farm., 134, 634 (1995); Chem. Abstr., 124, 278675 (1996).Google Scholar
  502. 477.
    Zou, K., Y.-I. Zhao, N.-W. Fu, L. Qiao, and R.-Y. Zhang: Antioxidant Constituents from Glycyrrhiza infiata Bat. Root. J. Chin. Pharm. Sci., 5, 182 (1996); Chem. Abstr., 126, 273418 (1997).Google Scholar
  503. 478.
    Asada, Y., W. Li, and T. Yoshikawa: Constituents of Hairy Root Cultures of Licorice. 117th Annual Meeting of Pharmaceutical Society of Japan, Abstract Papers, part 2, p. 117. Tokyo, March 1997.Google Scholar
  504. 479.
    Takagi, M., H. Itoh, T. Hatano, and T. Yoshida: Polyphenols of Licorice. 14. 117th Annual Meeting of Pharmaceutical Society of Japan, Abstract Papers, part 2, p. 132. Tokyo, March 1997.Google Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • T. Nomura
    • 1
  • T. Fukai
    • 1
  1. 1.Faculty of Pharmaceutical SciencesToho UniversityMiyama, Funabashi, ChibaJapan

Personalised recommendations