Skip to main content

Novel approaches to the treatment of post compressive spinal cord injury

  • Chapter
Spinal Cord Monitoring
  • 188 Accesses

Abstract

Spinal cord injuries are an important cause of longterm disability with current estimates of their frequency at a range of 30-50 cases per million population. Over the last decade, our knowledge of the pathophysiological mechanisms associated with spinal cord injury has increased dramatically. Clinical and basic science research have improved our ability to preserve and restore function following these devastating injuries. In this chapter, we will briefly review some of the important advancements that have been gained through basic science research, and in particular review our experimental findings utilizing a model of compressive spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albelda S, Buck C (1990) Integrins and other cell adhesions molecules. FASEB J, pp 2869–2880

    Google Scholar 

  • Allen AR (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. JAMA 57: 878–890

    Article  Google Scholar 

  • Allen AR (1914) Remarks on the histopathological changes in the spinal cord due to impact: An experimental study. J Nerv Ment Dis 41: 141–147

    Article  Google Scholar 

  • Anderson DK, Demediuk P, Saunders RD, Dugan LL, Means ED, Horrocks LA (1985) Spinal cord injury and protection. Ann Emerg Med 14: 816–821

    Article  PubMed  CAS  Google Scholar 

  • Anderson DK, Hall ED (1993) Pathophysiology of spinal cord trauma. Ann Emerg Med 22: 987–992

    Article  PubMed  CAS  Google Scholar 

  • Anderson DK, Prockop LD, Means ED, Hartley LE (1976) Cerebrospinal fluid lactate following experimental spinal cord injury. J Neurosurg 49: 715–722

    Google Scholar 

  • Al-Mefty O, Harkey HL, Marawi I, Haines DE, Peeler DF, Wilner HI, Smith RR, Holaday HR, Haining JL, Russell WF et al. (1993) Experimental cervical myelopathy effects of ischemia and compression of the canine cervical spine cord. J Neurosurg 79: 550–561

    Article  PubMed  CAS  Google Scholar 

  • Balentine JD (1978) Pathology of experimental spinal cord trauma. 1. The necrotic lesion as a function of vascular injury. Lab Invest 39: 236–253

    PubMed  CAS  Google Scholar 

  • Balentine JD (1978) Pathology of experimental spinal cord trauma. 11. Ultrastructure of axons and myelin. Lab Invest 39: 254–266

    PubMed  CAS  Google Scholar 

  • Battistella FD, Wisner DH (1991) Combined hemorrhagic shock and head injury. Effects of hypertonic saline (7.5%) resuscitation. J Trauma 31: 182–188

    PubMed  CAS  Google Scholar 

  • Bastian NR, Hibb JB Jr (1994) Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr Opin Immunol 6: 131–139

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Beckman TW, Chen J et al. (1990) Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sci USA 87: 1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Behrmann O, Bresnahan J, Beattie M (1994) Modeling of acute spinal cord injury in the rat: neurprotection and enhanced recovery with methyprednisone, 0–74006F and Ym-14673. Exp Neurol 126: 63–75

    Article  Google Scholar 

  • Bereta M, Bereta J, Georgoff I, Coffman FD, Cohen S, Cohen MC (1994) Methylxanthines and calcium-mobilizing agents inhibit the expression of cytokine-inducible nitric oxide synthase and vascular cell adhesion molecure-1 in murine microvascular endothelial cells. Exp Cell Res 212: 230–242

    Article  PubMed  CAS  Google Scholar 

  • Bernofsky C (1991) Nucleotide chloramines and neutrophil-medicated cytotoxicity. FASEB 5: 295–300

    CAS  Google Scholar 

  • Bevilacqua MP (1993) Endothelial-leukocyte adhesion molecules. Annu Res Immunol 11: 767–804

    Article  CAS  Google Scholar 

  • Biagas KV, Uhl MW, Schiding JK et al. (1992) Assessment of post-traumatic polymorphonuclear leukocyte accumulation in rat brain using tissue myeloperoxidase assay and vinblastine treatment. J Neurotrauma 9(4): 363–371

    Article  PubMed  CAS  Google Scholar 

  • Black P, Markowitz R, Cooper V, Mechanic A, Kushner H, Damjanov I, Finkelstein SD, Wachs KC (1986) Models of spinal cord injury, Part 1. Neurosurgery 19: 752–762

    Article  PubMed  CAS  Google Scholar 

  • Blazka ME, Harry GJ, Luster MI (1994) Effect of lead acetate on nitrite production by murine brain endothelial cell cultures. Toxicol Appl Pharmacol 126: 191–194

    Article  PubMed  CAS  Google Scholar 

  • Blight AR (1985) Delayed demyelination and macrophage invasion: A candidate for secondary cell damage in spinal cord injury. Cent Nerv Syst Trauma 2: 299–315

    PubMed  CAS  Google Scholar 

  • Blight AR (1992) Macrophages and inflammatory damage in spinal cord injury. J Neurotrauma 9 [Suppl] 1: S83–S91

    PubMed  Google Scholar 

  • Bracken M, Shepard M, Collins W et al. (1990) A randomized controlled trial of methyl-prednisolone or naloxone in the treatment of acute spinal cord injury 322: 1405–14

    CAS  Google Scholar 

  • Braughler JM, Means E, Waters TR, Anderson DK (1987) Evaluation of an intensive methyl-prednisolone sodium succinate dosing regimen in experimental spinal cord injury. J Neurosurg 67: 102–105

    Article  PubMed  CAS  Google Scholar 

  • Cho HJ, Xie O, Calacay J, Mumford RA, Swiderek KM, Lee TD, Nathan C (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J Esp Med 176: 599–604

    CAS  Google Scholar 

  • Choi DW (1993) Nitric oxide: Friend or foe to the injured brain? Proc Natl Acad Sci USA 90: 9741–9743

    Article  PubMed  CAS  Google Scholar 

  • Cusick JF, Myklebust J, Zyvoloski M, Sances A Jr, Houterman C, Larson SJ (1982) Effects of vertebral column distraction in the monkey. J Neurosurg 57: 652–659

    Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1985) Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc Natl Acad Sci 82: 7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos HB, Yoder M, Gutman EG, Seligman ML, Flamm ES, Ransohoff J (1978) The fine structure of endothelial surfaces in the microcirculation of experimentally injured feline spinal cords. Scanning Electron Microsc 11: 677–682

    Google Scholar 

  • Eyre JA, Essex TJ, Flecknell PA, Bartholomew PH, Sinclair JI (1988) A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labeled microspheres. Clin Phys Physiol Meas 9: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Fairholm D, Tunbull I (1970) Microangiographic study of experimental spinal injuries in dogs and rabbits. Surgical Forum 21: 435–455

    Google Scholar 

  • Gazitua S, Scott JB, Swindall B, Haddy FJ (1971) Resistance responses to local changes in plasma osmolarity in three vascular beds. Am J Physiol 220: 284–391

    Google Scholar 

  • Giulian D, Robertson C (1990) Inhibition of mononuclear phagocytes reduces ischemic injury in the spinal cord. Am Neurol 27: 33–42

    Article  CAS  Google Scholar 

  • Granger DN, Kubes P (1994) The microcirculation and inflammation: Modulation of leukocyte endothelial cell adhesion. J Leukoc Biol 5: 662–675

    Google Scholar 

  • Green BA, Wagner FC (1973) Evolution of edema in the acutely injured spinal cord: A fluorescence microscopic study. Surg Neurol 1973: 98–101

    Google Scholar 

  • Griffith IR, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22: 291–304

    Article  Google Scholar 

  • Griffith IR, Burns N, Crawford AR (1978) Early vascular changes in the spinal gray matter following impact injury. Acta Neuropathol 41: 33–39

    Article  Google Scholar 

  • Hall ED (1992) The neuroprotective pharmacology of methylprednisolone. J Neurosurg 76: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Wolf DL (1986) A pharmacological analysis of the pathophy siological mechanisms of post-traumatic spinal cord ischemia. J Neurosurg 64: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Younkers PA, Horan KL, Baughler JM (1989) Correlation between attenuation of post-traumatic spinal cord ischemia and preservation of tissue Vitamin E by the 21-Aminosteroid U74006F. Evidence of an in vivo antioxidant mechanism. J Neurotrauma 6: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65: 513–525

    PubMed  CAS  Google Scholar 

  • Hecker M, Sessa WC, Harris HJ, Anggard EE, Vane JR (1990) The metabolism of L-arginine and its significance for the biosynthesis of endothelium-derived relaxing factor: Cultured endothelial cells recycle L-citrulline to L-arginine. Proc Natl Acad Sci USA 87: 8612–8616

    Article  PubMed  CAS  Google Scholar 

  • Johnson RJ, Alpers CE, Pritze P et al. (1988) Platelets mediate neurotrophil-dependent immune complex nephritis in the rat. J Clin Invest 82: 1225–1235

    Article  PubMed  CAS  Google Scholar 

  • Kapadia SE (1984) Ultrastructural alteration in blood vessels of the white matter after experimental spinal cord trauma. J Neurosurg 61: 539–544

    Article  PubMed  CAS  Google Scholar 

  • Kubes P, Kurose I, Granger DN (1994) NO donors integrin-induced leukocyte adhesion but P-selectin dependent rolling in postischemic venules. Am J Physiol 267: H931–937

    Google Scholar 

  • Lewis RE, Granger HJ (1986) Neutrophil-dependent mediation of micro-vascular permeability. Fed Proc 45: 109–113

    PubMed  CAS  Google Scholar 

  • Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE (1990) Capillary narrowing in hemorrhage shock is rectified by hyperosmotic saline-dextran reinfusion. Circ Shock 31: 407–418

    PubMed  CAS  Google Scholar 

  • Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE (1989) Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock 29: 27–39

    PubMed  CAS  Google Scholar 

  • Means ED, Anderson DK (1983) Neuronophagia by leukocytes in experimental spinal cord injury. Neuropathol Exp Neurol 42: 707–719

    Article  CAS  Google Scholar 

  • Moreno-Flores MT, Bovolenta P, Nieto-Sampedro M (1993) Polymorpho-nuclear leukocytes in brain parenchyma after injury and their interaction with purified astrocytes in culture. Glia 7(2): 146–157

    Article  PubMed  CAS  Google Scholar 

  • Nakayama S, Sibley L, Gunther RA, Holcroft JW, Kramer GC (1984) Small-volume resuscitation with hypertonic saline (2,400 mOsm/Liter) during hemorrhagic shock. Circ Shock 13: 149–159

    PubMed  CAS  Google Scholar 

  • Nemecek S (1978) Morphological evidence of microcirculatory disturbances in experimental spinal cord trauma. Adv Neurol 20: 395–405

    PubMed  CAS  Google Scholar 

  • Hypertonic saline or lactated Ringer’s (1983) (Effect on the pulmonary and systemic microcirculation). Circ Shock 10: 179–188

    PubMed  Google Scholar 

  • Nolte D, Bayer M, Lehr HA, Becker M, Kromback F, Kreimeier U, Messmer K (1992) Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 263: H1411–H1416

    PubMed  CAS  Google Scholar 

  • Nurick S (1972) The pathogenesis of the spinal cord disorder associated with cervical spondylosis. Brain 95: 87–100

    Article  PubMed  CAS  Google Scholar 

  • Nystrom B, Berglund JE, Bergquist E (1988) Methodological analysis of an experimental spinal cord compression model in the rat. Acta Neurol Scand 78: 460–466

    Article  PubMed  CAS  Google Scholar 

  • Nystrom B, Berglund JE (1988) Spinal cord restitution following compression injuries in rats: Acta Neurol Scand 78: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Osterholm JL (1974) The pathophysiological response to spinal cord injury. The current status of related research. J Neurosurg 40: 5–33

    PubMed  CAS  Google Scholar 

  • Perry VH, Andersson P-B (1992) Glial symposium: The inflammatory response in the CNS. Neuropathol Appl Neurobiol 18: 454–459

    Article  PubMed  CAS  Google Scholar 

  • Petersma A, De Jong N, Koster JF, Sluiter W (1994): Effect of hypoxia on adherence of granulocytes to endothelial cells in vitro. Am J Physiol 267: H874–879

    Google Scholar 

  • Prough DS, Whitley JM, Toylor CL, Deal DD, DeWitt DS (1991) Regional blood flow following resuscitation fro hemorrhagic shock with hypertonic saline. Anesthesiol 75: 319–327

    Article  CAS  Google Scholar 

  • Tocha-e-Silva M, Negraes GA, Soares AM, Pontieri V, Loppnow L (1986) Hypertonic resuscitation from several hemorrhagic shock: Patterns of regional circulation. Circ Shock 19: 165–175

    Google Scholar 

  • Ross I, Tator CH (1993) Spinal cord blood flow and evoked potential responses after treatment with Nimodipine or Myethylprednisolone in spinal cord-injured rats. Neurosurgery 33(3): 470–476

    Article  PubMed  CAS  Google Scholar 

  • Saetzler RK, Badellino MM, Buckman RF, Eynon CA, Tuma RF, Arfors K-E (1996) Hypertonic saline attenuates leukocyte/endothelium and leukocyte/platelet interaction following hemorrhagic shock. J Trauma (in press)

