Skip to main content

Calcium-binding proteins in the spinal cord: physiological significance

  • Chapter
Spinal Cord Monitoring
  • 189 Accesses

Abstract

There has been increased interest in the presence of calcium-binding proteins (CBPs) in the spinal cord over the past few years (Yamamoto et al., 1989; Antal et al., 1990; Celio, 1990; Yoshida et al., 1990; Zhang et al., 1990; Arvidsson et al., 1992; Menétrey et al., 1992b; Heppelmann and Emson 1993; Ren et al., 1993; Ren and Ruda, 94; also see Andressen et al., 1993, for a review). This interest is partly due to the unique advantage of some CBPs as neuronal markers in the spinal cord. As in other parts of the nervous system, several CBPs exhibit a distinct distribution pattern, suggesting that they may be involved in a variety of physiological activities, including initial sensory processing and final motor control. CBPs not only couple the elevation of intracellular Ca2+ in response to an extracellular signal with the subsequent physiological response, they also modulate the intracellular Ca+ level to help maintain Ca+ homeostasis. The latter action of the CBPs is especially important as the perturbation of the intracellular Ca+ homeostasis may precede the development of cytotoxicity and irreversible injury (Nicotera et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin-and calbindin-D 28K-imraunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 295: 467–484

    Article  PubMed  CAS  Google Scholar 

  • Antal ML Polgár E (1993) Development of ca1bindin-D28k immunoreactive neurons in the embryonic chick lumbqsacral spinal cord. Eur J Neurosci 5: 782–794

    Article  PubMed  CAS  Google Scholar 

  • Antal M, Polgár E, BerkiÁ Cs (1994) The innvervation of the dorsal and ventral horns of the rat spinal cord by axons descending from the locus coeraieus/subcoeruleus complex and A5 cell group. Soc Neurosci Abstr 20: 1584

    Google Scholar 

  • Antal M, Polgár E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW, Somogyi (1991) Different populations of parvajbumin-and calbindin-D28k-immunoreactive neurons contain GABA and accumulate H-D-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol 314: 114–124

    Article  PubMed  CAS  Google Scholar 

  • Andressen C. Bliimcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tiss Res 271: 181–208

    Article  CAS  Google Scholar 

  • Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neuroi 310: 21–44

    Article  CAS  Google Scholar 

  • Arvidsson U, Ulfhake B, Cullheim S, Ramirez V, Shupliakov O, Hokfelt T (1992) Distribution of calbindin D28k-like immunoreactivity (LI) in the monkey ventral horn: do Renshaw cells contain calbindin D28k-LI? J Neurosci 12: 718–728

    PubMed  CAS  Google Scholar 

  • Bachs O, Agell N, Carafoli E (1992) Calcium and calmodulin function in the cell nucleus. Bioehim Biophys Acta 1113: 259–270

    Article  CAS  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Banay-Schwartz M, DeGuzman T, Palkovits M, Lajtha A (1994) Calpain activity in adult and aged human brain regions. Neurochem Res 19: 563–567

    Article  PubMed  CAS  Google Scholar 

  • Banik NL. Hogan EL, Powers JM, Smith KP (1986) Proteolytic enzymes in experimental spinal cord injury. J Neurol Sci 73: 245–256

    Article  PubMed  CAS  Google Scholar 

  • Banik NL, McAlhaney WW, Hogan EL (1985) Calcium-stimulated proteolysis in myelin: evidence for a Ca+-activated neutral proteinase associated with purified myelin of rat CNS. J Neurochem 45: 581–588

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R (1980) Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 194: 809–827

    Article  PubMed  CAS  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107

    Article  PubMed  CAS  Google Scholar 

  • Bennett-Clarke C A, Chiaia NL, Jacquin MF, Rhoades RW (1992) Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat. j Comp Neurol 320: 323–338

    Article  PubMed  CAS  Google Scholar 

  • Beriet HH (1987) Calcium-dependent neutral protease activity of myelin from bovine spinal cord: evidence for soluble cleavage products of myelin proteins. Neurosci Lett 73: 266–270

    Article  Google Scholar 

  • Braun K (1990) Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Prog Histochem Cytochem 21: 1–64

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7: 615–624

    Article  PubMed  CAS  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87: 682–685

    Article  PubMed  CAS  Google Scholar 

  • Bullitt E, Light AR (1989) Intraspinal course of descending serotoninergic pathways innervating the rodent dorsal horn and lamina X. J Comp Neurol 286: 231–242

    Article  PubMed  CAS  Google Scholar 

  • Caceres A. Bender P, Snavely L, Rebhun LI, Steward O (1983) Distribution and subceilular localization of calmodulin in adult and developing brain tissue, Neuroscience 10: 449–461

    Article  PubMed  CAS  Google Scholar 

  • Can-PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989a) Parvalbumin is highly colocalized with calbindin D28k and rarely with caScitonin gene-related peptide in dorsal root ganglia neurons of rat. Brain Res 497: 163–170

    Article  Google Scholar 

  • Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989b) Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content. Neuroscience 33: 363–371

    Article  PubMed  CAS  Google Scholar 

  • Elio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375–475

    Article  Google Scholar 

  • Celio MR, Heizmann CW (1981) Calcium-binding protein parvatbumin as a neuronal marker. Nature 293: 300–302

    Article  PubMed  CAS  Google Scholar 

  • Celio MR, Baier W, Schärer L, Gregersen HJ, de Viragh PA, Norman AW (1990) Monoclonal antibodies directed against the calcium binding protein calbindin D-28k. Cell Calcium 11: 599–602

    Article  PubMed  CAS  Google Scholar 

  • Cervero F, Iggo A (1980) The substantia gelatinosa of the spinal cord: A critical review. Brain 103: 717–772

    Article  PubMed  CAS  Google Scholar 

  • Chard PS, Bleakman D, Savidge JR, Miller R.I (1995) Capsaicin-induced neurotoxicify in cultured dorsal root ganglion neurons: involvement of calcium-activated proteases. Neuroscience 65: 1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calrnodulin plays a pivotal role in cellular regulation. Science 207: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Ciriello J, Calaresu FR (1983) Central projections of afferent renal fibers in the rat: An anterograde transport study of horseradish peroxidase. J Auton Nerv Syst 8: 273–285

    Article  PubMed  CAS  Google Scholar 

  • Conti F, De Biasi S, Giuffrida R, Rustioni A (1990) Substance P-containing projections in the dorsal columns of rats and cats. Neuroscience 34: 607–621

    Article  PubMed  CAS  Google Scholar 

  • Dalgarno D, Klevit RE, Levine BA, Willians RJP (1984) The calcium receptor and trigger. Trends Neurosci 4: 266–271

    Google Scholar 

  • Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88: 7797–7801

    Article  PubMed  CAS  Google Scholar 

  • Dénizot JP, Brattoy BO, Brehier A, Thomasset M (1988) Immunohistochemical demonstration of Calbindin-D-28k (CaBP28k) in the spinal cord motoneurons of teleost fishes. Cell Tiss Res 254: 629–634

    Google Scholar 

  • Dubner R (1991) Neuronal plasticity and pain following peripheral tissue inflammation or nerve injury. In: Bond MR, Charlton JE, Woolf CJ (eds) Proceedings of the Vlth World Congress on pain. Elsevier, Amsterdam, pp 263–276

    Google Scholar 

  • Elliott JL, Snider WD (1995) Parvalbumin is a marker of ALS-resistant motor neurons. Neuroreport 6: 449–452

    Article  PubMed  CAS  Google Scholar 

  • Ganchrow D, Bernstein J J (1981) Projections of caudal fasciculus gracilis to nucleus gracilis and other medullary structures, and Clarke’s nucleus in the rat. Brain Res 205: 383–390.

    Article  PubMed  CAS  Google Scholar 

  • Garcia MM, Harlan RE (1993) Chronic morphine increases calbindin D28k in rat striatum: possible NMDA receptor involvement. Neuroreport 5: 65–68

    Article  PubMed  CAS  Google Scholar 

  • George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15: 6445–6552

    PubMed  CAS  Google Scholar 

  • Gibson SJ, Polak JM, Bloom SR, Wall PD (1981) The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (Lamina X). J Comp Neurol 210: 65–79

    Article  Google Scholar 

  • Giesler Jr GJ, Elde RP (1985) Immunocytochemical studies of the peptidergic content of fibers and terminals within the lateral spinal and lateral cervical nuclei. J Neurosci 5: 1833–1841

    PubMed  CAS  Google Scholar 

  • Giuffrida R, Rustioni A (1992) Dorsal root ganglion neurons projecting to the dorsal column nuclei of rats. J Comp Neurol 316: 206–220

    Article  PubMed  CAS  Google Scholar 

  • Gnegy ME (1993) Calmodulin in neurotransmitter and hormone action. Annu Rev Pharmacol Toxicol 32: 45–70

    Article  Google Scholar 

  • Gnegy ME (1995) Calmodulin: Effects of cell stimuli and drugs on cellular activation. Prog Drug Res 45: 33–65

    PubMed  CAS  Google Scholar 

  • Gobel S (1978) Golgi studies of the neurons in layer 1 of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180: 395–414

    Article  PubMed  CAS  Google Scholar 

  • Guroff G (1964) A neutral calcium-activated protease from the soluble fraction of rat brain. J BiolChem 239: 149–155

    CAS  Google Scholar 

  • Heizmann CW, Braun K (1992) Changes in Ca+-binding proteins in human neurodegen-erative disorders. Trends Neurosci 15: 259–264

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Heppelmann B, Emson PC (1993) Distribution of calretinin mRNA in rat spinal cord and dorsal root ganglia: a study usins non-radioacliv in situ hybridization histochemistry. Brain Res 624: 312–316

    Article  PubMed  CAS  Google Scholar 

  • Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunor-eactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosc Lett 152: 145–149

    Article  CAS  Google Scholar 

  • Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88: 2811–2814

    Article  PubMed  CAS  Google Scholar 

  • Ince P, Stout N, Shaw P, Slade J, Hunziker W, Heizmann CW, Baimbridge KG (1993) Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 19: 291–299

    Article  PubMed  CAS  Google Scholar 

  • Lacopino A, Christakos S, German D, Sonsalla PK, Altar CA (1992) Calbindin-D28IC-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Moiec Brain Res 13: 251–264

    Article  Google Scholar 

  • Ichikawa H, Jacobowitz DM, Sugimoto T (1993) Calretinin-immunoreactive neurons in the trigeminal and dorsal root ganglia of the rat. Brain Res 617: 96–102

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa H, Deguchi T, Nakago T, Jacobowitz DM, Sugimoto T (1994) Parvalbumin, cairetinin and carbonic anhydrase in the trigeminal and spinal primary neurons of the rat. Brain Res 655: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Iizuka H, Iwasaki Y, Yamamoto T, Kadoya S (1986) Morphometric assessment of drug effects in experimental spinal cord injury. J Neurosurg 65: 92–98

    Article  PubMed  CAS  Google Scholar 

  • Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294: 765–767

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Hendry SHC (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1: 222–246

    Article  PubMed  Google Scholar 

  • Kivipelto L, Panula P (1991) Origin and distribution of neuropeptide-FF-like immunor-eactivity in the spinal cord of rats. J Comp Neurol 307: 107–119

    Article  PubMed  CAS  Google Scholar 

  • Laing I, Todd AJ, Heizmann CW, Schmidt HH (1994) Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 61: 123–132

    Article  PubMed  CAS  Google Scholar 

  • Lehky P, Blum HE, Stein EA, Fischer EH (1974) isolation and characterization of parvalbumin from skeletal muscle of higher vertebrates. J Biol Chem 249: 4332–4334

    PubMed  CAS  Google Scholar 

  • Levitt M (1985) Dysesthesias and self-mutilation in humans and subhumans: a review of clinical and experimental studies. Brain Res Rev 10: 247–290

    Article  Google Scholar 

  • Lin CT, Dedman JR, Brinkley BR. Means AR (1980) Localization of calmodulin in rat cerebellum by immunoelectron microscopy. J Cell Biol 85: 473–480

    Article  PubMed  CAS  Google Scholar 

  • Lunam CA (1989) Calbindin immunoreactivity in the neurons of the spinal cord and dorsal root ganglion of the domestic fowl. Cell Tissue Res 257: 149–153

    Article  PubMed  CAS  Google Scholar 

  • Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat. studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173: 185–200

