Anti-oxidants and cognitive function: a review of clinical and epidemiologic studies

  • L. J. Launer
  • S. Kalmijn
Part of the Journal of Neural Transmission. Supplementa book series (NEURAL SUPPL, volume 53)


While the role of diet in heart disease and cancer has received much attention, a possible role for diet in the development of cognitive impairment and dementia is just now being investigated. In this presentation, the putative mechanisms through which anti-oxidants could modulate cellular life in the brain will be briefly discussed. Epidemiologic studies that describe the relation of selected dietary nutrients to cognitive impairment and dementia will be reviewed. In particular, recent results from the analyses of community based follow-up studies, including the Rotterdam Study and the Zutphen Study will be presented. Briefly, these studies provide a mixed picture concerning the relation of anti-oxidants to cognitive impairment or dementia.


White Matter Lesion Rotterdam Study Cerebral White Matter Lesion Zutphen Elderly Study Usual Food Intake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bots ML, Swieten JC van, Breteler MMB de Jong PTVM, van Gijn J, Hofman A, Grobbee DE (1993) Cerebral white matter lesions and atherosclerosis in the Rotterdam study. Lancet 341: 1232–1237PubMedCrossRefGoogle Scholar
  2. Breteler MMB, v Amerongen NM, v Swieten JC Claus JJ Grobbee DE, van Gijn J, Hofman A, van Harskamp P (1994) Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging: the Rotterdam study. Stroke 25: 1109–1115PubMedCrossRefGoogle Scholar
  3. Broe GA, Henderson AS, Creasey H, McCusker E, Korten AE, Jorm AF, Longley W, Anthony JC (1990) A case-control study of Alzheimer’s disease in Australia. Neurology 40: 1698–1707PubMedCrossRefGoogle Scholar
  4. Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer’s type: a pathoanatomical study. Ann Neurol 19: 253–262PubMedCrossRefGoogle Scholar
  5. Burns A, Marsh A, Bender DA (1989) Dietary intake and clinical, anthropometric and biochemical indices of malnutrition in elderly demented patients and non-demented subjects. Psychol Med 19: 383–391PubMedCrossRefGoogle Scholar
  6. Connor JR, Snyder BS, Beard JL, Fine RE, Mufson EF (1992) Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease. J Neurosci Res: 327–335Google Scholar
  7. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695PubMedCrossRefGoogle Scholar
  8. Diaz MN, Frei B, Vita JA, Keaney JF (1997) Antioxidants and atherosclerotic heart disease. N Engl J Med 337: 408–416PubMedCrossRefGoogle Scholar
  9. Erkinjuntti T, Hachinski V (1993) Rethinking vascular dementia. Cerebrovasc Dis 3: 3–23CrossRefGoogle Scholar
  10. Feskens EJM, Weijenberg MP, Kromhout D (1993) A longitudinal study on diet, risk factors and cardiovascular disease in an aging cohort The Zutphen Study. Neth J Cardiol 4: 200–204Google Scholar
  11. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198PubMedCrossRefGoogle Scholar
  12. Gale CR, Martyn CN, Winter PD, Cooper C (1995) Vitamin C and risk of death from stroke and coronary heart disease in cohort of elderly people. BMJ 310: 1563–1566PubMedCrossRefGoogle Scholar
  13. Gey KF, Stahelin Eichholzer M (1993) Poor plasma status of carotene and vitamin C is associated with higher mortality from ischemic heart disease and stroke: Basel prospective study. Clin Invest 71: 3–6CrossRefGoogle Scholar
  14. Gillman MW, Cupples AL, Gagnon D, Posner BM, Ellison RC, Castelli WP, Wolf PA (1995) Protective effect of fruits and vegetables on development of stroke in men. JAMA 273: 1113–1117PubMedCrossRefGoogle Scholar
  15. Goldbohm RA, van den Brandt PA, Brants HAM, van’t Veer P, Al M, Sturmans F, Hermus RJ (1994) Validation of a dietary questionnaire used in a large-scale prospective cohort study on diet and cancer. Eur J Clin Nutr 48: 253–265PubMedGoogle Scholar
  16. Goodwin JS, Goodwin JM, Garry PJ (1983) Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA 249: 2917–2921PubMedCrossRefGoogle Scholar
  17. Hall ED, Braughler JM (1989) Central nervous system trauma and stroke. II. Physiologic and pharmacological evidence for involvement of oxygen radicals and lipid peroxidation. Free Rad Biol Med 6: 303–313PubMedCrossRefGoogle Scholar
  18. Hallgren B, Sourander P (1958) The effect of age on the non-haem iron in the human brain. J Neurochem 3: 41–51PubMedCrossRefGoogle Scholar
  19. Heikkila RE (1983) Ascorbate-induced lipid peroxidation and the binding of [3h]dihydroalprenolol. Eur J Pharmacol 93: 79–85PubMedCrossRefGoogle Scholar
  20. Hofman A, Grobbee DE, De Jong PTVM, van den Ouweland (1991) Determinants of disease and disability in the elderly. The 1980-Rotterdam elderly study. Eur J Epidemiol 7: 403–412Google Scholar
  21. Hofman A, Rocca WA, Brayne C, Breteler MMB, Clarke M, Cooper B, et al (1991) The prevalence of dementia in Europe: a collaborative study of;1990 findings EURODEM prevalence group. Int J Epidemiol 20: 736–738PubMedCrossRefGoogle Scholar
  22. Hofman A, Ott A, Breteler MMB, Bots ML, Slooter AJC, van Harskamp F, van Duijn CM, Van Broeckhoven C, Grobbee DE (1997) Atherosclerosis, apolipoprotein E and the prevalence of dementia and Alzheimer’s disease in the Rotterdam study. Lancet 349: 151–154PubMedCrossRefGoogle Scholar
  23. Jama WJ, Launer LJ, Witteman JCM, den Breeijn H, Breteler MMB, Hofman A (1996) Dietary anti-oxidants and cognitive function in a population-based sample of older persons: the Rotterdam study. Am J Epidemiol 144: 275–280PubMedCrossRefGoogle Scholar
  24. Jeandel C, Nicolas MB, Dubois F, et al (1989) Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology 35: 275–282PubMedCrossRefGoogle Scholar
  25. Jenner P (1994) Oxidative damage in neurodegenerative diseases. Lancet 344: 796–798PubMedCrossRefGoogle Scholar
  26. Kalmijn S, Feskens EJM, Launer LJ, Kromhout D (1997) Polyunsaturated fatty acids, antioxidants and cognitive function in very old men. Am J Epidemiol 145: 33–41PubMedCrossRefGoogle Scholar
  27. Kristal BS and Yu (1992) An emerging hypothesis: synergistic induction of aging by free radicals and Malillard reactions. J Gerontol 47: B107–104PubMedCrossRefGoogle Scholar
  28. Masaki KH, White LR, Petrovitch H, Ross GW, Curb JD, Ardo E, Grove J (1994) The influence of prior and concurrent use of aspirin and vitamins on cognitive function scores in elderly Japanese-American Men. Neurobiol Aging (Suppl 1): S74Google Scholar
  29. Olanow CW (1993) A radical hypothesis for neurodegeneration. Trends Neurol Sci 11: 439–443CrossRefGoogle Scholar
  30. Perrig WJ, Perrig P, Stähelin HB (1997) The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc 45: 718–724PubMedGoogle Scholar
  31. Roth M, Huppert FA, Tym E, Montjoy CQ (1988) CAMDEX, the Cambridge examination for mental disorders of the elderly. Cambridge University Press, CambridgeGoogle Scholar
  32. Sano M, Ernesto C, Thomas RG, Thomas RG, Klauber MR, Schafer K et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med 336: 1216–1222PubMedCrossRefGoogle Scholar
  33. Schmidt R, Hayn M, Fazekas F, Kapeller P, Esterbaur H (1996) Magnetic Resonance Imaging white matter hyperintensities in clinically normal elderly individuals: correlations with plasma concerntrations of naturally occurring antioxidants. Stroke 27: 2043–2047PubMedCrossRefGoogle Scholar
  34. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunctionin normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88: 10540–10543PubMedCrossRefGoogle Scholar
  35. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery MR (1997) Brain infarction and the clinical expression of Alzheimer’s disease. The Nun study. JAMA 277: 813–817CrossRefGoogle Scholar
  36. Teng EL, Hasegawa K, Homma A, et al (1994) The cognitive abilities screening instrument (CASI): A practical test for cross-cultural epidemiologic studies of dementia. Int J Psychogeriatr: 45–58Google Scholar
  37. Terry RD, Masliah E, Hansen LA (1994) Structural basis of the cognitive alterations in Alzheimer’s disease. In: Terry RD, Katzman R, Bick KL (eds) Alzheimer’s disease. Raven Press, New York, pp 179–196Google Scholar
  38. van Staveren WA, De Boer JO, Burema J (1985) Validity and reproducibility of a dietary history method estimating the usual food intake during one month. Am J Clin Nutr 42: 554–559PubMedGoogle Scholar
  39. Witztum JL (1994) The oxidation hypothesis of atherosclerosis. Lancet: 793–795Google Scholar
  40. Zaman Z, Roche S, Fielden P, Frost PG, Niriella DC, Cayley ACD (1992) Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. Age Ageing 21: 91–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • L. J. Launer
    • 1
    • 3
  • S. Kalmijn
    • 2
  1. 1.Department of Chronic Disease EpidemiologyNational Institute of Public HealthBilthovenThe Netherlands
  2. 2.Department of Epidemiology & BiostatisticsErasmus University Medical SchoolRotterdamThe Netherlands
  3. 3.CCM/RIVMBilthovenThe Netherlands

Personalised recommendations