    Google Scholar 

  • Sandier AN, Tator CH (1976) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord. J Neurosurg 45: 638–646

    Article  Google Scholar 

  • Schoettle RJ, Kochanek PM, Magargee MJ, Uhl MW, Nemoto EM (1990) Early polymorpho-nuclear leukocyte addumulation correlates with the development of post-traumatic cerebral edema in rats. J Neurotrauma 7: 207–217

    Article  PubMed  CAS  Google Scholar 

  • Schmoker JD, Zhuang J, Shackford SR (1991) Hypertonic fluid resuscitation improves cerebral oxygen delivery and reduces intracranial pressure after hemorrhagic shock. J Trauma 31: 1607–1613

    Article  PubMed  CAS  Google Scholar 

  • Shackford SR, Schmoker JD, Zhuang J (1994) The effect of hypertonic resuscitation on pial arteriolar tone after brain injury and shock. J Trauma 37: 899–908

    Article  PubMed  CAS  Google Scholar 

  • Slogan DJ, Wood MJ, Charlton HM (1992) Leucocyte recruitment and inflammation in the CNS. Trends Neurosci 15: 276–278

    Article  Google Scholar 

  • Smyth SS, Joneckis CC, Parise LV (1993) Regulation of vascular integrins. Blood 81: 2827–2843

    PubMed  CAS  Google Scholar 

  • Stewart WB, Wagner FC (1979) Vascular permeability changes in the contused feline spinal cord. Brain Res 169: 163–167

    Article  PubMed  CAS  Google Scholar 

  • Tanno H, Nockels RP, Pitts LH, Noble LJ (1992) Breakdown of the blood-brain barrier after fluid percussive in the rat. Part 2. Effect of hypoxia on permeability to plasma proteins. J Neurotrauma 9: 335–347

    Article  PubMed  CAS  Google Scholar 

  • Tarlov M, Klinger M, Vitale S (1953) Spinal cord compression studies. 1. Experimental techniques to produce acute and gradual compression. Arch Neurol Psychiatry 70: 813–819

    Article  CAS  Google Scholar 

  • Tator CH, Decker L (1973) Value of normothermic perfusion, hypothermic perfusion and durotomy in the treatment of experimental spinal cord trauma. J Neurosurg 39: 52–64

    Article  PubMed  CAS  Google Scholar 

  • Taylor AR (1951) The mechanism of injury to the spinal cord in the neck without damage to the vertebral column. J Bone Joint Surg 33: 543–547

    Google Scholar 

  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Tuma RF, Vasthare U, Artors E, Young WF (1997) Hypertonic saline administration attenuates spinal cord injury. Vol 42, No 5. Trauma [Suppl] S54–60

    Google Scholar 

  • Vasthare US, Rubin S, Riina H, Rosenwasser RH, Tuma RF (1991) Effect of fentanyl on recovery following incomplete global cerebral ischemia. Drug Dev Res 23: 227–232

    Article  CAS  Google Scholar 

  • Wakefield CL, Eidelberg E (1975) Electron microscope observations of the delayed effects of spinal cord compression. Exp Neurol 48: 637–646

    Article  PubMed  CAS  Google Scholar 

  • Walter R, Schaffner A, Schoedon G (1994) Differential regulation of constitutive and inducible nitric oxide production by inflammatory stimuli in murine endothelial cells. Biochem Biophys Res Commun 202: 450–455

    Article  PubMed  CAS  Google Scholar 

  • Weiss SJ (1989) Tissue destruction by neutrophils. NEJ Med 320: 365–376

    Article  CAS  Google Scholar 

  • Williams JI, Higgs GA (1988) Eicosanoids and inflammation. J Pathol 156: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Hsu CY, Liu TH et al. (1990) Leukotriene and polymorphonuclear cell infiltration in spinal cord injury. J Neurochem 55: 907–912

    Article  PubMed  CAS  Google Scholar 

  • Young WF, Flamm ES (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal cord. J Neurosurg 52: 667–673

    Google Scholar 

  • Young WF, Rosenwasser RH, Vasthare US, Tuma RF (1994) Preservation of post-compression spinal cord function by infusion of hypertonic saline. J Neurosurg Anesth 6: 122–127

    CAS  Google Scholar 

  • Zhuang J, Shackford SR, Schmoker JD, Anderson MI (1993) The association of leukocytes with secondary brain injury. J Trauma 35(3): 422–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Young, W.F., Dominique, D., Vasthare, U.S., Tuma, R.F. (1998). Novel approaches to the treatment of post compressive spinal cord injury. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_19

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics