Skip to main content

Regeneration in the axotomized cord: influence of cyclosporine A and neonatal immune desensitization in mammals

  • Chapter
Spinal Cord Monitoring
  • 190 Accesses

Abstract

Regeneration is a normai regulative process by which an organism reestablishes its lost equilibrium and restores, more or less completely, body parts that have been lost or severely injured. Repetitive regeneration indicates the renewal of cells, tissue and organs that have a shorter life then the whole organism itself, whereas the term reparative regeneration applies to the repair of damage after injury (Filoni, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarli JA (1983) The immune system and nervous system, j Neurol 229: 137–154

    Article  PubMed  CAS  Google Scholar 

  • Aari JA, Aparicio SR, Lumdsden CE, Tonder O (1975) Binding of normal human IgG to myelin sheats, glia and neurons. Immunology 28: 171–185

    Google Scholar 

  • Aubert I, Ridet JL, Gage FH (1995) Regeneration in the adult mammalian CNS: guided by development. Curr Opinion Neurobiol 5: 625–635

    Article  CAS  Google Scholar 

  • Bahr M, Bonhoeffer F (1994) Perspectives on axonal regeneration in the mammalian CNS. TINS 17: 473–479

    PubMed  CAS  Google Scholar 

  • Benfey M, Aguayo AJ (1982) Extensive elongation of axon from rat brain into peripheral nerve graft. Nature (Lond) 296: 150–152

    Article  CAS  Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Loewe H, Dann O (1980) Two new fluorescent retrograde neuronal tracers whichare transported over long distances. Neurosci Lett 18: 25–30

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JJ, Goldberg WJ (1995) Experimental spinal cord transplantation as a mechanism of spinal cord regeneration. Paraplegia 33: 250–253

    Article  PubMed  CAS  Google Scholar 

  • Bernstein JJ, Wells MR (1980) Puromycine induction of transient regeneration in mammalian spinal cord. In: McConnel PS, Boer GJ, Romjin HJ, van de Pioli NE, Corner MA (eds) Adaptive capabilities of the nervous system. Prog Brain Res 53: 21–38

    Google Scholar 

  • Berry M (1979) Regeneration in central nervous system. In: Thomas Smith WT, Cavanagh JB (eds) Recent Advances in Neuropathology. Churchill-Livingstone, Edinburgh, pp 67–111

    Google Scholar 

  • Berry M, Riches AC (1974) An immunological approach to regeneration in central nervous system, Br Med Bull 30: 135–140

    PubMed  CAS  Google Scholar 

  • Bjorklund A (1994) A question of making it work. Nature (Lond) 367: 112

    Google Scholar 

  • Borel JM, Feurer C, Guble HU, Stahelin H (1976) Biological effect of Cyclosporine A: a new anti-lymphocytic agent. Agents Actions 6: 468–475

    Article  PubMed  CAS  Google Scholar 

  • Bowen FP (1986) Immunological reactions after cortical lesions in rabbits. Arch Neurol 19: 398–402

    Article  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF jr, Holford TR, Baskin DS, Eisenberg HM, Flamm E, Leo-Summers, Maroon JC, Marshall LF, Perot PL Jr, Piemeier J, Sonntag VKH, Wagner FC, Wildelger JL, Winn HR, Young W (1992) Methylprednisolone or naloxone treatment after acute spinal cord injury: 1 years follow-up data. J Neurosurg 76: 23–31

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS, Goldberger ME (1982) Anatomical plasticity and sparing of function after spinal cord damage in neonatal rats. Science 217: 553–555

    Article  PubMed  CAS  Google Scholar 

  • Bregman BS, Goldberger ME (1983) Infant lesion effects. II. Sparing and recovery of function after spinal cord damage in newborn and adult rats. Dev Brain Res 9: 119–135

    Google Scholar 

  • Bregman BS, Kunkel-Badgen E, Reier PJ, Hai HD, McAtee M, Da G (1993) Recovery of function after spinal cord injury: mechanism underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rat. Exp Neurol 123: 3–16

    Article  PubMed  CAS  Google Scholar 

  • Bullock TH, Horridge GA (1965) Structure and Function in the Nervous System of Invertebrates, Vol 1. Freeman, San Francisco, pp 108–109

    Google Scholar 

  • Butler EG, Ward MB (1967) Reconstitution of the spinal cord after ablation in adult Trituras. Dev Biol 15: 464–486

    Article  PubMed  CAS  Google Scholar 

  • Caroni P, Schwab M (1988a) Two membrane protein fractions from rat central myelin with inhibitory properties from neurite growth and fibrobiast spreading. J Cell Biol 106: 1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Caroni P, Schwab M (1988b) Antibody against myelin-associated inhibitor of neurite growth neutralized nonpermissive substrates properties of CNS white matter. Neuron 1: 85–96

    Article  PubMed  CAS  Google Scholar 

  • Chen D, Jhaveri S, Schneider GE (1995) Intrinsic changes in developing retinal neurons results in regenerative failure of their axons. Proc Natl Acad Sci USA 92: 7287–7291

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH, Baker MT, Dobrov TA (1988) Functional regeneration demonstrated in the adult spinal cord of lampreys. Soc Neurosci Abstract 14: 482–485

    Google Scholar 

  • Collins GH, West NR (1989) Prospects for axonal regrowth in spinal cord injury. Brain Res Bull 22: 89–92

    Article  PubMed  CAS  Google Scholar 

  • David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system bridges after central nervous system injury in adult rat. Science 214: 931–933

    Article  PubMed  CAS  Google Scholar 

  • Davies S, Illlis LS, Raisman G (1995) Regeneration in the central nervous system and related factors. Summary of the Bermuda Paraplegia Conference, 1994. Paraplegia 33: 10–17

    CAS  Google Scholar 

  • DeLaTorre JC, Johnson CM, Goode DJ, Mullan S (1975) Pharmacologie treatment and evaluation of permanent experimental spinal trauma. Neurology 25: 508–511

    Article  Google Scholar 

  • DeLaTorre JC (3984) Spinal cord injury models. Prog Neurobioi 4: 289–344

    Google Scholar 

  • Donatelle JM (1977) Growth of the corticospinal tracts and the development of placing reactionsin the postnatal life. J Comp Neurol 175: 207–232

    Article  PubMed  CAS  Google Scholar 

  • Eitan S, Solomon A, Lavie V, Yoles E, Hirschberg DL, Belkin M, Schwartz M (1994) Recovery of visual response of injured adult rat optic nerves treated with transglutaminase. Science 264: 1764–1768

    Article  PubMed  CAS  Google Scholar 

  • Fabrizi C, Caronti B, Palladini G (1995) Autoimmunity, central axonal regeneration and Cyciosporine A. In vitro observations on the action mechanism. Rend Fis Acc Lincei 6: 87–93

    Article  Google Scholar 

  • Fast DJ, Lynch R, Lau RW (3993) Cyciosporine A inhibit nitric oxide production by L529 cells in response to tumor necrosis factor and interferon. J Interferon Res 13: 235–240

    Article  Google Scholar 

  • Feringa EF, Wendt JS, Randall DJ (1974) Immunosuppressive treatment to enhance spinal cord regeneration in rats. Neurology 263: 287–293

    Article  Google Scholar 

  • Feringa ER, Johnson RD, Wendt JS (1975) Spinal cord regeneration in rats after immu-nosuppressive treatment. Arch Neurol 32: 676–683

    Article  PubMed  CAS  Google Scholar 

  • Feringa ER, Kinning WK, Britten AG, Vahlsing HL (1976) Recovery in rats after spinal cord injury. Neurology 26: 839–843

    Article  PubMed  CAS  Google Scholar 

  • Feringa EF, Nelson KR, Vahlsing HL, Dauser RC (1979) Spinal cord regeneration in rats made immunologically unresponsive to CNS antigens. J Neurol Neurosurg Psychiatry 42: 642–648

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Pallini R, Lauretti L. Mercanti D, Serra A, Calissano P (1993) Spinal cord transection in adult rats: effect of local infusion of nerve growth factor on the corticospinal tract axons. Neurosurgery 33: 889–893

    Article  PubMed  CAS  Google Scholar 

  • Filoni S (1981) La rigenerazione nei Vertebrati. Quad Morfol Funz Comp, Piccin, Padova

    Google Scholar 

  • Gannuschkina IV, Johansson BB, Person LI (1982) Increased blood brain barrier dysfunction around cerebral slab wounds in rat immunized to brain antigens. Acta Neurol Scand 66:482–487

    Article  Google Scholar 

  • Gelderd JB, Matthews MA, StOnge ME Faciane CL (1980) Qualitative and quantitative effects of ACHT, Pyromen, Cytoxan and isobutyl-2-cyanoacrylate treatment following spinal cord transection in rats, Acta Neurobioi Exp 40: 439–500

    Google Scholar 

  • Gerard RW, Koppany T (1962) Studies on spinal cord regeneration in rat. Arn J Physiol 76: 211–212

    Google Scholar 

  • Gilden D, Delvin M, Wromblewska L (1978) A technique for the elution of cell-surface antibody from human brain tissue. Ann Neurol 3: 403–405

    Article  PubMed  CAS  Google Scholar 

  • Giulian D, Robertson C (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Ann Neurol 27: 33–42

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Albuquerque EX, Deshpande SS, Barret CP, Donati EJ, Warnick JE (1980) Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg 52: 73–86

    Article  PubMed  CAS  Google Scholar 

  • Guth L, Barret CP, Donati EJ, Deshapande SS, Albuquerque EX (1981) Histopathological reactions and axonal regeneration in the transected spinal cord of hibernating squirrel. J Comp Neurol 203: 297–308

    Article  PubMed  CAS  Google Scholar 

  • Hockfieid S (1987) A mab to unique cerebellar neuron generated by immunosuppression and rapid immunisation. Science 237: 67–70

    Article  Google Scholar 

  • Hofstetter W, Heusser CH, Blaser K (1985) Nonspecific binding of mouse IgM antibodies to lipid antigen. J Neuroimmunol 7: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Iwashita Y, Kawaguchi S, Murata M (1994) Restoration of function by replacement of spinal cord segments in the rat. Nature (Lond) 367: 167–169

    Article  PubMed  CAS  Google Scholar 

  • Kajihara K. Kawanaga HM, DelaTorre JC, Mullan S (1973) Dimethylsulfoxyde in the treatment of experimental acute spinal cord injury. Surg Neurol 1: 16–22

    PubMed  CAS  Google Scholar 

  • Kaideron N, Alfieri AA, Fuka Z (1990) Beneficial effects of x-irradiation on recovery of lesioned mammalian central nervous system. Proc Nati Acad Sei USA 87: 10058–10062

    Article  Google Scholar 

  • Kalil K, Reh TH (1982) A light and electron microscopic study of the regrowing pyramidal tract fibres. J Comp Neurol 211: 265–275

    Article  PubMed  CAS  Google Scholar 

  • Kelly TA (1988) The role of the immune system in central nervous system regeneration (theoretical considerations). Med Hypoth 26: 13–15

    Article  CAS  Google Scholar 

  • Kiernan JA (1979) Hypothesis concerned with axonal regeneration in the mammalian nervous system. Biol Rev 54: 155–197

    Article  PubMed  CAS  Google Scholar 

  • Kunkel-Bagden E, Dai HN, Bregman BS (1993) Method to asses the development and recovery of locomotor function after spinal cord injury in rats. Exp Neurol 119: 153–164

    Article  PubMed  CAS  Google Scholar 

  • Lauro G, Margotta V, Venturini G, Teichner A, Caronti B, Palladini G (1992) Correlations between immune response and CNS regeneration in vertebrate phylogenesis. Boll Zool 59: 215–220

    Article  Google Scholar 

  • Littrel JL (1955) Apparent functional restitution in pyromen treated spinal cord. In: Windle WF (ed) Regeneration in CNS. Thomas, Springfield, pp 219–228

    Google Scholar 

  • Marchalonis JJ (1977) Immunity in Evolution. Arnold, London.

    Google Scholar 

  • Margotta V, Filoni S, Venturini G, Lauro GM, Scorsini D, Palladini G (1989 a) Auto-immunity and central nervous system regeneration in Urodele Amphibians. J Hirnforsch 30: 99–106

    PubMed  CAS  Google Scholar 

  • Margotta V, Lauro GM, Di Lorenzo N, Grossi M, Scorsini D, Grifone N, Palladini G (1989b) Central axonal regeneration and autoimmunity in adult birds. J Hirnforsch 5: 595–602

    Google Scholar 

  • Martin GF, Xiao Ming X (1988) Evidence of developmental plasticity of the neurospinal tract. Studies using the North American opossum. Develop Brain Res 39: 308–309

    Article  Google Scholar 

  • Marx L (1980) Regeneration in central nervous system. Science 209: 379–380

    Google Scholar 

  • Masada S (1965) Immunological studies of brain injuries. Clin Neurol 5: 547–555

    Google Scholar 

  • Matinian LA, Andreasian AS (1973) [Enzyme therapy in organic lesions of the spinal cord] Akademia Nauk Armenian SSR, 1973, pp 94

    Google Scholar 

  • [englisch transi.: Los Angeles: Brain Information Service, University of California, 1976, pp 156]

    Google Scholar 

  • Mizrachi J, Ohry I (1983) Systemic humoral factors partecipating in the course of spinal cord injuries. Paraplegia 21: 287–293

    Article  PubMed  CAS  Google Scholar 

  • Muhl H, Kunz D, Rob P, Pfeilschiter J (1993) Cyclosporin derivatives inhibit interleukin 1 (induction of nitric oxide synthase in renal mesangial cells. Eur J Pharmacol 249: 95–100

    Article  PubMed  CAS  Google Scholar 

  • Nona SN (1995) Regenerative failure in the mammalian CNS. TINS 18: 128

    PubMed  CAS  Google Scholar 

  • Owens T, Renno T, Taupin V, Krakowski M (1994) Inflammatory cytokines in the brain: does the CNS shape immune response? Immunol Today 15: 566–571

    Article  PubMed  CAS  Google Scholar 

  • Palladini G, Alfei L (1965) Observations concerning the regeneration of the spinal cord of the adult rat during treatment with antiblastic substances, In: Kiortsis V, Trapusch HAL (eds) Regeneration in Animals and Related Problems. North-Holland, Amsterdam, pp 515–520

    Google Scholar 

  • Palladini G, Lauro GM (1988) Neuroimmunologia: stato attuale delle conoscenze. Quaderni di Neuropatologia 3: 19–30

    Google Scholar 

  • Palladini G, Papalia C (1970) La barriera ematoencefalica per il ferrocianuro nella ontogenesi del pollo. Acta Neurol 25: 137–140

    CAS  Google Scholar 

  • Palladini G, Grossi M, Maleci A, Lauro GM, Guidetti B (1987) Immunocomplexes in rat and rabbit spinal cord after injury. Exp Neurol 95: 639–651

    Article  PubMed  CAS  Google Scholar 

  • Palladini G, Caronti B, Pozzessere G, Teichner A, Buttarelli FR, Morselli E, Valle E, Venturini, Fortuna A, Pontieri FE (1996) Treatment with Cyclosporine A promotes axonal regeneration in rats submitted to transverse section of the spinal cord-II-Recovery of function. J Hirnforsch 37: 145–153

    PubMed  CAS  Google Scholar 

  • Palladini G, Caronti B, Buttarelli FR, Teichner A, Morselli E, Maione D, Venturini G, Pontieri FE (1998) Involvement of the immune system in the abortive regeneration in mammalia central nervous system. Int J Neurol (in press

    Google Scholar 

  • Pettgrew RK (1980) Evaluation of the use of enzymes for functional restitution after spinal cord severance in rat. Exp Neurol 68: 284–294

    Article  Google Scholar 

  • Pozzessere G, Valle E, Santoro A, Delfini R, Rino PA, Cantore G, Morocutti C (1987) Prognostic value of early somatosensory evoked potentials during carotid surgery: relationship with electroencephalogram, stump pressure and clinical outcome. Acta Neurochir (Wien) 89: 28–33

    Article  CAS  Google Scholar 

  • Prochazka, Voltherova M, Stephan J (1971) Studies on immunological reaction after brain injuries. II. Int J Surg 55: 322–326

    CAS  Google Scholar 

  • Raffaelli E, Palladini G (1969) Rigenerazione delle cellule e degli assoni del midollo spinale dorsale di Lacerta sicula. Boll Zool 36: 105–310

    Article  Google Scholar 

  • Ramon y Cajal S (1907) Notes sur la dégénérescence traumatique des fibres du cervelet et du cerveau, fr Lab Rech Biol (Madrid) 5: 305–115

