Skip to main content

Intraoperative neurophysiology of the corticospinal tract

  • Chapter
Spinal Cord Monitoring

Abstract

Interventions that directly or indirectly put the spinal cord at risk are considered as particularly challenging for the neurosurgeon, the interventional neuroradiologist, the orthopedic surgeon, the vascular surgeon and the clinical neurophysiologist. In this context the objective of intraoperative neurophysiology is threefold: first, to prevent injury to the spinal cord, second, to document time and nature of injury any, and third, to “guide” the surgeon during the procedure according to continuously updated neurophysiologic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amassian V, Rothwell JC, Redding M, Priori A, Jalinous R (1996) A high frequency resonant circuit in human motor cortex. Soc Neurosci (abstract), p 658

    Google Scholar 

  • Amassian VE, Quirk GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77: 390–401

    Article  PubMed  CAS  Google Scholar 

  • Amassian VE, Stewart M, Quirk GJ, Rosenthal JL (1987) Physiological Basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20: 74–93

    PubMed  CAS  Google Scholar 

  • Barker AT, Freeston IL, Jalinous R, Jarratt JA (1987) Magnetic Stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 20: 100–109

    Article  PubMed  CAS  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of the human motor cortex. Lancet 1: 1106–1107

    Article  PubMed  CAS  Google Scholar 

  • Berenstein A, Young W, Ransohoff J, Benjamin V, Merkin H (1984) Somatosensory evoked potentials during spinal angiography and therapeutic transvascular embolization. J Neurosurg 60: 777–785

    Article  PubMed  CAS  Google Scholar 

  • Blight AR (1983a) Axonal physiology of chronic spinal cord injury in the cat: intracellular recording in vitro. Neuroscience 10: 1471–1486

    Article  PubMed  CAS  Google Scholar 

  • Blight AR (1983b) Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line sampling. Neuroscience 10: 521–543

    Article  PubMed  CAS  Google Scholar 

  • Boyd SG, Rothwell JC, Cowan JMA, Webb PJ, Morley T, Asselman P, Marsden CD (1986) A method of monitoring function in corticospinal pathways during scoliosis surgery with a note on motor conduction velocities. J Neurol Neurosurg Psychiatry 49: 251–257

    Article  PubMed  CAS  Google Scholar 

  • Burke D, Hicks R, Gandevia SC, Stephen J, Woodforth I, Crawford M (1993) Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. J Physiol (Lond) 470: 383–393

    CAS  Google Scholar 

  • Burke D, Hicks R, Stephen J (1992) Anodal and cathodal stimulation of the upper-limb area of the human motor cortex. Brain 115: 1497–1508

    Article  PubMed  Google Scholar 

  • Canter M, Deletis V (1995) Spinal epidural electrode catheter for intraoperative recording of evoked potentials and injection of drugs. Sixth International Symposium on Spinal Cord Monitoring, New York, p 50 (abstract)

    Google Scholar 

  • Coulter JD, Jones EG (1977) Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res 129: 335–340

    Article  PubMed  CAS  Google Scholar 

  • Cros D, Chiappa KM (1993) Clinical applications of motor evoked potentials. In: Devinsky O, Beric A, Dogali M (eds) Electrical and Magnetic Stimulation of the Brain and Spinal Cord. Raven Press, New York, pp 179–185

    Google Scholar 

  • Deletis V (1993) Intraoperative monitoring of the functional integrity of the motor pathways. In: Devinsky O, Beric A, Dogali M (eds) Electrical and Magnetic Stimulation of the Brain and Spinal cord. Raven Press, New York, pp 201–214

    Google Scholar 

  • Edmonds HL, Paloheimo MPJ, Backman MH, Johnson JR, Holt RT, Shields CB (1989) Transcranial magnetic motor evoked potentials (tcMMEP) for functional monitoring of motor pathways during scoliosis surgery. Spine 14: 683–686

    Article  PubMed  Google Scholar 

  • Ferbert A, Vielhaber S, Meincke U, Buchner H (1992) Transcranial magnetic stimulation in pontine infarction: correlation to degree of paresis. J Neurol Neurosurg Psychiatry 55: 294–299

    Article  PubMed  CAS  Google Scholar 

  • Ghaly RF, Stone JL, Levy WJ, Roccaforte P, Brunner EB (1990) The effect of etomidate on motor evoked potentials induced by transcranial magnetic stimulation in the monkey. Neurosurgery 27: 936–942

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg HH, Shetter AG, Raudzens PA (1985) Postoperative paraplegia with preserved intraoperative somatosensory evoked potentials. J Neurosurg 63: 296–300

    Article  PubMed  CAS  Google Scholar 

  • Hallett M (1996) Transcranial magnetic stimulation: a useful tool for clinical neurophysiology. Ann Neurol 40: 344–345 (editorial)

    Article  PubMed  CAS  Google Scholar 

  • Herdmann J, Lumenta CB, Huse KOW (1993) Magnetic stimulation for monitoring of motor pathways in spinal procedures. Spine 18: 551–559

    Article  PubMed  CAS  Google Scholar 

  • Hicks RG, Woodforth IJ, Crawford MR, Stephen JPH, Burke DJ (1992) Some effects of isoflurane on I waves of the motor evoked potential. Br J Anesth 69: 130–136

    Article  CAS  Google Scholar 

  • Jones SJ, Harrison R, Koh KF, Mendoza N, Crockard HA (1996) Motor evoked potential monitoring during spinal surgery: responses of distal limb muscles to transcranial cortical stimulation with pulse trains. Electroenceph Clin Neurophysiol 100: 375–383

    PubMed  CAS  Google Scholar 

  • Kalkman CJ, Drummond JC, Patel PM, Sano T, Chesnut RM (1994) Effects of droperidol, pentobarbital, and ketamine on myogenic transcranial magnetic motor-evoked responses in humans. Neurosurgery 35: 1066–1071

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Drummond JC, Ribberink AA, Patel PM, Sano T, Bickford RG (1992) Effects of propofol, etomidate, midazolam and fentanyl on motor evoked responses to transcranial electrical or magnetic stimulation in humans. Anesthesiology 76: 502–509

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Ubags LH, Been HD, Swaan A, Drummond JC (1995) Improved amplitude of myogenic motor evoked responses after paired transcranial electrical stimulation during sufentanil/nitrous oxide anesthesia. Anesthesiology 83: 270–276

    Article  PubMed  CAS  Google Scholar 

  • Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A (1996) The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101: 478–482

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Tsubokawa T, Maemjima S, Hirayama T, Yamamoto T (1988) Corticospinal direct response in humans: identification of the motor cortex during intracranial surgery under general anesthesia. J Neurol Neurosurg Psychiatry 51: 50–59

    Article  PubMed  CAS  Google Scholar 

  • Kothbauer K, Schmid UD, Liechti S, Rösier KM (1993) The effect of ketamine anesthetic induction on muscle responses to transcranial magnetic cortex stimulation studied in man. Neurosci Lett 154: 105–108

    Article  PubMed  CAS  Google Scholar 

  • Kothbauer KF, Deletis V, Epstein FJ (1998a) Motor evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4, Article 1

    Google Scholar 

  • Kothbauer K, Pryor J, Berenstein A, Setton A, Deletis V (1998b) Motor evoked potentials predicting recovery from paraparesis after embolization of a spinal durai arteriovenous fistula. Intervent. Neuroradiol 4: 81–84

    CAS  Google Scholar 

  • Kuypers HGJM (1964) The descending pathways to the spinal cord, their anatomy and function. In: Eccles JC, Schade JP (eds) Progress in Brain Research. Organization of the Spinal Cord. Elsevier, Amsterdam, pp 178–202

    Chapter  Google Scholar 

  • Lang EW, Beutler AS, Chesnut FM, Patel PM, Kennelly NA, Kalkman CJ, Drummond JC, Garfin SR (1996) Myogenic motor-evoked potential monitoring using partial neuromuscular blockade in surgery of the spine. Spine 21: 1676–1686

    Article  PubMed  CAS  Google Scholar 

  • Lesser RP, Raudzens P, Lüders H, Nuwer MR, Goldie WD, Morris HH, Dinner DS, Klem G, Hahn JF, Shetter AG, Gisnburg HH, Gurd AR (1986) Postoperative neurological deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19: 22–25

    Article  PubMed  CAS  Google Scholar 

  • Levy WJ, York DH, McCaffrey M, Tanzer F (1984) Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 15: 287–302

    Article  PubMed  CAS  Google Scholar 

  • Macdonell RAL, Donnan GA (1995) Magnetic cortical stimulation in acute spinal cord injury. Neurology 45: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Maertens de Noordhout A, Remacle JM, Pepin JL, Born JD, Delwaide PJ (1991) Magnetic stimulation of the motor cortex in cervical spondylosis. Neurology 41: 75–80

    Article  PubMed  CAS  Google Scholar 

  • Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285, p 227

    Article  PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1973) Effects of two unilateral cordotomies on the motility of the lower limbs. Brain 96: 471–494

    Article  PubMed  CAS  Google Scholar 

  • Nuwer MR, Dawson EG, Carlson LG, Kanim LE, Sherman JE (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter study. Electroencephalogr Clin Neurophysiol 96: 6–11

    Article  PubMed  CAS  Google Scholar 

  • Patton HD, Amassian VE (1954) Single-and multiple unit analysis of cortical state of pyramidal tract activation. J Neurophysiol 17: 345–363

    PubMed  CAS  Google Scholar 

  • Pechstein U, Cedzich C, Nadstawek J, Schramm J (1996) Transcranial high-frequency repetitive electrical stimulation of recording myogenic motor evoked potential with the patient under general anesthesia. Neurosurgery 39: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443

    Article  Google Scholar 

  • Philips CG, Porter R (1964) The pyramidal projection to motoneurones of some muscle groups of the baboon’s forelimb. In: Eccles JC, Schade JP (eds) Progress in Brain Research. Elsevier, Amsterdam, pp 222–243

    Chapter  Google Scholar 

  • Rodi Z, Deletis V, Morota N, Vodusek DB (1996) Motor evoked potentials during brain surgery. Pflüger’s Archiv. Eur J Physiol 431: R291–292

    Article  Google Scholar 

  • Rösier K, Hess C, Schmid U (1989) Investigation of facial motor pathways by electrical and magnetic stimulation: sites and mechanisms of excitation. J Neurol Neurosurg Psychiatry 52: 1149–1156

    Article  Google Scholar 

  • Rossini PM, Desiato MT, Lavaroni F, Caramia MD (1991) Brain excitability and electro-encephalographic activation: non-invasive evaluation in healthy humans via transcranial magnetic stimulation. Brain Res 567: 111–119

    Article  PubMed  CAS  Google Scholar 

  • Rothwell JC (1991) Physiological Studies of electric and magnetic stimulation of the human brain. In: Levy WJ, Cracco RQ, Barker AT, Rothwell J (eds) Magnetic Motor Stimulation: Basic Principles and Clinical Experience. Electroenceph Clin Neurophysiol [Suppl] 43: 29–35

    Google Scholar 

  • Schmid UD, Boll J, Liechti S, Schmid J, Hess CW (1992) Influence of some anesthetic agents on muscle responses to transcranial magnetic cortex stimulation: A pilot study in man. Neurosurgery 30: 85–92

    Article  PubMed  CAS  Google Scholar 

  • Schönle PW, Isenberg C, Crozier TA, Dressler D, Machetanz J, Conrad B (1989) Changes of transcranially evoked motor responses in man by midazolam, a short acting benzodiazepine. Neurosci Lett 101: 321–324

    Article  PubMed  Google Scholar 

  • Taniguchi M, Schramm J, Cedzich C (1991) Recording of myogenic motor evoked potentials under general anesthesia. In: Schramm J, Møller ÅR (eds) Intraoperative Neurophysiologic Monitoring in Neurosurgery. Springer, Berlin Heidelberg New York Tokyo, pp 72–87

    Chapter  Google Scholar 

  • Taniguchi M, Cedzich C, Schramm J (1993a) Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Nadstawek J, Langenbach U, Bremer F, Schramm J (1993b) Effects of four intravenous anesthetic agents on motor evoked potentials elicited by magnetic transcranial stimulation. Neurosurgery 33: 407–415

    Article  PubMed  CAS  Google Scholar 

  • White PF, Way WL, Trevor AJ (1982) Ketamine — its pharmacology and therapeutic uses. Anesthesiology 56: 119–136

    Article  PubMed  CAS  Google Scholar 

  • Woodforth IJ, Hicks RG, Crawford MR, Stephen JP, Burke DJ (1996) Variability of motor-evoked potentials recorded during nitrous oxide anesthesia from the tibialis anterior muscle after transcranial electrical stimulation. Anesth Analg 82: 744–749

    PubMed  CAS  Google Scholar 

  • Xing J, Katayama Y, Yamamoto T, Hirayama T, Tsubokawa T (1990) Quantitative evaluation of hemiparesis with corticomyographic motor evoked potential recorded by transcranial magnetic stimulation. J Neurotrauma 7: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Transfeldt EE, Tamaki T, Nishiura H, Taylor BA, Torres R, Iaizzo PA (1995) General anesthetic effects on compound muscle action potentials elicited by single or dual spinal cord stimulation. J Spin Disord 8: 157–162

    CAS  Google Scholar 

  • Yang L-H, Lin S-M, Lee W-Y, Liu C-C (1994) Intraoperative transcranial electrical motor evoked potential monitoring during spinal surgery under intravenous ketamine or etomidate anesthesia. Acta Neurochir (Wien) 127: 191–198

    Article  CAS  Google Scholar 

  • Ying Z, Schmid UD, Schmid J, Hess CW (1992) Motor and somatosensory evoked potentials in coma: analysis and relation to clinical status and outcome. J Neurol Neurosurg Psychiatry 55: 470–474

    Article  PubMed  CAS  Google Scholar 

  • Young W, Mollin D (1989) Intraoperative somatosensory evoked potentials monitoring of spinal surgery. In: Desmedt JE (eds) Neuromonitoring in Surgery. Elsevier, Amsterdam, pp 165–173

    Google Scholar 

  • Zentner J (1989) Noninvasive motor evoked potential monitoring during neurosurgical operations in the spinal cord. Neurosurgery 24: 709–712

    Article  PubMed  CAS  Google Scholar 

  • Zhou HH, Mehta M, Leis AA (1997) Spinal cord mononeuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology 86: 302–307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Deletis, V., Kothbauer, K. (1998). Intraoperative neurophysiology of the corticospinal tract. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_17

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics