Calcium-binding proteins in the spinal cord: physiological significance

  • K. Ren
  • M. A. Ruda


There has been increased interest in the presence of calcium-binding proteins (CBPs) in the spinal cord over the past few years (Yamamoto et al., 1989; Antal et al., 1990; Celio, 1990; Yoshida et al., 1990; Zhang et al., 1990; Arvidsson et al., 1992; Menétrey et al., 1992b; Heppelmann and Emson 1993; Ren et al., 1993; Ren and Ruda, 94; also see Andressen et al., 1993, for a review). This interest is partly due to the unique advantage of some CBPs as neuronal markers in the spinal cord. As in other parts of the nervous system, several CBPs exhibit a distinct distribution pattern, suggesting that they may be involved in a variety of physiological activities, including initial sensory processing and final motor control. CBPs not only couple the elevation of intracellular Ca2+ in response to an extracellular signal with the subsequent physiological response, they also modulate the intracellular Ca+ level to help maintain Ca+ homeostasis. The latter action of the CBPs is especially important as the perturbation of the intracellular Ca+ homeostasis may precede the development of cytotoxicity and irreversible injury (Nicotera et al., 1992).


Spinal Cord Dorsal Root Ganglion Neuron Dorsal Column Dorsal Column Nucleus Lamina Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin-and calbindin-D 28K-imraunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study. J Comp Neurol 295: 467–484PubMedCrossRefGoogle Scholar
  2. Antal ML Polgár E (1993) Development of ca1bindin-D28k immunoreactive neurons in the embryonic chick lumbqsacral spinal cord. Eur J Neurosci 5: 782–794PubMedCrossRefGoogle Scholar
  3. Antal M, Polgár E, BerkiÁ Cs (1994) The innvervation of the dorsal and ventral horns of the rat spinal cord by axons descending from the locus coeraieus/subcoeruleus complex and A5 cell group. Soc Neurosci Abstr 20: 1584Google Scholar
  4. Antal M, Polgár E, Chalmers J, Minson JB, Llewellyn-Smith I, Heizmann CW, Somogyi (1991) Different populations of parvajbumin-and calbindin-D28k-immunoreactive neurons contain GABA and accumulate H-D-aspartate in the dorsal horn of the rat spinal cord. J Comp Neurol 314: 114–124PubMedCrossRefGoogle Scholar
  5. Andressen C. Bliimcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell Tiss Res 271: 181–208CrossRefGoogle Scholar
  6. Arai R, Winsky L, Arai M, Jacobowitz DM (1991) Immunohistochemical localization of calretinin in the rat hindbrain. J Comp Neuroi 310: 21–44CrossRefGoogle Scholar
  7. Arvidsson U, Ulfhake B, Cullheim S, Ramirez V, Shupliakov O, Hokfelt T (1992) Distribution of calbindin D28k-like immunoreactivity (LI) in the monkey ventral horn: do Renshaw cells contain calbindin D28k-LI? J Neurosci 12: 718–728PubMedGoogle Scholar
  8. Bachs O, Agell N, Carafoli E (1992) Calcium and calmodulin function in the cell nucleus. Bioehim Biophys Acta 1113: 259–270CrossRefGoogle Scholar
  9. Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15: 303–308PubMedCrossRefGoogle Scholar
  10. Banay-Schwartz M, DeGuzman T, Palkovits M, Lajtha A (1994) Calpain activity in adult and aged human brain regions. Neurochem Res 19: 563–567PubMedCrossRefGoogle Scholar
  11. Banik NL. Hogan EL, Powers JM, Smith KP (1986) Proteolytic enzymes in experimental spinal cord injury. J Neurol Sci 73: 245–256PubMedCrossRefGoogle Scholar
  12. Banik NL, McAlhaney WW, Hogan EL (1985) Calcium-stimulated proteolysis in myelin: evidence for a Ca+-activated neutral proteinase associated with purified myelin of rat CNS. J Neurochem 45: 581–588PubMedCrossRefGoogle Scholar