    Google Scholar 

  • Ramon y Cajal S (1928) Degeneration and Regeneration of Nervous System. University Press, London

    Google Scholar 

  • Reh T, Kalil K (1982) Functional role of regrowing pyramidal tract fibres. J Comp Neurol 211: 276–283

    Article  PubMed  CAS  Google Scholar 

  • Reier DJ, Holle JD (1988) The glial scar: its bearing axonal elongation and transplantation approaches to CNS. In: Watzan SG (ed) Advances in Neurology: Functional Recovery in Neurological Disease. Raven Press, New York, pp 87–138

    Google Scholar 

  • Rutka JT, Apodaca G, Stern R, Rosemhlum M (1988) The extracellular matrix in the central and peripheral nervous system: structure and function. J Neurosurg 69: 155–170

    Article  PubMed  CAS  Google Scholar 

  • Schnell L, Schwab ME (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature (Lond) 343: 269–272

    Article  CAS  Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Sardo YA, Schwab ME (1994) Neurotrophine-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature (Lond) 367: 170–173

    Article  CAS  Google Scholar 

  • Schreiber SL, Crabtree GR (1992) The mechanism of action of cyclosporine A and FK506. Immunol Today 13: 336–139

    Article  Google Scholar 

  • Schwab ME, Caroni P (1988) Oligodendrocytes and CNS myelin are nonpermissive substrate for neurite growth and fibroblast spreading in vitro. J Neurosci 8: 2381–2393

    PubMed  CAS  Google Scholar 

  • Sharma HS, Lindholm D, Alm R Gordh T, Olsson Y, Westman J (1996) Topical application of brain-derived neurotrophic factor nitric oxide synthase following focal trauma to the rat spinal cord. XVI International Winter Meeting, Swiss Society of Neuropathology. Degeneration and Regeneration in the Nervous System. Abstract Booklet, p 16

    Google Scholar 

  • Sivron T, Schwartz M (1995) Glial cell types, lineages and response to injury in rat and fish: implication for regeneration. Glia 13: 157–165

    Article  PubMed  CAS  Google Scholar 

  • So F, Aguayo AJ (1985) Lenghty regrowlh of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rat. Brain Res 328: 349–354

    Article  PubMed  CAS  Google Scholar 

  • Stefan J, Prochazka M, Volterova M (1971) Studies of immunological reactions after brain injury. L Antibodies against brain tissue lipids after experimental injury of the brain in rabbits. Int Surgery 55: 316–321

    CAS  Google Scholar 

  • Stichel CC. Muller HW (1995) Regenerative failure in the mammalian CNS. TiNS 18, p 128

    PubMed  CAS  Google Scholar 

  • Stitz L (1992) Induction of antigen-specific tolerance by ciclosporine A. Eur J Immunol 22: 1995–2001

    Article  PubMed  CAS  Google Scholar 

  • Stuart EG (1955) Time reaction and possible mechanism of pyromen and desoxycorticos-terone acetate in CNS regeneration. In: Windle FW (ed) Regeneration in CNS. Thomas, Springfield, pp 162–170

    Google Scholar 

  • Teichner A, Morselli E, Buttarelli FR, Caronti B, Pontieri FE, Venturini G, Palladini (1993) Treatment with cyclosporine A promotes axonal regeneration in rats submitted to transverse section of the spinal cord. J Hirnforsch 34: 343–349

    PubMed  CAS  Google Scholar 

  • Willard M, Simon C (1981) Antibody decoration of neurofilaments. J Cell Biol 89: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Willenborg DO, Staten EA, Eidelberg E (1977) Studies on cell-mediated hypersensitivity to neural antigens after experimental spinal cord injury. Exp Neurol 54: 383–392

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Scott DE (1993) Increased expression of nitric oxyde synthase in hypothalamic neuronal regeneration. Exp Neurol 12 j: 279–283

    Google Scholar 

  • Wu W, Liuzzi FJ, Schinco FR Depto AS, Li Y, Mong JA, Dawson TM, Snyder SH (1994) Neuronal nitric oxide synthase is induced in spinal neurons by traumatic injury. Neuroscience 61: 719–726

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Palladini, G., Caronti, B. (1998). Regeneration in the axotomized cord: influence of cyclosporine A and neonatal immune desensitization in mammals. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics