Advertisement

Proteolytic processing of Alzheimer’s disease associated proteins

  • C. Haass
  • J. Grünberg
  • A. Capell
  • C. Wild-Bode
  • U. Leimer
  • J. Walter
  • T. Yamazaki
  • I. Ihara
  • I. Zweckbronner
  • C. Jakubek
  • R. Baumeister
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 53)

Summary

Amyloid β-peptide (Aβ), the major component of senile plaques, is generated by proteolytic processing from the β-amyloid precursor protein (βAPP). Mutations within the βAPP gene cause early onset familial AD (FAD) by affecting Aβ generation. Interestingly, the much more abundant mutations within the presenilin (PS) genes also result in the abnormal generation of a 42 residue Aβ (Aβ42), thus clearly supporting a pivotal role of Aβ for the pathology of AD. PS proteins are proteolytically processed into stable 30kDa N-terminal fragments (NTF) and 20kDa C-terminal fragments (CTF). Beside the conventional proteolytic pathway, PS proteins can also be cleaved further C-terminal by proteases of the caspase superfamily. PS proteins were localized within the endoplasmic reticulum (ER) and early Golgi, compartments which we have demonstrated to be involved in Aβ42 generation and intracellular accumulation. Using Caenorhabditis elegans as a simple animal model, we demonstrate that PS proteins are involved in NOTCH signaling. FAD causing mutations interfere with the biological function of PS proteins in NOTCH signaling.

Keywords

Notch Signaling Amyloid Precursor Protein Caspase Mediate Cleavage Alternative Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumeister R, Leimer U, Zweckbronner I, Jakubek C, Grünberg J, Haass C (1997) Human presenilin-1, but not familial Alzheimer’s disease (FAD) mutants, facilitate caenorhabditis elegans notch signaling independently of proteolytic processing. Genes function 1: 149–159CrossRefGoogle Scholar
  2. Borchelt D, Thinakaran G, Eckman C, Lee M, Davenport F, Ratovitsky T, Prada C-M, Kim G, Seekins S, Yager D, Slunt H, Wang R, Seeger M, Levey A, Gandy S, Copeland N, Jenkins N, Price D, Younkin S, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin-1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17: 1005–10013PubMedCrossRefGoogle Scholar
  3. Capell A, Saffrich R, Olivo J-C, Meyn L, Walter J, Grünberg J, Dotti C, Haass C (1997) Expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. J Neurochem 69: 2432–2440PubMedCrossRefGoogle Scholar
  4. Citron M, Westaway D, Xia W, Carlson G, Diehl TS, Levesque G, Johnson-Wood K, Lee, M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St. George-Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Med 3: 67–72PubMedCrossRefGoogle Scholar
  5. Cook DG, Sung JC, Golde TE, Felsenstein KM, Wojczyk BS, Tanzi RE, Trojanowski JQ, Lee V M-Y, Doms RW (1996) Expression and analysis of presenilin 1 in a human neuronal system: Localization in cell bodies and dendrites. Proc Natl Acad Sci USA 93: 9223–9228PubMedCrossRefGoogle Scholar
  6. Cook DG, Forman MS, Sung JC, Leight S, Kolson DL, Iwatsubo T, Lee V M-Y, Doms RW (1997) Alzheimer’s Aβ (1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med 3: 1021–1023PubMedCrossRefGoogle Scholar
  7. De Strooper B, Beullens M, Contreras B, Levesque L, Craessaerts K, Cordell B, Moechars D, Bollen M, Fraser P, St. George-Hyslop P, Van Leuven F (1997) Phosphorylation, subcellular localization and membrane orientation of the Alzheimer’s disease-associated presenilins. J Biol Chem 272: 3590–3598PubMedCrossRefGoogle Scholar
  8. Duff K, Eckman C, Zehr C, Yu X, Prada CM, Perez-Tur J, Hutton M, Buee L, Harigaya Y, Yager D, Morgan D, Gordon MN, Holcomb L, Refolo L, Zenk B, Hardy J, Younkin SG (1996) Increased amyloid-β42 (43) in brains of mice expressing mutant presenilin 1. Nature 383: 710–713PubMedCrossRefGoogle Scholar
  9. Grünberg J, Walter J, Hendriks L, van Broeckhoven C, Loetscher H, Deuschle U, Jacobsen H, Haass C (1998) Alternative processing of the Alzheimer’s disease associated presenilin-1 involving proteases of the caspase family. Biochemistry (in press)Google Scholar
  10. Haass C (1997) Presenilins: genes for life and death. Neuron 18: 687–690PubMedCrossRefGoogle Scholar
  11. Haass C, Selkoe DJ (1993) Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 75: 1039–1042PubMedCrossRefGoogle Scholar
  12. Hartmann T, Bieger SC, Brühl B, Tienari PJ, Ida N, Allsop D, Roberts GW, Masters CL, Dotti CG, Unsicker K, Beyreuther K (1997) Distinct sites of intracellular production for Alzheimer’s disease Aβ40/42 amyloid peptides. Nature Med 3: 1016–1020PubMedCrossRefGoogle Scholar
  13. Hartmann H, Busciglio J, Baumann K-H, Staufenbiel M, Yankner B (1997) Developmental regulation of presenilin-1 processing in the brain suggests a role in neuronal differentiation. J Biol Chem 272: 14505–14508PubMedCrossRefGoogle Scholar
  14. Kim T-W, Pettingell H, Jung Y-K, Kovacs D, Tanzi R (1997) Alternative cleavage of Alzheimer-associated presenilins during apoptosis by a caspase-3 family protease. Science 277: 373–376PubMedCrossRefGoogle Scholar
  15. Kovacs DM, Fausett HJ, Page K J, Kim TW, Moir RD, Merriam DE, Hollister RD, Hallmark OG, Mancini R, Felsenstein KM, Hyman BT, Tanzi RE, Wasco W (1996) Alzheimer-associated presenilins 1 and 2: neuronal expression in brain and localization to intracellular membranes in mammalian cells. Nature Med 2: 224–229PubMedCrossRefGoogle Scholar
  16. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, Yu C, Jondro PD, Schmidt SD, Wang K, Crowley AC, Fu Y-H, Guenette SY, Galas D, Nemens E, Wijsman EM, Bird TD, Schellenberg GD, Tanzi RE (1995) Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 269: 973–977PubMedCrossRefGoogle Scholar
  17. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signaling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354PubMedCrossRefGoogle Scholar
  18. Levitan D, Doyle T, Brousseau D, Lee M, Thinakaran G, Slunt H, Sisodia S, Greenwald I (1996) Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proc Natl Acad Sci USA 93: 14940–14944PubMedCrossRefGoogle Scholar
  19. Loetscher H, Deuschle U, Brockhaus M, Reinhardt D, Nelboeck P, Mous J, Grünberg J, Haass C, Jacobsen H (1997) Presenilins are processed by caspase-type proteases. J Biol Chem 272: 20655–20659PubMedCrossRefGoogle Scholar
  20. Perez-Tur J, Froehlich S, Prihar G, Crook R, Baker M, Duff K, Wragg M, Busfield F, Lendon C, Clark RF, Roques P, Fuldner RA, Johnston J, Cowburn R, Forseil C, Axelman K, Lilius L, Houlden H, Karran E, Roberts GW, Rossor M, Adams MD, Hardy J, Goate A, Lannfelt L, Hutton M (1995) A mutation in Alzheimer’s disease destroying a splice acceptor site in the presenilin-1 gene. NeuroReport 7: 297–301PubMedGoogle Scholar
  21. Podlisny M, Citron M, Amarante P, Sherrington R, Xia W, Zhang J, Diehl T, Levesque G, Fraser P, Haass C, Koo E, Seubert P, St. George-Hyslop P, Teplow D, Selkoe D (1997) Presenilins proteins undergo heterogeneous endoproteolysis between Thr291 and Ala299 and occur as stable N-and C-terminal fragments in normal and Alzheimer brain tissue. Neurobiol Dis 3: 325–337PubMedCrossRefGoogle Scholar
  22. Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holamn K, Tsuda T, Mar L, Sorbi S, Nacmias B, Piacentini S, Amaducci L, Chumakkov I, Cohen D, Lannfelt L, Fraser PE, Rommens JM, St. George-Hyslop PH (1995) Familial Alzheimer’s disease kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376: 775–778PubMedCrossRefGoogle Scholar
  23. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe DJ, Younkin S (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nature Med 2: 864–870PubMedCrossRefGoogle Scholar
  24. Selkoe DJ (1996) Amyloid β-protein and the genetics of Alzheimer’s disease. J Biol Chem 271: 18295–18298PubMedGoogle Scholar
  25. Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in presenilin-1-deficient mice. Cell 89: 629–639PubMedCrossRefGoogle Scholar
  26. Sherrington R, Rogaev El, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J-F, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, da Silva HAR, Haines JL, Pericak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375: 754–760PubMedCrossRefGoogle Scholar
  27. Suzuki N, Cheung TT, Cai XD, Odaka A, Otvos L jr, Eckman C, Golde TE, Younkin SG (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP 717) mutants. Science 264: 1336–1340PubMedCrossRefGoogle Scholar
  28. Tanzi RE, Kovacs DM, Kim T-W, Moir R, Guenette SY, Wasco W (1996) The gene defects responsible for Alzheimer’s disease. Neurobiol Dis 3: 159–168PubMedCrossRefGoogle Scholar
  29. Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland, NG, Pric, DL Sisodia SS (1996) Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190PubMedCrossRefGoogle Scholar
  30. Tomita T, Maruyama K, Saido TC, Kume H, Shinozaki K, Tokuhiro S, Capell A, Walter J, Grünberg J, Haass C, Iwatsubo T, Obata K (1997) The presenilin 2 mutation (N141I) linked to familial Alzheimer disease (Volga German families) increases the secretion of amyloid β protein ending at the 42nd (or 43rd) residue. Proc Natl Acad Sci USA 94: 2025–2030PubMedCrossRefGoogle Scholar
  31. Vito P, Lacana L, D’Adamio L (1996a) Interfering with apoptosis: Ca2 +-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271: 521–525PubMedCrossRefGoogle Scholar
  32. Vito P, Wolozin B, Ganjei JK, Iwasaki K, Lacana E, D’Adamio L (1996b) Requirement of the familial Alzheimer’s disease gene PS2 for apoptosis. J Biol Chem 271: 31025–31028PubMedCrossRefGoogle Scholar
  33. Walter J, Capell A, Grünberg J, Pesold B, Schindzielorz A, Prior R, Podlisny MB, Fraser P, St.George-Hyslop P, Selkoe DJ, Haass C (1996) The Alzheimer’s disease — associated presenilins are differentially phosphorylated proteins located predominantly within the endoplasmic reticulum. Mol Med 2: 673–691PubMedGoogle Scholar
  34. Weidemann A, Paliga K, Dürrwang U, Czech C, Evin G, Masters C, Beyreuther K (1997) Formation of stable complexes between two Alzheimer’s disease gene products: presenilin-2 and β-amyloid precursor protein. Nature Med 3: 328–332PubMedCrossRefGoogle Scholar
  35. Wild-Bode C, Yamazaki T, Capell A, Leimer U, Steiner H, Ihara Y, Haass C (1997) Intracellular generation and accumulation of Amyloid β-peptide terminating at amino acid 42. J Biol Chem 272: 16085–16088PubMedCrossRefGoogle Scholar
  36. Wolozin B, Iwasaki K, Vito P, Ganjei JK, Lacana E, Sunderland T, Zhao B, Kusiak JW, Wasco W, D’Adamio L (1996) Participation of presenilin 2 in apoptosis: Enhanced basal activity conferred by an Alzheimer mutation. Science 274: 1710–1713PubMedCrossRefGoogle Scholar
  37. Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJS, Trumbauer ME, Chen HY, Price DL, Van der Ploeg LHT, Sisodia SS (1997) Presenilin 1 is required for Notchl and D//1 expression in the paraxial mesoderm. Nature 387: 288–292PubMedCrossRefGoogle Scholar
  38. Xia W, Zhang J, Kholodenko D, Citron M, Teplow DB, Haass C, Seubert P, Koo EH, Selkoe DJ (1997) Enhanced production and oligomeraization of the 42-residue amyloid β-protein by CHO cells stably expressing mutant presenilins. J Biol Chem 272: 7977–7982PubMedCrossRefGoogle Scholar
  39. Xia W, Zhang J, Perez R, Koo EH, Selkoe DJ (1997) Interaction between amyloid precursor protein and presenilins in mammalian cells: implications for the pathogenesis of Alzheimer’s disease, Proc Natl Acad Sci USA 94: 8208–8213PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • C. Haass
    • 1
  • J. Grünberg
    • 1
  • A. Capell
    • 1
  • C. Wild-Bode
    • 1
  • U. Leimer
    • 1
  • J. Walter
    • 1
  • T. Yamazaki
    • 2
  • I. Ihara
    • 2
  • I. Zweckbronner
    • 3
  • C. Jakubek
    • 3
  • R. Baumeister
    • 3
  1. 1.Department of Molecular BiologyCentral Institute for Mental HealthMannheimFederal Republic of Germany
  2. 2.Department of Neuropathology, Institute for Brain Research, Faculty of MedicineUniversity of TokyoJapan
  3. 3.Laboratory of Molecular Biology/Genzentrum of the University of MunichMunichGermany

Personalised recommendations