  13. Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R (1980) Physiology and morphology of substantia gelatinosa neurons intracellularly stained with horseradish peroxidase. J Comp Neurol 194: 809–827PubMedCrossRefGoogle Scholar
  14. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33: 87–107PubMedCrossRefGoogle Scholar
  15. Bennett-Clarke C A, Chiaia NL, Jacquin MF, Rhoades RW (1992) Parvalbumin and calbindin immunocytochemistry reveal functionally distinct cell groups and vibrissa-related patterns in the trigeminal brainstem complex of the adult rat. j Comp Neurol 320: 323–338PubMedCrossRefGoogle Scholar
  16. Beriet HH (1987) Calcium-dependent neutral protease activity of myelin from bovine spinal cord: evidence for soluble cleavage products of myelin proteins. Neurosci Lett 73: 266–270CrossRefGoogle Scholar
  17. Braun K (1990) Calcium-binding proteins in avian and mammalian central nervous system: localization, development and possible functions. Prog Histochem Cytochem 21: 1–64PubMedCrossRefGoogle Scholar
  18. Bredt DS, Glatt CE, Hwang PM, Fotuhi M, Dawson TM, Snyder SH (1991) Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7: 615–624PubMedCrossRefGoogle Scholar
  19. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87: 682–685PubMedCrossRefGoogle Scholar
  20. Bullitt E, Light AR (1989) Intraspinal course of descending serotoninergic pathways innervating the rodent dorsal horn and lamina X. J Comp Neurol 286: 231–242PubMedCrossRefGoogle Scholar
  21. Caceres A. Bender P, Snavely L, Rebhun LI, Steward O (1983) Distribution and subceilular localization of calmodulin in adult and developing brain tissue, Neuroscience 10: 449–461PubMedCrossRefGoogle Scholar
  22. Can-PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989a) Parvalbumin is highly colocalized with calbindin D28k and rarely with caScitonin gene-related peptide in dorsal root ganglia neurons of rat. Brain Res 497: 163–170CrossRefGoogle Scholar
  23. Carr PA, Yamamoto T, Karmy G, Baimbridge KG, Nagy JI (1989b) Analysis of parvalbumin and calbindin D28k-immunoreactive neurons in dorsal root ganglia of rat in relation to their cytochrome oxidase and carbonic anhydrase content. Neuroscience 33: 363–371PubMedCrossRefGoogle Scholar
  24. Elio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375–475CrossRefGoogle Scholar
  25. Celio MR, Heizmann CW (1981) Calcium-binding protein parvatbumin as a neuronal marker. Nature 293: 300–302PubMedCrossRefGoogle Scholar
  26. Celio MR, Baier W, Schärer L, Gregersen HJ, de Viragh PA, Norman AW (1990) Monoclonal antibodies directed against the calcium binding protein calbindin D-28k. Cell Calcium 11: 599–602PubMedCrossRefGoogle Scholar
  27. Cervero F, Iggo A (1980) The substantia gelatinosa of the spinal cord: A critical review. Brain 103: 717–772PubMedCrossRefGoogle Scholar
  28. Chard PS, Bleakman D, Savidge JR, Miller R.I (1995) Capsaicin-induced neurotoxicify in cultured dorsal root ganglion neurons: involvement of calcium-activated proteases. Neuroscience 65: 1099–1108PubMedCrossRefGoogle Scholar
  29. Cheung WY (1980) Calrnodulin plays a pivotal role in cellular regulation. Science 207: 19–27PubMedCrossRefGoogle Scholar
  30. Ciriello J, Calaresu FR (1983) Central projections of afferent renal fibers in the rat: An anterograde transport study of horseradish peroxidase. J Auton Nerv Syst 8: 273–285PubMedCrossRefGoogle Scholar
  31. Conti F, De Biasi S, Giuffrida R, Rustioni A (1990) Substance P-containing projections in the dorsal columns of rats and cats. Neuroscience 34: 607–621PubMedCrossRefGoogle Scholar
  32. Dalgarno D, Klevit RE, Levine BA, Willians RJP (1984) The calcium receptor and trigger. Trends Neurosci 4: 266–271Google Scholar
  33. Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH (1991) Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci USA 88: 7797–7801PubMedCrossRefGoogle Scholar
  34. Dénizot JP, Brattoy BO, Brehier A, Thomasset M (1988) Immunohistochemical demonstration of Calbindin-D-28k (CaBP28k) in the spinal cord motoneurons of teleost fishes. Cell Tiss Res 254: 629–634Google Scholar
  35. Dubner R (1991) Neuronal plasticity and pain following peripheral tissue inflammation or nerve injury. In: Bond MR, Charlton JE, Woolf CJ (eds) Proceedings of the Vlth World Congress on pain. Elsevier, Amsterdam, pp 263–276Google Scholar
  36. Elliott JL, Snider WD (1995) Parvalbumin is a marker of ALS-resistant motor neurons. Neuroreport 6: 449–452PubMedCrossRefGoogle Scholar
  37. Ganchrow D, Bernstein J J (1981) Projections of caudal fasciculus gracilis to nucleus gracilis and other medullary structures, and Clarke’s nucleus in the rat. Brain Res 205: 383–390.PubMedCrossRefGoogle Scholar
  38. Garcia MM, Harlan RE (1993) Chronic morphine increases calbindin D28k in rat striatum: possible NMDA receptor involvement. Neuroreport 5: 65–68PubMedCrossRefGoogle Scholar
  39. George EB, Glass JD, Griffin JW (1995) Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J Neurosci 15: 6445–6552PubMedGoogle Scholar
  40. Gibson SJ, Polak JM, Bloom SR, Wall PD (1981) The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (Lamina X). J Comp Neurol 210: 65–79CrossRefGoogle Scholar
  41. Giesler Jr GJ, Elde RP (1985) Immunocytochemical studies of the peptidergic content of fibers and terminals within the lateral spinal and lateral cervical nuclei. J Neurosci 5: 1833–1841PubMedGoogle Scholar
  42. Giuffrida R, Rustioni A (1992) Dorsal root ganglion neurons projecting to the dorsal column nuclei of rats. J Comp Neurol 316: 206–220PubMedCrossRefGoogle Scholar
  43. Gnegy ME (1993) Calmodulin in neurotransmitter and hormone action. Annu Rev Pharmacol Toxicol 32: 45–70CrossRefGoogle Scholar
  44. Gnegy ME (1995) Calmodulin: Effects of cell stimuli and drugs on cellular activation. Prog Drug Res 45: 33–65PubMedGoogle Scholar
  45. Gobel S (1978) Golgi studies of the neurons in layer 1 of the dorsal horn of the medulla (trigeminal nucleus caudalis). J Comp Neurol 180: 395–414PubMedCrossRefGoogle Scholar
  46. Guroff G (1964) A neutral calcium-activated protease from the soluble fraction of rat brain. J BiolChem 239: 149–155Google Scholar
  47. Heizmann CW, Braun K (1992) Changes in Ca+-binding proteins in human neurodegen-erative disorders. Trends Neurosci 15: 259–264PubMedCrossRefGoogle Scholar
  48. Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76: 467–472PubMedCrossRefGoogle Scholar
  49. Heppelmann B, Emson PC (1993) Distribution of calretinin mRNA in rat spinal cord and dorsal root ganglia: a study usins non-radioacliv in situ hybridization histochemistry. Brain Res 624: 312–316PubMedCrossRefGoogle Scholar
  50. Hof PR, Nimchinsky EA, Celio MR, Bouras C, Morrison JH (1993) Calretinin-immunor-eactive neocortical interneurons are unaffected in Alzheimer’s disease. Neurosc Lett 152: 145–149CrossRefGoogle Scholar
  51. Hope BT, Michael GJ, Knigge KM, Vincent SR (1991) Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci USA 88: 2811–2814PubMedCrossRefGoogle Scholar
  52. Ince P, Stout N, Shaw P, Slade J, Hunziker W, Heizmann CW, Baimbridge KG (1993) Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease. Neuropathol Appl Neurobiol 19: 291–299PubMedCrossRefGoogle Scholar
  53. Lacopino A, Christakos S, German D, Sonsalla PK, Altar CA (1992) Calbindin-D28IC-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. Moiec Brain Res 13: 251–264CrossRefGoogle Scholar
  54. Ichikawa H, Jacobowitz DM, Sugimoto T (1993) Calretinin-immunoreactive neurons in the trigeminal and dorsal root ganglia of the rat. Brain Res 617: 96–102PubMedCrossRefGoogle Scholar
  55. Ichikawa H, Deguchi T, Nakago T, Jacobowitz DM, Sugimoto T (1994) Parvalbumin, cairetinin and carbonic anhydrase in the trigeminal and spinal primary neurons of the rat. Brain Res 655: 241–245PubMedCrossRefGoogle Scholar
  56. Iizuka H, Iwasaki Y, Yamamoto T, Kadoya S (1986) Morphometric assessment of drug effects in experimental spinal cord injury. J Neurosurg 65: 92–98PubMedCrossRefGoogle Scholar
  57. Jande SS, Maler L, Lawson DEM (1981) Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294: 765–767PubMedCrossRefGoogle Scholar
  58. Jones EG, Hendry SHC (1989) Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1: 222–246PubMedCrossRefGoogle Scholar
  59. Kivipelto L, Panula P (1991) Origin and distribution of neuropeptide-FF-like immunor-eactivity in the spinal cord of rats. J Comp Neurol 307: 107–119PubMedCrossRefGoogle Scholar
  60. Laing I, Todd AJ, Heizmann CW, Schmidt HH (1994) Subpopulations of GABAergic neurons in laminae I-III of rat spinal dorsal horn defined by coexistence with classical transmitters, peptides, nitric oxide synthase or parvalbumin. Neuroscience 61: 123–132PubMedCrossRefGoogle Scholar
  61. Lehky P, Blum HE, Stein EA, Fischer EH (1974) isolation and characterization of parvalbumin from skeletal muscle of higher vertebrates. J Biol Chem 249: 4332–4334PubMedGoogle Scholar
  62. Levitt M (1985) Dysesthesias and self-mutilation in humans and subhumans: a review of clinical and experimental studies. Brain Res Rev 10: 247–290CrossRefGoogle Scholar
  63. Lin CT, Dedman JR, Brinkley BR. Means AR (1980) Localization of calmodulin in rat cerebellum by immunoelectron microscopy. J Cell Biol 85: 473–480PubMedCrossRefGoogle Scholar
  64. Lunam CA (1989) Calbindin immunoreactivity in the neurons of the spinal cord and dorsal root ganglion of the domestic fowl. Cell Tissue Res 257: 149–153PubMedCrossRefGoogle Scholar
  65. Matsushita M, Hosoya Y (1979) Cells of origin of the spinocerebellar tract in the rat. studied with the method of retrograde transport of horseradish peroxidase. Brain Res 173: 185–200Google Scholar
  66. Mattson MP, Rychlik B, Chu C. Christakos S (1991) Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-D28K in cultured hippo-campal neurons. Neuron 6: 41–51PubMedCrossRefGoogle Scholar
  67. Means AR, VanBerkum MFA, Bagchi I, Lu KP. Rasmussen CD (1991) Regulatory functions of calmodulin. Pharmac Ther 50: 255–270CrossRefGoogle Scholar
  68. Means AR, Tash JS, Chafouleas JG (1982) Physiological implications of the presence. distribution, and regulation of calmodulin in eukaryotic cells. Physiol Rev 62: 1–39PubMedGoogle Scholar
  69. Menétrey D, De Pommery j, Baimbridge KG, Thomasset M (1992a) Calbindin-D28K (CaBP28k)-like immunoreactivity in ascending projections. I. Trigeminal nucleus cau-dalis and dorsal vagal complex projections. Eur J Neurosci 4: 61–69PubMedCrossRefGoogle Scholar
  70. Menétrey D, De Pommery J, Thomasset M, Baimbridge KG (1992b) Calbindin-D28K (CaBP28k)-like immunoreactivity in ascending projections II. spinal projections to brain stem and mesencephalic areas. Eur J Neurosci 4: 70–76PubMedCrossRefGoogle Scholar
  71. Mize RR, Luo Q, Butler G, Jeon C-J, Nabors B (1992) The calcium binding proteins parvalbumin and calbindin-D 28K form complementary patterns in the cat superior colliculus. J Comp Neurol 320: 243–256PubMedCrossRefGoogle Scholar
  72. Montpied P, Winsky L, Dailey JW, Jobe PC, Jacobowitz DM (1995) Alteration in levels of expression of brain calbindm D-28k and calretinm mRNA in genetically epiiepsy-prone rats. Epilepsia 36: 911–921PubMedCrossRefGoogle Scholar
  73. Nahin RL, Madsen AM, Giesler Jr GJ (1983) Anatomical and physiological studies of the gray matter surrounding the spinal cord central canal. J Comp Neural 220: 321–335CrossRefGoogle Scholar
  74. Nicotera P, Bellomo G, Orrenius S (1992) Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol 32: 449–470PubMedCrossRefGoogle Scholar
  75. Nitsch C, Scotti A, Sommacal A, Kalt G, (1989) GABAergic hippocampal neurons resistant to ischemia-induced neuronal death contain the Ca+-binding protein parvalbumin. Neurosci Lett 105: 263–268PubMedCrossRefGoogle Scholar
  76. Nixon RA, Saito K-I, Grynspan F, Griffin WR, Katayama S, Honda T, Mohan PS, Shea TB, Beermann M (1994) Calcium-activated neutral proteinase (calpain) system in aging and Alzheimer’s disease. Ann NY Acad Sci 747: 77–91PubMedCrossRefGoogle Scholar
  77. Nojima H, Kishi K, Sokabe H (1987) Multiple calmodulin mRNA species are derived from two distinct genes. Molec Cell Biol 7: 1873–1880PubMedGoogle Scholar
  78. Okamoto K, Hirai S, Nakagawa T, Sakurai A, Monta M, Yanagisawa T (1995) Parvalbumin-positive small myelinated fiber bundles in anterior marginal areas in the human cervical cord. Neurosci Lett 185: 79–82PubMedCrossRefGoogle Scholar
  79. Parmentier M (1989) Structure of the human cDNAs and genes coding for calbindin D28K and calretinin. In: Pochet R, Lawson DEM, Heizmann CW (eds) Calcium Binding Proteins in Normal and Transformed Cells. Plenum Press, New York, pp 27–34Google Scholar
  80. Parmentier M, Lefort A (1991) Structure of the human brain calcium-binding protein calretinin and its expression in bacteria. Eur J Biochem 196: 79–85PubMedCrossRefGoogle Scholar
  81. Patterson JT, Chung K, Coggeshall RE (1992) Further evidence for the existence of long ascending unmyelinaled primary afferent fibers within the dorsal funiculus: effects of capsaicin. Pain 49: 117–120PubMedCrossRefGoogle Scholar
  82. Perlmutter LS, Gall C, Baudry M, Lynch G (1990) Distribution of calcium-activated protease calpain in the rat brain, J Comp Neurol 296: 269–276PubMedCrossRefGoogle Scholar
  83. Persechini A, Moncrief ND, Kretsinger RH (1989) The EF-hand family of calcium-modulated proteins. Trends Neurosci 12: 462–467PubMedCrossRefGoogle Scholar
  84. Pike CJ, Cotman CW (1995) Calretinin-immunoreactive neurons are resistant to ß-amyloid toxicily in vitro. Brain Res 671: 293–298PubMedCrossRefGoogle Scholar
  85. Pochet R, Parmentier M, Lawson DEM, Pasteels JL (1985) Rat brain synthesizes two “vitamin D-dependent“ calcium-binding proteins. Brain Res 345: 251–256PubMedCrossRefGoogle Scholar
  86. Pritz MB, Stritzel ME (1991) Calcium binding protein immunoreactivity in a reptilian thalamic reticular nucleus. Brain Res 554: 325–328PubMedCrossRefGoogle Scholar
  87. Przywara DA, Bhave SV, Bhave A, Wakade TD, Wakede AR (1991) Stimulated rise in neuronal calcium is fasler and greater in the nucleus than the cytosol. FASEB J 5: 217–222PubMedGoogle Scholar
  88. Rauseil E, Cusick CG, Taub E, Jones EG (1992) Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type. A receptors at thalamic levels. Proc Natl Acad Sci USA 89: 2571–2575CrossRefGoogle Scholar
  89. Rausell E, Jones EG (1991) Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex. J Neurosci II: 226–237Google Scholar
  90. Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calreiinin, calmodulin and parvalbumin in the rat spinal cord. Brain Res Rev 19: 163–179PubMedCrossRefGoogle Scholar
  91. Ren K, Ruda MA, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Res Bull 31: 13–22PubMedCrossRefGoogle Scholar
  92. Résibois A, Blachier F, Rogers JH, Lawson DEM, Pochet R (1989) Comparison between rat brain calbindin-and calretinin-immunoreactivittes. In: Pochet R, Lawson DEM, Heizmann CW (eds) Calcium Binding Proteins in Normal and Transformed Cells. Plenum Press, New York, pp 211–214Google Scholar
  93. Résibois A, Rogers JH (1992) Calretinin in rat brain: an immunohistochemical study. Neuroscience 46: 101–134PubMedCrossRefGoogle Scholar
  94. Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105: 1343–1353PubMedCrossRefGoogle Scholar
  95. Rogers JH (1991) Calreiinin. in: Heizmann CW (ed) Novel Calcium-Binding Proteins. Springer, Berlin Heidelberg New York Tokyo, pp 251–276CrossRefGoogle Scholar
  96. Rogers JH, Khan M, Ellis J (1989) Calretinin and other CaBPs in the nervous system. In: Pochet R, Lawson DEM, Heizmann CW (eds) Calcium Binding Proteins in Normal and Transformed Cells. Plenum Press, New York, pp 195–203Google Scholar
  97. Rogers JH, Résibois A (1992) Calretinin and calbindin-D78k in rat brain: patterns of partial co-localization. Neuroscience 51: 843–865PubMedCrossRefGoogle Scholar
  98. Ruda MA, Bennett GJ, Dubner R (1986) Neurochemistry and neural circuitry in the dorsai horn. Prog Brain Res 66: 219–268PubMedCrossRefGoogle Scholar
  99. Sacks DB, Porter SE, Ladenson JH, McDonald JM (1991) Monoclonal antibody to calmodulin: Development, characterization, and comparison with polyclonal anti-calmo-dulin antibodies. Anal Biochem 194: 369–377PubMedCrossRefGoogle Scholar
  100. Sasek CA. Seybold VS, Elde RP (1984) The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12: 855–873PubMedCrossRefGoogle Scholar
  101. SenGupta B, Friedberg F, Detera-Wadleigh SD (1987) Molecular analysis of human and rat calmodulin complementary DNA clones. J Bioi Chem 262: 16663–16670Google Scholar
  102. Séquier JM, Hunziker W, Andressen C, Celio MR (1990) Calbindin D-28k protein and mRNA localization in the rat brain. Eur J Neurosci 2: 1118–1126PubMedCrossRefGoogle Scholar
  103. Serratosa J, Pujol MJ, Bachs O, Carafoli E (1988) Rearrangement of nuclear calmodulin during proliferative liver cell activation. Biochem Biophys Res Commun 150: 1162–1169PubMedCrossRefGoogle Scholar
  104. Seto-Ohshima A, Kitajima S, Sano M, Kato K. Mizutani A (1983) Immunohistochemical localization of calmodulin in mouse brain. Hisiochemistry 79: 251–257CrossRefGoogle Scholar
  105. Seto-Ohshima A, Sano M, Mizutani A (1985) Characteristic localization of calmodulin in human tissues: Immunohistochemical study in the paraffin sections. Acta Histochem Cyiochem 18: 275–282CrossRefGoogle Scholar
  106. Siman R, Gall C, Perlmutter LS, Christian C, Baudry M, Lynch G (1985) Distribution of calpain I. an enzyme associated with degenerative activity, in rat brain. Brain Res 347: 399–403PubMedCrossRefGoogle Scholar
  107. Sloviter RS (1989) Calcium-binding protein (calbindin-D2SK) and parvalbumin immuno-cytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 280: 183–196PubMedCrossRefGoogle Scholar
  108. Sorimachi H, Tsukahara T, Okada-Ban M, Sugita H, Ishiura S, Suzuki K (1995) Identification of a third ubiquitous calpain species-chicken muscle expresses four distinct calpains. Biochim Biophys Acta 1261: 381–393PubMedCrossRefGoogle Scholar
  109. Suzuki K, Sorimachi H. Yoshizawa T, Kinbara K, Ishiura S (1995) Calpain: Novel family members, activation, and physiological function. Biol Chem Hoppe Seyler 376: 523–529PubMedCrossRefGoogle Scholar
  110. Szabo T, Libouban S, Denizot JP (1990) A well defined spinocerebellar system in the weakiy electric teleost fish Gnathonemus petersii. A tracing and immuno-hitochemical study. Arch Ital Biol 128: 229–47Google Scholar
  111. Szabolcs MJ, Kopp M, Schaden GE (1989) Carbonic anhydrase activity in the peripheral nervous system of rat: the enzyme as a marker for muscle afferents. Brain Res 492: 129–138PubMedCrossRefGoogle Scholar
  112. Tabuchi K, Ohnishi R, Nishimoto A, Isobe T, Okuyama T (1984) Reverse cellular distribution of calmodulin to S-100 protein in primate brain. Brain Res 298: 353–357PubMedCrossRefGoogle Scholar
  113. Tracey DJ (1985) Ascending and descending pathways in the spinal cord. In: Paxinos G (ed) The Rat Nervous System, vol 2. Hindbrain and Spinal Cord. Academic Press, Sydney, pp 311–324Google Scholar
  114. Valtschanoff JG, Weinberg RJ, Rustioni A (1992) NADPH diaphorase in the spinal cord of rats, J Comp Neurol 321: 209–222PubMedCrossRefGoogle Scholar
  115. Van Brederode JFM, Helliesen MK, Hendrickson AE (1991) Distribution of the calcium-binding proteins parvalbumm and ca)bindin-D28k in the sensorimotor cortex of the rat. Neuroscience 44: 157–171PubMedCrossRefGoogle Scholar
  116. Wall PD, Devor M, Inbal R, Scadding JW, Schonfeld D, Seltzer Z, Tomkiewicz MM (1979) Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7: 103–113PubMedCrossRefGoogle Scholar
  117. Wang KKW, Yuen P-W (1994) Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci 15: 412–419PubMedCrossRefGoogle Scholar
  118. Wasserman RH, Taylor AN (1966) Vitamin D3-induced calcium-binding protein in chick intestinal mucosa. Science 152: 791–793PubMedCrossRefGoogle Scholar
  119. Wiesenfeld. Z, Lindblom U (1980) Behavioral and electrophysiological effects of various types of peripheral nerve lesions in the rat: A comparison of possible models for chronic pain. Pain 8: 285–298PubMedCrossRefGoogle Scholar
  120. Willis WD (1985) The pain system. Karger, BaselGoogle Scholar
  121. Winsky L, Kuznicki J (1996) Antibody recognition of calcium-binding proteins depends on their calcium-binding status. J Neurochem 66: 764–771PubMedCrossRefGoogle Scholar
  122. Winsky L, Nakata H, Martin BM, Jacobowitz DM (1989) Isolation, partial amino acid sequence, and immunohistochemical localization of a brain-specific calcium-binding protein. Proc Natl Acad Sci USA 86: 10139–10143PubMedCrossRefGoogle Scholar
  123. Wood JG, Wallace RW, Whitaker JN, Cheung WY (1980) Immunocytochemical localization of calmodulin in regions of rodent brain. Ann NY Acad Sci 356: 75–82PubMedCrossRefGoogle Scholar
  124. Yamaguchi T, Winsky L, Jacobowitz DM (1991) Calretinin, a neuronal calcium binding protein, inhibits phosphorylation of a 39 kDa synapdc membrane protein from rat brain cerebral cortex. Neurosci Lett 131: 79–82PubMedCrossRefGoogle Scholar
  125. Yamamoto T, Carr PA, Baimbridge KG, Nagy JI (1989) Parvalbumin-and calbindin D28K-immunoreactive neurons in the superficial layers of the spinal cord dorsal horn of rat. Brain Res Bull 23: 493–508PubMedCrossRefGoogle Scholar
  126. Yoshida S, Senba E, Kubota Y, Hagihira S, Yoshiya 1, Emson PC, Tohyama M (1990) Calcium-binding proteins calbindin and parvalbumin in the superficial dorsal horn of the rat spinal cord. Neuroscience 37: 839–848PubMedCrossRefGoogle Scholar
  127. Yoshizawa T, Sorimachi H, Tomioka S, Ishiura S, Suzuki K (1995) Calpain dissociates into subunits in the presence of calcium ions. Biochem Biophys Res Commun 208: 376–383PubMedCrossRefGoogle Scholar
  128. Zhang J-H, Morita Y, Hironaka T, Emson PC, Tohyama M (1990) Ontological study of calbindin-D28K-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol 302: 715–728PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1998

Authors and Affiliations

  • K. Ren
    • 1
  • M. A. Ruda
    • 2
  1. 1.Department of Oral and Craniofacial Biological SciencesUniversity of Maryland Dental SchoolBaltimoreUSA
  2. 2.Neurobiology and Anesthesiology Branch, National Institute of Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations