Combination of the different biological markers for increasing specificity of in vivo Alzheimer’s testing

  • K. Blennow
  • E. Vanmechelen
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 53)


In view of existing drugs (acetylcholine esterase inhibitors) and emerging therapeutic compounds (e.g. neuroprotective and anti-inflammatory compounds), CSF markers would be of great use to improve the clinical diagnostic accuracy of Alzheimer’s disease (AD). Correct identification of AD would be especially important early in the course of the disease, when the clinical diagnosis is difficult, and drugs have the greatest potential of being effective. Biochemical markers for AD include ApoE genotyping, where the ApoE ɛ4 allele has proven to have a high predictive value for AD. Biochemical markers for AD also include several potential cerebrospinal fluid (CSF) markers: β-amyloid (1–42), possibly reflecting amyloid deposition and formation of senile plaques; PHFtau protein a marker for the phosphorylation state of tau, and formation of neurofibrillary tangles; (total)tau protein, a normal axonal protein, as a marker for ongoing neuronal and axonal degeneration; synaptic vesicle proteins, e.g. synaptotagmin, a synaptic vesicle protein which is found in the CSF, as markers for synaptic activity or degeneration; neuromodulin or growth-associated protein GAP-43, as a marker for synaptic degeneration, and the CSF/serum albumin ratio, as a marker for blood-brain barrier damage, used to exclude patients with concomitant cerebrovascular pathology. However, although CSF markers may identify different pathogenic processes in AD, there is no such process that is specific for AD, and thus little hope of ever finding a single CSF biochemical marker that gives an absolute discrimination between AD and other dementia disorders. Instead, combination of several CSF biochemical markers, each reflecting a pathogenic process, may increase both the sensitivity and specificity. Further, the accuracy of the clinical diagnosis of AD may increase if the diagnosis is based on the summarised information gained from the clinical examination, brain-imaging techniques (SPECT, CT/MRT scans), and biochemical markers. Using this approach, CSF markers have a large potential to help to differentiate AD from the most problematic differential diagnoses, especially age-associated memory impairment, depressive pseudo-dementia, Parkinson’s disease, and frontal lobe dementia


Vascular Dementia Subacute Sclerosing Panencephalitis Synaptic Vesicle Protein Albumin Ratio Synaptic Degeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasen N, Vanmechelen E, Van de Voorde A, Davidsson P, Hesse C, Tarvonen S, Räihä I, Sourander L, Winblad B, Blennow K (1998) Cerebrospinal fluid tau protein as a biochemical marker for Alzheimer’s disease: a community-based follow-up study. J Neurol Neurosurg Psychiatry 64: 298–305PubMedCrossRefGoogle Scholar
  2. Basi GS (1987) Primary structure and transcriptional regulation of GAP-43, a protein associated with nerve growth. Cell 49: 785–791PubMedCrossRefGoogle Scholar
  3. Benowitz LI, Perrone-Bizzozero NI, Finklestein SP, Bird ED (1989) Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex. J Neurosci 9: 990–995PubMedGoogle Scholar
  4. Blennow K, Wallin A, Fredman P, Karlsson I, Gottfries CG, Svennerholm L (1990) Blood-brain barrier disturbance in patients with Alzheimer’s disease is related to vascular factors. Acta Neurol Scand 81: 323–326PubMedCrossRefGoogle Scholar
  5. Blennow K, Wallin A (1992) Clinical heterogeneity of probable Alzheimer’s disease. J Geriatr Psychiat Neurol 5: 106–113Google Scholar
  6. Blennow K, Wallin A, Häger O (1993) Low frequency of post-lumbar puncture headache in demented patients. Acta Neurol Scand 88: 221–223PubMedCrossRefGoogle Scholar
  7. Blennow K, Wallin A, Ågren H, Spenger C, Siegfried J, Vanmechelen E (1995) Tau protein in cerebrospinal fluid: a biochemical diagnostic marker for axonal degeneration in Alzheimer’s disease? Mol Chem Neuropathol 26: 231–245PubMedCrossRefGoogle Scholar
  8. Blennow K, Bogdanivich N, Alafuzoff I, Ekman R, Davidsson P (1996) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm [P-D Sect] 103: 603–618CrossRefGoogle Scholar