    CAS  Google Scholar 

  • Mattson MP, Rychlik B, Chu C. Christakos S (1991) Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-D28K in cultured hippo-campal neurons. Neuron 6: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Means AR, VanBerkum MFA, Bagchi I, Lu KP. Rasmussen CD (1991) Regulatory functions of calmodulin. Pharmac Ther 50: 255–270

    Article  CAS  Google Scholar 

  • Means AR, Tash JS, Chafouleas JG (1982) Physiological implications of the presence. distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev 62: 1–39

    PubMed  CAS  Google Scholar 

  • Menétrey D, De Pommery j, Baimbridge KG, Thomasset M (1992a) Calbindin-D28K (CaBP28k)-like immunoreactivity in ascending projections. I. Trigeminal nucleus cau-dalis and dorsal vagal complex projections. Eur J Neurosci 4: 61–69

    Article  PubMed  Google Scholar 

  • Menétrey D, De Pommery J, Thomasset M, Baimbridge KG (1992b) Calbindin-D28K (CaBP28k)-like immunoreactivity in ascending projections II. spinal projections to brain stem and mesencephalic areas. Eur J Neurosci 4: 70–76

    Article  PubMed  Google Scholar 

  • Mize RR, Luo Q, Butler G, Jeon C-J, Nabors B (1992) The calcium binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus. J Comp Neurol 320: 243–256

    Article  PubMed  CAS  Google Scholar 

  • Montpied P, Winsky L, Dailey JW, Jobe PC, Jacobowitz DM (1995) Alteration in levels of expression of brain calbindm D-28k and calretinm mRNA in genetically epiiepsy-prone rats. Epilepsia 36: 911–921

    Article  PubMed  CAS  Google Scholar 

  • Nahin RL, Madsen AM, Giesler Jr GJ (1983) Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J Comp Neural 220: 321–335

    Article  CAS  Google Scholar 

  • Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32: 449–470

    Article  PubMed  CAS  Google Scholar 

  • Nitsch C, Scotti A, Sommacal A, Kalt G, (1989) GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca+-binding protein parvalbumin. Neurosci Lett 105: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Saito K-I, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M (1994) Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann NY Acad Sci 747: 77–91

    Article  PubMed  CAS  Google Scholar 

  • Nojima H, Kishi K, Sokabe H (1987) Multiple calmodulin mRNA species are derived from two distinct genes. Molec Cell Biol 7: 1873–1880

    PubMed  CAS  Google Scholar 

  • Okamoto K, Hirai S, Nakagawa T, Sakurai A, Monta M, Yanagisawa T (1995) Parvalbumin-positive small myelinated fiber bundles in anterior marginal areas in the human cervical cord. Neurosci Lett 185: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Parmentier M (1989) Structure of the human cDNAs and genes coding for calbindin D28K and calretinin. In: Pochet R, Lawson DEM, Heizmann CW (eds) Calcium Binding Proteins in Normal and Transformed Cells. Plenum Press, New York, pp 27–34

    Google Scholar 

  • Parmentier M, Lefort A (1991) Structure of the human brain calcium-binding protein calretinin and its expression in bacteria. Eur J Biochem 196: 79–85

    Article  PubMed  CAS  Google Scholar 

  • Patterson JT, Chung K, Coggeshall RE (1992) Further evidence for the existence of long ascending unmyelinaled primary afferent fibers within the dorsal funiculus: effects of capsaicin. Pain 49: 117–120

    Article  PubMed  CAS  Google Scholar 

  • Perlmutter LS, Gall C, Baudry M, Lynch G (1990) Distribution of calcium-activated protease calpain in the rat brain, J Comp Neurol 296: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12: 462–467

    Article  PubMed  CAS  Google Scholar 

  • Pike CJ, Cotman CW (1995) Calretinin-immunoreactive neurons are resistant to ß-amyloid toxicily in vitro. Brain Res 671: 293–298

    Article  PubMed  CAS  Google Scholar 

  • Pochet R, Parmentier M, Lawson DEM, Pasteels JL (1985) Rat brain synthesizes two “vitamin D-dependent“ calcium-binding proteins. Brain Res 345: 251–256

    Article  PubMed  CAS  Google Scholar 

  • Pritz MB, Stritzel ME (1991) Calcium binding protein immunoreactivity in a reptilian thalamic reticular nucleus. Brain Res 554: 325–328

    Article  PubMed  CAS  Google Scholar 

  • Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakede AR (1991) Stimulated rise in neuronal calcium is fasler and greater in the nucleus than the cytosol. FASEB J 5: 217–222

    PubMed  CAS  Google Scholar 

  • Rauseil E, Cusick CG, Taub E, Jones EG (1992) Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type. A receptors at thalamic levels. Proc Natl Acad Sci USA 89: 2571–2575

    Article  Google Scholar 

  • Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci II: 226–237

    Google Scholar 

  • Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calreiinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Rev 19: 163–179

    Article  PubMed  CAS  Google Scholar 

  • Ren K, Ruda MA, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Res Bull 31: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Résibois A, Blachier F, Rogers JH, Lawson DEM, Pochet R (1989) Comparison between rat brain calbindin-and calretinin-immunoreactivittes. In: Pochet R, Lawson DEM, Heizmann CW (eds) Calcium Binding Proteins in Normal and Transformed Cells. Plenum Press, New York, pp 211–214

    Google Scholar 

  • Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46: 101–134

    Article  PubMed  Google Scholar 

  • Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105: 1343–1353

    Article  PubMed  CAS  Google Scholar 

  • Rogers JH (1991) Calreiinin. in: Heizmann CW (ed) Novel Calcium-Binding Proteins. Springer, Berlin Heidelberg New York Tokyo, pp 251–276

    Chapter  Google Scholar 

  • Rogers JH, Khan M, Ellis J (1989) Calretinin and other CaBPs in the nervous system. In: Pochet R, Lawson DEM, Heizmann CW (eds) Calcium Binding Proteins in Normal and Transformed Cells. Plenum Press, New York, pp 195–203

    Google Scholar 

  • Rogers JH, Résibois A (1992) Calretinin and calbindin-D78k in rat brain: patterns of partial co-localization. Neuroscience 51: 843–865

    Article  PubMed  CAS  Google Scholar 

  • Ruda MA, Bennett GJ, Dubner R (1986) Neurochemistry and neural circuitry in the dorsai horn. Prog Brain Res 66: 219–268

    Article  PubMed  CAS  Google Scholar 

  • Sacks DB, Porter SE, Ladenson JH, McDonald JM (1991) Monoclonal antibody to calmodulin: Development, characterization, and comparison with polyclonal anti-calmo-dulin antibodies. Anal Biochem 194: 369–377

    Article  PubMed  CAS  Google Scholar 

  • Sasek CA. Seybold VS, Elde RP (1984) The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12: 855–873

    Article  PubMed  CAS  Google Scholar 

  • SenGupta B, Friedberg F, Detera-Wadleigh SD (1987) Molecular analysis of human and rat calmodulin complementary DNA clones. J Bioi Chem 262: 16663–16670

    CAS  Google Scholar 

  • Séquier JM, Hunziker W, Andressen C, Celio MR (1990) Calbindin D-28k protein and mRNA localization in the rat brain. Eur J Neurosci 2: 1118–1126

    Article  PubMed  Google Scholar 

  • Serratosa J, Pujol MJ, Bachs O, Carafoli E (1988) Rearrangement of nuclear calmodulin during proliferative liver cell activation. Biochem Biophys Res Commun 150: 1162–1169

    Article  PubMed  CAS  Google Scholar 

  • Seto-Ohshima A, Kitajima S, Sano M, Kato K. Mizutani A (1983) Immunohistochemical localization of calmodulin in mouse brain. Hisiochemistry 79: 251–257

    Article  CAS  Google Scholar 

  • Seto-Ohshima A, Sano M, Mizutani A (1985) Characteristic localization of calmodulin in human tissues: Immunohistochemical study in the paraffin sections. Acta Histochem Cyiochem 18: 275–282

    Article  CAS  Google Scholar 

  • Siman R, Gall C, Perlmutter LS, Christian C, Baudry M, Lynch G (1985) Distribution of calpain I. an enzyme associated with degenerative activity, in rat brain. Brain Res 347: 399–403

    Article  PubMed  CAS  Google Scholar 

  • Sloviter RS (1989) Calcium-binding protein (calbindin-D2SK) and parvalbumin immuno-cytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280: 183–196

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Tsukahara T, Okada-Ban M, Sugita H, Ishiura S, Suzuki K (1995) Identification of a third ubiquitous calpain species-chicken muscle expresses four distinct calpains. Biochim Biophys Acta 1261: 381–393

    Article  PubMed  Google Scholar 

  • Suzuki K, Sorimachi H. Yoshizawa T, Kinbara K, Ishiura S (1995) Calpain: Novel family members, activation, and physiological function. Biol Chem Hoppe Seyler 376: 523–529

    Article  PubMed  CAS  Google Scholar 

  • Szabo T, Libouban S, Denizot JP (1990) A well defined spinocerebellar system in the weakiy electric teleost fish Gnathonemus petersii. A tracing and immuno-hitochemical study. Arch Ital Biol 128: 229–47

    CAS  Google Scholar 

  • Szabolcs MJ, Kopp M, Schaden GE (1989) Carbonic anhydrase activity in the peripheral nervous system of rat: the enzyme as a marker for muscle afferents. Brain Res 492: 129–138

    Article  PubMed  CAS  Google Scholar 

  • Tabuchi K, Ohnishi R, Nishimoto A, Isobe T, Okuyama T (1984) Reverse cellular distribution of calmodulin to S-100 protein in primate brain. Brain Res 298: 353–357

    Article  PubMed  CAS  Google Scholar 

  • Tracey DJ (1985) Ascending and descending pathways in the spinal cord. In: Paxinos G (ed) The Rat Nervous System, vol 2. Hindbrain and Spinal Cord. Academic Press, Sydney, pp 311–324

    Google Scholar 

  • Valtschanoff JG, Weinberg RJ, Rustioni A (1992) NADPH diaphorase in the spinal cord of rats, J Comp Neurol 321: 209–222

    Article  PubMed  CAS  Google Scholar 

  • Van Brederode JFM, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumm and ca)bindin-D28k in the sensorimotor cortex of the rat. Neuroscience 44: 157–171

    Article  PubMed  Google Scholar 

  • Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Wang KKW, Yuen P-W (1994) Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 15: 412–419

    Article  PubMed  CAS  Google Scholar 

  • Wasserman RH, Taylor AN (1966) Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152: 791–793

    Article  PubMed  CAS  Google Scholar 

  • Wiesenfeld. Z, Lindblom U (1980) Behavioral and electrophysiological effects of various types of peripheral nerve lesions in the rat: A comparison of possible models for chronic pain. Pain 8: 285–298

    Article  PubMed  CAS  Google Scholar 

  • Willis WD (1985) The pain system. Karger, Basel

    Google Scholar 

  • Winsky L, Kuznicki J (1996) Antibody recognition of calcium-binding proteins depends on their calcium-binding status. J Neurochem 66: 764–771

    Article  PubMed  CAS  Google Scholar 

  • Winsky L, Nakata H, Martin BM, Jacobowitz DM (1989) Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. Proc Natl Acad Sci USA 86: 10139–10143

    Article  PubMed  CAS  Google Scholar 

  • Wood JG, Wallace RW, Whitaker JN, Cheung WY (1980) Immunocytochemical localization of calmodulin in regions of rodent brain. Ann NY Acad Sci 356: 75–82

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Winsky L, Jacobowitz DM (1991) Calretinin, a neuronal calcium binding protein, inhibits phosphorylation of a 39 kDa synapdc membrane protein from rat brain cerebral cortex. Neurosci Lett 131: 79–82

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Carr PA, Baimbridge KG, Nagy JI (1989) Parvalbumin-and calbindin D28K-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Res Bull 23: 493–508

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Senba E, Kubota Y, Hagihira S, Yoshiya 1, Emson PC, Tohyama M (1990) Calcium-binding proteins calbindin and parvalbumin in the superficial dorsal horn of the rat spinal cord. Neuroscience 37: 839–848

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa T, Sorimachi H, Tomioka S, Ishiura S, Suzuki K (1995) Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun 208: 376–383

    Article  PubMed  CAS  Google Scholar 

  • Zhang J-H, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of calbindin-D28K-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302: 715–728

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Ren, K., Ruda, M.A. (1998). Calcium-binding proteins in the spinal cord: physiological significance. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics