Evolution of neuronal changes in the course of Alzheimer’s disease

  • H. Braak
  • E. Braak
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 53)


Alzheimer’s disease entails multiple neuronal systems and results from neuronal cytoskeletal degeneration of only a few types of nerve cells. Essential for neuropathological diagnosis is assessment of the presence of neurofibrillary tangles and neuropil threads. The destructive process begins in predisposed cortical induction sites, thereafter invading other portions of the cerebral cortex and specific sets of subcortical nuclei in a predictable sequence with little variation. The location of the tangle-bearing neurons and severity of the pathology allow the distinction of six stages in disease propagation (transentorhinal I–II: clinically silent cases; limbic III–IV: incipient Alzheimer’s disease; neocortical V–VI: fully-developed Alzheimer’s disease). The pattern of appearance of the neurofibrillary changes bears a striking resemblance to the inverse sequence of cortical myelination. The average myelin content is a negative image of the density of intraneuronal lipofuscin deposits. Pigment-laden neurons endowed with a long, thin, and sparsely myelinated axon are prone to develop AD-related changes. The emergence of the first neurofibrillary changes, at whatever age these occur, signals the onset of a degenerative process that persists until death. An extended period of time elapses between the beginning of histologically verifiable lesions and the appearance of initial clinical symptoms. Once initiated, however, cytoskeletal deterioration inexorably progresses, and neither remission nor recovery is observed.


Neurofibrillary Tangle Neurobiol Aging Neuropil Thread Subcortical Nucleus Neurofibrillary Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral DG, Insausti R (1990) Hippocampal formation. In: Paxinos G (ed) The human nervous system. Academic Press, San Diego, pp 711–755Google Scholar
  2. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477: 90–99PubMedCrossRefGoogle Scholar
  3. Bancher C, Braak H, Fischer P, Jellinger KA (1993) Neuropathological staging of Alzheimer lesions and intellectual status in Alzheimer’s and Parkinson’s disease. Neurosci Lett 162: 179–182PubMedCrossRefGoogle Scholar
  4. Bancher C, Jellinger K, Lassmann H, Fischer P (1996) Correlations between mental state and quantitative neuropathology in the Vienna longitudinal study on dementia. Eur Arch Psychiatr Clin Neurosci 246: 137–146CrossRefGoogle Scholar
  5. Beyreuther K, Masters CL (1991) Amyloid precursor protein (APP) and beta amyloid-4 amyloid in the etiology of Alzheimer’s disease: precursor product relationships in the derangement of neuronal function. Brain Pathol 1: 241–252PubMedCrossRefGoogle Scholar
  6. Braak H (1980) Architectonics of the human telencephalic cortex. Springer, Berlin Heidelberg New York, pp 1–147Google Scholar
  7. Braak H, Braak E (1984) Architectonics as seen by lipofuscin stains. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular organization of the cerebral cortex. Plenum Press, New York, pp 59–104Google Scholar
  8. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82: 239–259PubMedCrossRefGoogle Scholar
  9. Braak H, Braak E (1992) The human entorhinal cortex: normal morphology and lamina-specific pathology in various diseases. Neurosci Res 15: 6–31PubMedCrossRefGoogle Scholar
  10. Braak H, Braak E (1994) Pathology of Alzheimer’s disease. In: Calne DB (ed) Neurodegenerative diseases. Saunders, Philadelphia, pp 585–613Google Scholar
  11. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92: 197–201PubMedCrossRefGoogle Scholar
  12. Braak H, Braak E (1997a) Aspects of cortical destruction in Alzheimer’s disease. In: Hyman BT, Duyckaerts, Christen Y (eds) Connections, cognition and Alzheimer’s disease. Springer, Berlin Heidelberg New York Tokyo, pp 1–16CrossRefGoogle Scholar
  13. Braak H, Braak E (1997b) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18: 351–357PubMedCrossRefGoogle Scholar
  14. Braak H, Duyckaerts C, Braak E, Piette F (1993) Neuropathological staging of Alzheimer-related changes correlates with psychometrically assessed intellectual status. In: Corian B, Iqbal K, Nicolini M, Winblad B, Wisniewski H, Zatta PF (eds) Alzheimer’s disease: advances in clinical and basic research. Wiley, Chichester, pp 131–137Google Scholar
  15. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87: 554–567PubMedCrossRefGoogle Scholar
  16. Braak H, Braak E, Yilmazer D, Schultz C, Bohl J (1995) Age-related changes of the human cerebral cortex. In: Cruz-Sanchez FF, Ravid R, Cuzner ML (eds) Neuropathological diagnostic criteria for brain banking (Biomedical Health Research, vol 10). IOS Press, Amsterdam, pp 14–19Google Scholar
  17. Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Res 3: 235–247Google Scholar
  18. Braak H, Braak E, deVos RAI, Jansen ENH, Bratzke H (1998) Neuropathological hallmarks of Alzheimer’s and Parkinson’s diseases. Progr Brain Res (in press)Google Scholar
  19. Cras P, Smith MA, Richey PL, Siedlak SL, Mulvihill P, Perry G (1995) Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer’s disease. Acta Neuropathol 89: 291–295PubMedCrossRefGoogle Scholar
  20. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson MK (1991) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13: 179–189CrossRefGoogle Scholar
  21. Duyckaerts C, He Y, Seilhean D, Delaère P, Piette F, Braak H, Hauw JJ (1994) Diagnosis and staging of Alzheimer’s disease in a prospective study involving aged individuals. Neurobiol Aging [Suppl 1] 15: 140–141Google Scholar
  22. Duyckaerts C, Delaère P, He Y, Camilleri S, Braak H, Piette F, Hauw JJ (1995) The relative merits of tau-and amyloid markers in the neuropathology of Alzheimer’s disease. In: Bergener M, Finkel SI (eds) Treating Alzheimer’s and other dementias. Springer, New York, pp 81–89Google Scholar
  23. Esiri MM, Hyman BT, Beyreuther K, Masters C (1997) Aging and dementia. In: Graham DL, Lantos PI (eds) Greenfield’s neuropathology. Arnold, London, pp 153–234Google Scholar
  24. Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, LeipzigGoogle Scholar
  25. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21: 305–312PubMedCrossRefGoogle Scholar
  26. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16: 460–465PubMedCrossRefGoogle Scholar
  27. Goedert M, Trojanowski JQ, Lee VMY (1997) The neurofibrillary pathology of Alzheimer’s disease. In: Rosenberg RN (ed) The molecular and genetic basis of neurological disease, 2nd edn. Butterworth-Heinemann, Boston, pp 613–627Google Scholar
  28. Hansen LA, Samuel W (1997) Criteria for Alzheimer’s disease and the nosology of dementia with Lewy bodies. Neurology 48: 126–132PubMedCrossRefGoogle Scholar
  29. Hof PR, Cox K, Young WG, Celio MR, Rogers J, Morrison JH (1991) Parvalbumin-immunoreactive neurons in the neocortex are resistant to degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 50: 451–462PubMedCrossRefGoogle Scholar
  30. Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunoreactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosci Lett 152: 145–149PubMedCrossRefGoogle Scholar
  31. Hyman BT, Gomez-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging 15: 353–354PubMedCrossRefGoogle Scholar
  32. Hyman BT, van Hoesen GW, Damasio AR, Barnes CL (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225: 1168–1170PubMedCrossRefGoogle Scholar
  33. Hyman BT, van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20: 472–481PubMedCrossRefGoogle Scholar
  34. Hyman BT, van Hoesen GW, Damasio AR (1990) Memory-related neural systems in Alzheimer’s disease: an anatomic study. Neurology 40: 1721–1730PubMedCrossRefGoogle Scholar
  35. Iqbal K, Alonso AC, Gong CX, Khatoon S, Singh TJ, Grundke-Iqbal I (1994) Mechanism of neurofibrillary degeneration in Alzheimer’s disease. Mol Neurobiol 9: 119–123PubMedCrossRefGoogle Scholar
  36. Jellinger K, Braak H, Braak E, Fischer P (1991) Alzheimer lesions in the entorhinal region and isocortex in Parkinson’s and Alzheimer’s diseases. Ann NY Acad Sci 640: 203–209PubMedGoogle Scholar
  37. Kemper TL (1978) Senile dementia: a focal disease in the temporal lobe. In: Nandy E (ed) Senile dementia: a biomedical approach. Elsevier, Amsterdam, pp 105–113Google Scholar
  38. Kemper TL (1984) Neuroanatomical and neuropathological changes in normal aging and in dementia. In: Albert ML (ed) Clinical neurology of aging. Oxford University Press, Oxford, pp 9–52Google Scholar
  39. Lewis DA, Campbell MJ, Terry RD, Morrison JH (1987) Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 7: 1799–1808PubMedGoogle Scholar
  40. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The consortium to establish a registry for Alzheimer’s disease (CERAD). II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41: 479–486PubMedCrossRefGoogle Scholar
  41. Nagy Z, Vatter-Bittner B, Braak H, Braak E, Yilmazer DM, Schultz C, Hanke J (1997) Staging of Alzheimer-type pathology: an interrater-intrarater study. Dementia 8: 248–251Google Scholar
  42. Nieuwenhuys R (1994) The neocortex: an overview of its evolutionary development, structural organization and synaptology. Anat Embryol 190: 307–337PubMedCrossRefGoogle Scholar
  43. Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Prog Brain Res 107: 551–580PubMedCrossRefGoogle Scholar
  44. Ohm TG, Müller H, Braak H, Bohl J (1995) Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related neurofibrillary changes. Neuroscience 64: 209–217PubMedCrossRefGoogle Scholar
  45. Ohm TG (1997) Does Alzheimer’s disease start early in life? Mol Psychiat 2: 21–25CrossRefGoogle Scholar
  46. Rapoport SI (1988) Brain evolution and Alzheimer’s disease. Rev Neurol (Paris) 144: 79–90Google Scholar
  47. Regeur L, Jensen GB, Pakkenberg H, Evans SM, Pakkenberg B (1994) No global neocortical nerve cell loss in brains from patients with senile dementia of Alzheimer’s type. Neurobiol Aging 15: 347–352PubMedCrossRefGoogle Scholar
  48. Samuel W, Galasko D, Masliah E, Hansen LA (1996) Neocortical Lewy body counts correlate with dementia in the Lewy body variant of Alzheimer’s disease. J Neuropathol Exp Neurol 55: 44–52PubMedCrossRefGoogle Scholar
  49. Selkoe DJ (1994) Alzheimer’s disease: a central role for amyloid. J Neuropathol Exp Neurol 53: 438–447PubMedCrossRefGoogle Scholar
  50. Trojanowski JQ, Shin RW, Schmidt ML, Lee VMY (1995) Relationship between plaques, tangles, and dystrophic processes in Alzheimer’s disease. Neurobiol Aging 16: 335–340PubMedCrossRefGoogle Scholar
  51. van Hoesen GW, Hyman BT (1990) Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Progr Brain Res 83: 445–457CrossRefGoogle Scholar
  52. Van Hoesen GW, Hyman BT, Damasio AR (1991) Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus 1: 1–8PubMedCrossRefGoogle Scholar
  53. Vogt C, Vogt O (1919) Allgemeine Ergebnisse unserer Hirnforschung. J Psychol Neurol 25: 279–262Google Scholar
  54. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowksi A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70Google Scholar
  55. Zilles K (1990) Cortex. In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 757–802Google Scholar
  56. Zola-Morgan S, Squire LR (1993) Neuroanatomy of memory. Ann Rev Neurosci 16: 547–563PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • H. Braak
    • 1
    • 2
  • E. Braak
    • 1
  1. 1.Department of AnatomyJ.W. Goethe UniversityFrankfurt/MainGermany
  2. 2.Dr. Senckenbergische AnatomieFrankfurtFederal Republic of Germany

Personalised recommendations