  9. Coleman PD, Flood DG (1987) Neuron numbers and dendrite extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8: 521–545PubMedCrossRefGoogle Scholar
  10. Corsellis JA, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychol Med 3: 270–303PubMedCrossRefGoogle Scholar
  11. Dayan AD (1970) Quantitative histological studies on the aged human brain, I. Senile plaques and neurofibrillary tangles in “normal” patients. Acta Neuropathol 16: 85–94PubMedCrossRefGoogle Scholar
  12. Davidsson P, Jahn R, Bergquist J, Ekman R, Blennow K (1996) Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid: a new biochemical marker for synaptic pathology in Alzheimer’s disease? Mol Chem Neuropathol 27: 195–210PubMedCrossRefGoogle Scholar
  13. Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, Beyreuther K, Masters CL (1988) A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease. Neurology 38: 1688–1693PubMedCrossRefGoogle Scholar
  14. DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27: 457–464CrossRefGoogle Scholar
  15. Delaère P, He Y, Fayet G, Duyckaerts C, Hauw JJ (1993) βA4 deposits are constant in the brain of the oldest old: an immunocytochemical study of 20 French centenarians. Neurobiol Aging 14: 191–194PubMedCrossRefGoogle Scholar
  16. Esiri MM, McShane RH (1997) Parkinson’s disease and dementia. In: Esiri MM, Morris JH (eds) The neuropathology of dementia. Cambridge University Press, pp 174–193Google Scholar
  17. Fishman RA (1992) Cerebrospinal fluid in diseases of the nervous system, 2nd edn. Saunders, PhiladelphiaGoogle Scholar
  18. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. TINS 16: 460–465PubMedGoogle Scholar
  19. Gravina SA, Ho L, Eckman CB, Long KE, Otvos L Jr, Younkin LH, Suzuki N, Younkin SG (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270: 7013–7016PubMedCrossRefGoogle Scholar
  20. Harrington CR, Louwagie J, Rossau R, Vanmechelen E, Perry RH, Perry EK, Xuereb JH, Roth M, Wischik CM (1994) Influence of apolipoprotein E genotype on senile dementia of the Alzheimer and Lewy body types. Am J Pathol 145: 1472–1484PubMedGoogle Scholar
  21. Hart MN, Merz P, Bennett-Gray J, Menezes AH, Goeken JA, Schelper RL, Wisniewski HM (1988) β-amyloid protein of Alzheimer’s disease is found in cerebral and spinal cord vascular malformations. Am J Pathol 132: 167–172PubMedGoogle Scholar
  22. Heinonen O, Soininen H, Sorvari H, Kosunen O, Paljärvi L, Koivisto E, Riekkinen PJ (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience 64: 375–384PubMedCrossRefGoogle Scholar
  23. Ida N, Hartmann T, Pantel J, Schroder J, Zerfass R, Forstl H, Sandbrink R, Masters CL, Beyreuther K (1996) Analysis of heterogeneous A4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay. J Biol Chem 271: 22908–22914PubMedCrossRefGoogle Scholar
  24. Jellinger KA (1996) Diagnostic accuracy of Alzheimer’s disease: a clinicopathological study Acta Neuropathol 91: 219–220PubMedCrossRefGoogle Scholar
  25. Jensen M, Basun H, Lannfelt L (1995) Increased cerebrospinal fluid tau in patients with Alzheimer’s disease. Neurosci Lett 186: 189–191PubMedCrossRefGoogle Scholar
  26. Kakulas BA, Wilton SD, Fabian VA, Jones TM (1996) Apolipoprotein-E genotyping in diagnosis of Alzheimer’s disease. Lancet 348: 483PubMedCrossRefGoogle Scholar
  27. Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  28. Kosunen O, Soininen H, Paljärvi L, Heinonen O, Talasniemi S, Riekkinen PJ Sr (1996) Diagnostic accuracy of Alzheimer’s disease: a neuropathological study. Acta Neuropathol 91: 185–193PubMedCrossRefGoogle Scholar
  29. Kuusisto J, Koivisto K, Kervinen K, Mykkänen L, Helkala EL, Vanhanen M, Hänninen T, Pyörälä K, Kesäniemi YA, Riekkinen P, Laakso M (1994) Association between apolipoprotein E phenotypes with late onset Alzheimer’s disease: population based study. BMJ 309: 636–638PubMedCrossRefGoogle Scholar
  30. Landén M, Thorseil A, Wallin A, Blennow K (1996) The apolipoprotein E allele 4 does not correlate with the number of senile plaques or neurofibrillary tangles in patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 61: 352–356PubMedCrossRefGoogle Scholar
  31. Lendon CL, Ashall F, Goate AM (1997) Exploring the etiology of Alzheimer disease using molecular genetics. JAMA 227: 825–831CrossRefGoogle Scholar
  32. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240: 622–630PubMedCrossRefGoogle Scholar
  33. Mandybur TI, Nagpaul AS, Pappas Z, Niklowitz WJ (1977) Alzheimer neurofibrillary change in subacute sclerosing panencephalitis. Ann Neurol 1: 103–107PubMedCrossRefGoogle Scholar
  34. Masliah E, Terry RD, DeTeresa RM, Hansen LA (1989) Immunohistochemical quantification of the synapse-related protein synaptophysin in Alzheimer’s disease. Neurosci Lett 103: 234–239PubMedCrossRefGoogle Scholar
  35. Masliah E, Hansen L, Albright T, Mallory M, Terry RD (1991) Immunoelectron microscopic study of synaptic pathology in Alzheimer’s disease. Acta Neuropathol 81: 428–433PubMedCrossRefGoogle Scholar
  36. Masliah E, Mallory M, Hansen L, DeTeresa BS, Terry RD (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43: 192–197PubMedCrossRefGoogle Scholar
  37. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer’s disease and Down syndrome. Proc Natl Acad Sci 82: 4245–4249PubMedCrossRefGoogle Scholar
  38. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34: 939–944PubMedCrossRefGoogle Scholar
  39. Mendez MF, Mastri AR, Sung JH, Frey WH (1992) Clinically diagnosed Alzheimer disease: neuropathologic findings in 650 cases. Alz Dis Assoc Disord 6: 35–43CrossRefGoogle Scholar
  40. Mercken M, Liibke U, Vandermeeren M, Gheuens J, Oestreicher AB (1992) Immunocy-tochemical detection of the growth-associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle. J Neurobiol 23: 309–321PubMedCrossRefGoogle Scholar
  41. Miller FD, Hicks SP, D’Amato CJ, Landis JR (1984) A descriptive study of neuritic plaques and neurofibrillary tangles in an autopsy population. Am J Epidemiol 120: 331–341PubMedGoogle Scholar
  42. Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys 301: 41–52PubMedCrossRefGoogle Scholar
  43. Minthon L, Hesse C, Sjögren M, Englund E, Gustafson L, Blennow K (1997) The apolipoprotein E ɛ4 allele frequency is normal in frontotemporal dementia, but correlates with age at onset of disease. Neurosci Lett 226: 65–67PubMedCrossRefGoogle Scholar
  44. Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, Chang L, Miller B, Clark C, Green R, Olson D, Southwick P, Wolfert R, Munroe B, Lieberburg I, Seat P, Schenk D (1995) Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38: 643–648PubMedCrossRefGoogle Scholar
  45. Pickering-Brown S, Roberts D, Owen F (1994) Apolipoprotein E4 alleles and non-Alzheimer’s disease forms of dementia. Neurodegeneration 3: 95–96Google Scholar
  46. Pirttilä T, Kim KS, Mehta PD, Frey H, Wisniewski HM (1994) Soluble amyloid beta-protein in the cerebrospinal fluid from patients with Alzheimer’s disease, vascular dementia and controls. J Neurol Sci 127: 90–95PubMedCrossRefGoogle Scholar
  47. Poirier J, Delisle MC, Quirion R, Aubert I, Farlow M, Lahiri D, Hui S, Bertrand P, Nalbantoglu J, Gilfix BM (1995) Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 92: 12260–12264PubMedCrossRefGoogle Scholar
  48. Rasmusson DX, Brandt J, Steele C, Hedreen JC, Troncoso JC, Folstein MF (1996) Accuracy of clinical diagnosis of Alzheimer disease and clinical features of patients with non-Alzheimer disease neuropathology. Alz Dis Assoc Disord 10: 180–188CrossRefGoogle Scholar
  49. Riemenschneider M, Buch K, Schmolke M, Kurz A, Guder WG (1996) Cerebrospinal protein tau is elevated in early Alzheimer’s disease. Neurosci Lett 212: 209–211PubMedCrossRefGoogle Scholar
  50. Roberts GW, Allsop D, Bruton C (1990) The occult aftermath of boxing. J Neurol Neurosurg Psychiatry 53: 373–378PubMedCrossRefGoogle Scholar
  51. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) β amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57: 419–425PubMedCrossRefGoogle Scholar
  52. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zurcher-Neely HA, Heinrikson RL, Ball MJ (1993) Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268: 3072–3083PubMedGoogle Scholar
  53. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47: 387–400PubMedCrossRefGoogle Scholar
  54. Rubinsztein DC, Hanlon CS, Irwing RM, Goodburn S, Evans DGR, Kellar-Wood H, Xuereb JH, Bandmann O, Harding AE (1994) ApoE genotypes in multiple sclerosis, Parkinson’s disease, schwannomas and late-onset Alzheimer’s disease. Mol Cell Probes 8: 519–525PubMedCrossRefGoogle Scholar
  55. Saunders AM, Hulette O, Welsh-Bohmer KA, Schmechel DE, Crain B, Burke JR, Alberts MJ, Strittmatter WJ, Breitner JC, Rosenberg C, Scott SV, Gaskell PC Jr., Pericak-Vance MA, Roses AD (1996) Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348: 90–93PubMedCrossRefGoogle Scholar
  56. Smith AD, Jobst KA, Johnston C, Joachim C, Nagy Z (1996) Apolipoprotein-E genotyping in diagnosis of Alzheimer’s disease. Lancet 348: 483–484PubMedCrossRefGoogle Scholar
  57. Southwick PC, Yamagata SK, Echols CL Jr, Higson GJ, Neynaber SA, Parson RE, Munroe WA (1996) Assessment of amyloid beta protein in cerebrospinal fluid as an aid in the diagnosis of Alzheimer’s disease. J Neurochem 66: 259–265PubMedCrossRefGoogle Scholar
  58. Stengård JH, Pekkanen J, Sulkava R, Ehnholm C, Erkinjuntti T (1995) Apolipoprotein E polymorphism, Alzheimer’s disease and vascular dementia among elderly Finnish men. Acta Neurol Scand 92: 297–298PubMedCrossRefGoogle Scholar
  59. Tamaoka A, Sawamura N, Fukushima T, Shoji S, Matsubara E, Shoji M, Hirai S, Furiya Y, Endoh R, Mori H (1997) Amyloid beta protein 42(43) in cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Sci 148: 41–45PubMedCrossRefGoogle Scholar
  60. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580PubMedCrossRefGoogle Scholar
  61. Tibbling G, Link H, Öhman S (1977) Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J Clin Lab Invest 37: 385–390PubMedCrossRefGoogle Scholar
  62. Tomlinson BE, Henderson G (1976) Some quantitative cerebral findings in normal and demented old people. In: Terry RD, Gershon S (eds) Neurobiology of aging. Raven Press, New York, pp 183–204Google Scholar
  63. Vanmechelen E, Blennow K, Davidsson P, Cras P, Van de Voorde A (1997) Combination of tau/phospho-tau with other biochemical markers for Alzheimer CSF diagnosis and tau in CSF as marker for neurodegeneration. In: Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. Wiley, pp 197–203Google Scholar
  64. Vanmechelen E, Sjögren M, Vanderstichele H, D’Heuvaert N, Davidsson P, Andreasen N, Regland B, Wallin A, Motter R, Seubert P, Van de Voorde A, Blennow K (1998) Tau and β-amyloid(1–42) in cerebrospinal fluid as biochemical markers for Alzheimer’s disease: influence of neurochemical factors (submitted)Google Scholar
  65. Vigo-Pelfrey C, Seubert P, Barbour R, Blomquist C, Lee M, Lee D, Coria F, Chang L, Miller B, Lieberburg I, Schenk D (1995) Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer’s disease. Neurology 45: 788–793PubMedCrossRefGoogle Scholar
  66. Wallin A, Blennow K, Fredman P, Gottfries CG, Karlsson I, Svennerholm L (1990) Blood-brain barrier function in vascular dementia. Acta Neurol Scand 81: 318–322PubMedCrossRefGoogle Scholar
  67. Wisniewski K, George AJ, Moretz RC, Wisniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5: 288–294PubMedCrossRefGoogle Scholar
  68. Zachhuber C, Leblhuber F, Jellinger K, Bancher C, Drlicek M (1997) Histopathologic studies in dementia: comparison with clinical findings. Z Gerontol Geriatr 30: 29–33PubMedGoogle Scholar
  69. Zhan SS, Beyreuther K, Schmitt HP (1993) Quantitative assessment of the synaptophysin immuno-reactivity of the cortical neuropil in various neurodegenerative disorders with dementia. Dementia 4: 66–74PubMedGoogle Scholar
  70. Zannis VI, Breslow JL, Utermann G, Mahley RW, Weisgraber KH, Havel RJ, Goldstein JL, Brown MS, Schonfeld G, Hazzard WR, Blum C (1982) Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes. J Lipid Res 23: 911–914PubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • K. Blennow
    • 1
    • 3
  • E. Vanmechelen
    • 2
  1. 1.Department of Clinical Neuroscience, Unit of NeurochemistryUniversity of Göteborg, and the Swedish Medical Research CouncilSweden
  2. 2.InnogeneticsGhentBelgium
  3. 3.Institute of Clinical Neuroscience, Unit of Neurochemistry, Göteborg University, Sahlgrenska University HospitalMölndalSweden

Personalised recommendations