Skip to main content

Spinal cord blood flow and evoked potentials as outcome measures for experimental spinal cord injury

  • Chapter

Abstract

There are two mechanisms of damage to the spinal cord after acute spinal cord injury(SCI): the primary mechanical injury and a secondary injury due to one or more additional damaging processes initiated by the primary injury (Collins, 1983; Sandier and Tator, 1976a,b). Many pathophysiological processes are involved in the secondary injury mechanisms including vascular, electrolyte and biochemical changes, edema and loss of energy metabolism (Tator and Fehlings, 1991). Of the several postulated mechanisms, the vascular theory has considerable supporting evidence based on biochemical, pathological, angiographic, blood blow and therapeutic studies. Acute spinal cord trauma causes numerous vascular changes which may be divided into systemic and local effects. Several studies have shown that acute SCI produces immediate damage to the microvasculature of the cord followed by a secondary injury to these vessels, and this combination induces spinal cord ischemia which may be progressive (Tator, 1991 and 1994; Dohrmann et al., 1971; Hall et al., 1989). One of the most direct methods of observing the spinal cord ischemia caused by SCI is to measure spinal cord blood flow (SCBF).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altura BM, Altura BT (1974) Peripheral vascular actions of glucocorticoids and their relationship to protection in circulatory shock. J Rest Pharmacol Exp Ther 190: 300–315

    CAS  Google Scholar 

  • Amassian VE, Stewart M, Quirk GJ, Rosenthal JL (1987) Physiological basis of motor effects of a transient stimulus to cerebral cortex. Neurosurgery 20: 74–93

    PubMed  CAS  Google Scholar 

  • Anderson DK, Means ED, Waters TR, Green ES (1982) Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment. J Neurosurg 56: 106–113

    Article  PubMed  CAS  Google Scholar 

  • Anthes DL, Theriault E, Tator CH (1996) Ultrastructural evidence for arteriolar vasospasm after spinal cord trauma. Neurosurgery 39: 804–814

    Article  PubMed  CAS  Google Scholar 

  • Auckland K, Bower BF, Berliner RW (1964) Measurements of local blood flow with hydrogen gas. Circ Res 14: 164–187

    Article  Google Scholar 

  • Baba H, Tomita K, Umeda S, Kawahara N, Nagata S (1989) Experimental ascending evoked potentials in spinal cord injury. In: Ducker TB, Brown RH (eds) Neurophysiology and Standards of Spinal Cord Monitoring. Springer, Berlin Heidelberg New York Tokyo, pp 46–51

    Google Scholar 

  • Baskin DS, Simpson RK (1987) Corticomotor and somatosensory evoked potential evaluation of acute spinal cord injury in the rat. Neurosurgery 20: 871–87

    Article  PubMed  CAS  Google Scholar 

  • Black P, Markowitz RS, Finkelstein SD, McMonagle-Strucko K, Gillespie JA (1988) Experimental spinal cord injury: effect of a calcium channel antagonist (nicardipine). Neurosurgery 22: 61–66

    PubMed  CAS  Google Scholar 

  • Black P, Markowitz RS, Keller S, Wachs K, Gillespie JA, Finkelstein SD (1986a) Naloxone and experimental spinal cord injury. Part 2: Megadose treatment in a dynamic load injury model. Neurosurgery 19: 909–913

    Article  PubMed  CAS  Google Scholar 

  • Black P, Markowitz RS, Keller S, Wachs K, Gillespie JA, Finkelstein SD (1986b) Naloxone and experimental spinal cord injury. Part 1: High dose administration in a static load compression model. Neurosurgery 19: 905–908

    Article  PubMed  CAS  Google Scholar 

  • Blight AR (1994) Electrophysiological approaches to mechanisms of central nervous system trauma. In: Salzman SK, Faden AI (eds) The Neurobiology of Central Nervous System Trauma. Oxford University Press, Oxford, pp 41–56

    Google Scholar 

  • Blight A, Young W (1990) Axonal morphometric correlates of evoked potentials in experimental spinal cord injury In: SK Salzman(ed) Neural Monitoring. Humana Press, Chilton, pp 87–114

    Chapter  Google Scholar 

  • Blight A, Young W (1989) Central axons in injured cat spina cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci 91: 15–34

    Article  PubMed  CAS  Google Scholar 

  • Blight A, Someya S (1985) Depolarizing afterpotentials in myelinated axons of mammalian spinal cord. Neuroscience 15: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, Eisenberg HM (1990) A randomized, controlled trial of methyl-prednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the secondary national acute spinal cord injury study. N Engl J Med 322: 1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Branston NM, Ladds A, Symon L, Wang AD (1984) Comparison of the effects of ischemia on early components of the somatosensory evoked potential in brainstem, thalamus and cerebral cortex. J Cereb Blood Flow Metab 4: 68–81

    Article  PubMed  CAS  Google Scholar 

  • Brodkey JS, Richards DE, Blasingame JP (1972) Reversible spinal cord trauma in cats. Additive effects of direct pressure and ischemia. J Neurosurg 37: 591–593

    Article  PubMed  CAS  Google Scholar 

  • Cawthon DF, Senter HJ, Stewart WB (1980) Comparison of hydrogen clearance and 14C-antipyrine autoradiography in the measurement of spinal cord blood flow after severe impact injury. J Neurosurg 52: 801–807

    Article  PubMed  CAS  Google Scholar 

  • Chehrazi BB, Scremin O, Decima EE (1989) Effect of regional spinal cord blood flow and central control in recovery from spina cord injury. J Neurosurg 71: 747–753

    Article  PubMed  CAS  Google Scholar 

  • Cheung JY, Bonventre JV, Malis CD, Leaf A (1986) Calcium and ischemic injury. N Engl J Med 314: 1670–1676

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7: 369–379

    PubMed  CAS  Google Scholar 

  • Collins WF (1983) A review and update of experimental and clinical studies of spinal cord injury. Paraplegia 21: 204–219

    Article  PubMed  CAS  Google Scholar 

  • Corbally MT, Brennan MF (1990) Noninvasive measurement of regional blood flow in Man. Am J Surg 1990 160: 313–321

    Article  PubMed  CAS  Google Scholar 

  • Cracco RQ (1987) Evaluation of conduction in central motor pathways: Techniques, pathophysiology, and clinical interpretation. Neurosurgery 20: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Davies J, Watkins JC (1983) Excitatory amino acid receptors in mono-and polysynaptic excitation in the cat spinal cord. Exp Brain Res 49: 280–290

    Article  PubMed  CAS  Google Scholar 

  • De la Torre JC (1981) Spinal cord injury: Review of basic and applied research. Spine 6: 315–335

    Article  PubMed  Google Scholar 

  • Deecke L, Tator CH (1973) Neurophysiological assessment of afferent and efferent conduction in the inured spinal cord of monkeys. J Neurosurg 39: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Daly MP, Faden AI (1989) Effect of impact trauma on neurotransmitter and nonneuro-transmitter amino acids in rat spinal cord. J Neurochem 52: 1529–1536

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Daly MP, Faden AI (1988) Free amino acid levels in laminectomized and traumatized rat spinal cord. Trans Am Soc Neurochem 19, p 176

    Google Scholar 

  • Dimitrijevic MR, Hsu CH Y, McKay WB (1992) Neurophysiological assessment of spinal cord and head injury. J Neurotrauma 9 [Suppl] 1: S293–S300

    Google Scholar 

  • Dohrmann GJ, Wich KM, Bucy PC (1973) Spinal cord blood flow patterns in experimental traumatic paraplegia. J Neurosurg 38: 52–58

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann GJ, Wagner FC Jr, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J Neurosurg 35: 263–271

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann GJ, Allen WE III (1975) Microcirculation of traumatized spinal cord. A correlation of microangiography and blood flow patterNS in transitory and permanent paraplegia. J Trauma 15: 1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Dolan EJ, Tator CH (1982) The effect of blood transfusion, dopamine and gamma hydyoxybutyrate on post-traumatic ischemia of the spina cord. Neurosurgery 56: 350–358

    Article  CAS  Google Scholar 

  • Dolan EJ, Transfeldt EE, Tator CH (1980) The effect of spinal distraction on regional spinal cord blood flow in cats. J Neurosurg 53: 756–764

    Article  PubMed  CAS  Google Scholar 

  • Dow-Edwards D, DeCrescito V, Tomasula JJ, Flamm ES (1980) Effect of aminophylline and isoproterenol on spinal cord blood flow after impact injury. J Neurosurg 53: 385–390

    Article  PubMed  CAS  Google Scholar 

  • Ducker TB, Salzman M, Lucas JJ, Garrison WB, Perot PL (1978) Experimental spinal cord trauma II: Blood flow, tissue oxygen, evoked potentials in both paraparetic and paraplegic monkeys. Surg Neurol 10: 64–70

    PubMed  CAS  Google Scholar 

  • Ducker TB, Hamit HF (1969) Experimental treatment of acute spinal cord injury. J Neurosurg 30: 693–697

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Jacobs TP, Holaday JW (1982) Comparison of early and late naloxone treatment in experimental spinal injury. Neurology 34: 677–681

    Article  Google Scholar 

  • Faden AI, Jacobs TP, Smith MT (1984) Evaluation of the calcium channel antagonist nimodipine in experimental spinal cord ischemia. J Neurosurg 60: 796–799

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Lemke M, Simon R, Noble L (1988) N-methyl-D-aspartate antagonist MK801 improves outcome following traumatic spinal cord injury in rats: behavioral, anatomic and neurochemical studies. J Neurotrauma 5: 33–45

    Article  PubMed  CAS  Google Scholar 

  • Fairholm DJ, Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35: 277–286

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Tator CH, Linden RD (1989a) The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol 74: 241–259

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Tator CH, Linden RD (1989b) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71: 403–416

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Tator CH, Linden RD, Piper IR (1988) Motor and somatosensory evoked potentials recorded from the rat. Electroencephalogr Clin Neurophysiol 69: 65–78

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Huribert RJ, Tator CH (1991) The electrophysiological assessment of the pyramidal and non-pyramidal tracts of spinal cord of rats. Electroencephalogr Clin Neurophysiol [Suppl] 43: 287–296

    CAS  Google Scholar 

  • Fehlings MG, Tator CH, Linden RD, Piper IR (1987) Motor evoked potentials recorded form normal and spinal cord-injured rat. Neurosurgery 20: 125–130

    Article  PubMed  CAS  Google Scholar 

  • Fehlings MG, Tator CH (1988) A review of models of acute experimental spinal cord injury. In: Ulis L(ed) Spinal Cord Dysfunction Assessment. Oxford University Press, Oxford, pp 3–43

    Google Scholar 

  • Flamm ES, Young W, Demopoulos HB, DeCrescito V Tomasula J (1982) Experimental spinal cord injury: Treatment with naloxone. Neurosurgery 10: 227–231

    Article  PubMed  CAS  Google Scholar 

  • Ford RW, Malm DN (1985) Failure of nimodipine to reverse acute experimental spinal cord injury. Cent Nerv Syst Trauma 2: 9–17

    PubMed  CAS  Google Scholar 

  • Fried LC, Goodkin R (1971) Microangiographic observations of the experimentally traumatized spinal cord. J Neurosurg 35: 709–714

    Article  PubMed  CAS  Google Scholar 

  • Ganong AG, Lanthorn TH, Cotman CK (1983) Kynurenic acid inhibits synaptic and acidic amino acid-induced responses in the rat hippocampus and spinal cord. Brain Res 273: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite G, Garthwaite J (1986) Neurotoxicity of excitatory amino acid receptor agonists in rat cerebellar slices: dependence on calcium concentration. Neurosci Lett 66: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Goldberger ME, Bregman BS, Bierck CJ Jr, Brown M (1990) Criteria for assessing recovery of function after spinal cord injury: behavioral methods. Exp Neurol 107: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Gomez-pinilla F, Tram H, Cotman CW, Nieto-Sampder M (1989) Neuroprotective effect of MK801 and U-50488H after contusive spinal cord injury. Exp Neurol 104: 11–24

    Google Scholar 

  • Griffiths IR, Trench JG, Crawford RA (1979) Spinal cord blood flow and conduction during experimental cord compression in normotensive and hypotensive dogs. J Neurosurg 50: 353–360

    Article  PubMed  CAS  Google Scholar 

  • Grundy BL, Friedman W (1987) Electrophysiological evaluation of the patients with acute spinal cord injury. Crit Care Clin 3: 519–549

    PubMed  CAS  Google Scholar 

  • Gruner JA, Wade CK, Menna G, Stokes BT (1993) Myoelectric evoked potentials versus locomotor recovery in chronic spinal cord injured rats. J Neurotrauma 10: 327–346

    Article  PubMed  CAS  Google Scholar 

  • Gualtierotti J, Paterson AS (1954) Electrical stimulation of the unexposed cerebral cortex. J Physiol (Lond) 125: 278–291

    CAS  Google Scholar 

  • Guha A, Tator CH, Smith CR Piper I (1989) Improvement in post-traumatic spinal cord blood flow with a combination of a calcium channel blocker and a vasopressor. J Trauma 29: 1440–1447

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Tator CH (1988) Acute cardiovascular effects of experimental spinal cord injury. J Trauma 28: 481–490

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Tator CH, Piper I (1987) Effect of a calcium channel blocker on posttraumatic spinal cord blood flow. J Neurosurg 66: 423–430

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Tator CH, Piper I (1985) Increase in rat spinal cord blood flow with the calcium channel blocker, nimodipine. J Neurosurg 63: 250–259

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Tator CH, Rochon J (1989) Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke 20: 372–377

    Article  PubMed  CAS  Google Scholar 

  • Haghighi SS, Chehrazi B (1987) Effect of naloxone in experimental acute spinal cord injury. Neurosurgery 20: 385–388

    Article  PubMed  CAS  Google Scholar 

  • Hahn JF, Latchwa JP (1983) Evoked potentials in the operating room. Clin Neurosurg 31: 389–403

    PubMed  CAS  Google Scholar 

  • Hall ED (1988) Effects of the 21-aminosteroid U74006F on posttraumatic spina cord ischemia in cats. J Neurosurg 68: 462–465

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Braughler JM (1982) Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic rationale. Surg Neurol 18: 320–327

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Wolf DL (1986) A pharmacological analysis of the pathophysiologic mechanisms of posttraumatic spinal cord ischemia. J Neurosurg 64: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Hall ED, Yonkers PA, Horan KL (1989) Correlation between attenuation of post-traumatic spinal cord ischemia and preservation of tissue vitamin E by the 21-aminosteroid U7400F: evidence for an in vivo antioxidant mechanism. J Neurotrauma 6: 169–176

    Article  PubMed  CAS  Google Scholar 

  • Hardy RW, Brodkey JS, Richards DE, Nulsen FE (1972) Effect of systemic hypertension on compression block of spinal cord. Surg Forum 23: 434–435

    PubMed  CAS  Google Scholar 

  • Hogan EL, Hsu CY, Banik NL (1986) Calcium-activated mediators of secondary injury in the spinal cord. Cent Nerv Syst Trauma 3: 175–179

    PubMed  CAS  Google Scholar 

  • Holtz A, Gerdin B (1991) MK801, an OBS N-methyl-D-aspartate channel blocker, does not improve the functional recovery nor spinal cord blood flow after spinal cord compression in rat. Acta Neurol Scand 84: 334–338

    Article  PubMed  CAS  Google Scholar 

  • Holtz A, Nystrom B, Gerdin B (1989) Spinal cord injury in rats: inability of nimodipine or anti-neutrophil serum to improve spinal cord blood flow or neurologic status. Acta Neurol Scand 79: 460–467

    Article  PubMed  CAS  Google Scholar 

  • Homma S, Tamaki T (1984) Fundamentals and Clinical Application of Spinal Cord Monitoring. Saikon, Tokyo, pp 23–32

    Google Scholar 

  • Hurlbert RJ, Tator CH, Fehlings MG, Niznik G, Liden RD (1992) Evoked potentials from direct cerebellar stimulation for monitoring of the rodent spinal cord. J Neurosurg 76: 280–291

    Article  PubMed  CAS  Google Scholar 

  • Jonsson HT, Daniell HB (1976) Altered levels of PGF in cat spinal cord tissue following traumatic injury. Prostaglandins 11: 51–61

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen MB, Diemer NG (1982) Selective neuron loss after cerebral ischemia in the rat: possible role of transmitter glutamate: Acta Neurol Scand 66: 536–546.

    Article  PubMed  Google Scholar 

  • Kai Y, Owen JH, Allen BR, Dobras M, Davis C (1995) Relationship between evoked potentials and clinical status in spinal cord ischemia. Spine 20: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Kalkman CJ, Been HD, Ongerboer de Visser BW (1993) Intraoperative monitoring of spinal cord function. Acta Orthop Scand 64: 114–123

    Article  PubMed  CAS  Google Scholar 

  • Katayama Y, Tsubokawa T, Yamamoto T, Hirayama T, Maejima S (1988) Preoperative determination of the level of spinal cord lesions from the killed end potential. Surg Neurol 29: 91–94

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Ushio Y, Hayakawat T, Yamada K, Ikeda H, Mogami H (1985) Circulatory disturbance of the spinal cord with epidural neoplasm in rats. J Neurosurg 63: 260–265

    Article  PubMed  CAS  Google Scholar 

  • Kobrine AJ, Doyle TF, Rizzolin HV (1976) Spinal cord blood flow was affected by changes in systemic arterial blood pressure. J Neurosurg 44: 12–15

    Article  PubMed  CAS  Google Scholar 

  • Kobrine AI, Doyle TF, Martins AN (1975) Local spinal cord blood flow in experimental traumatic myelopathy. J Neurosurg 42: 144–149

    Article  PubMed  CAS  Google Scholar 

  • Konrad PE, Tacker WA, Levy WJ, Reedy DP, Cook JR, Geddes SL (1987) Motor evoked potentials in the dog: effects of global ischemia on spinal cord and peripheral nerve signals. Neurosurgery 20: 117–124

    PubMed  CAS  Google Scholar 

  • Koyanagi I, Tator CH, Lea PJ (1993a) Three-dimensional analysis of the vascular system in the rat spinal cord with scannign electron microscopy of vascular corrosion casts. Part 1: Normal spinal cord. Neurosurgery 33(2): 277–283

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi I, Tator CH, Lea PJ (1993b) Three-dimensional analysis of the vascular system in the rat spinal cord with scannign electron microscopy of vascular corrosion casts. Part 2: Acute spinal cord injury. Neurosurgery 33(2): 285–291

    Article  Google Scholar 

  • Koyanagi I, Tator CH (1993c) Theriault E: Silicone rubber microangiography of acute spinal cord injury in the rat. Neurosurg 32: 260–268

    Article  CAS  Google Scholar 

  • Koyanagi I, Tator CH (1996) The effects of cortical stimulation, anesthesia and recording site on somatosensory evoked potentials in the rat. Electroencephalogr Clin Neurophysiol 101: 534–542

    Article  PubMed  CAS  Google Scholar 

  • Kristensen JD, Karlsten R ND, Gordh T (1994) Laser-Doppler evaluation of spinal cord blood flow after intrathecal administration of an N-methyl-D-aspartate antagonist in rats. Anesth Analg 78: 925–931

    Article  PubMed  CAS  Google Scholar 

  • Kunkel-Bagden E, Dai HN and Bregman BS (1993) Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp Neurol 119: 154–164

    Article  Google Scholar 

  • Kwak S, Nakamura R (1985) Acute and late neurotoxicity in the rat spinal cord in vivo induced by glutamate receptor agonists. J Neurol Sci 129: 99–103

    Article  Google Scholar 

  • Lesser RP, Raudzens P, Luders H, Nuwer MR, Goldie WD (1986) Postoperative neurologic deficits may occur despite unchanged intraoperative somatosensory evoked potentials. Ann Neurol 19: 22–25

    Article  PubMed  CAS  Google Scholar 

  • Levy WJ, McCaffrey M, Hagichi S (1987) Motor evoked potential as a predictor of recovery in chronic spinal cord injury. Neurosurgery 20: 138–142

    PubMed  CAS  Google Scholar 

  • Levy WJ, York DL, McCaffrey M, Tanzer F (1984a) Motor evoked potentials from transcranial stimulation of the motor cortex in humans. Neurosurgery 15: 287–302

    Article  PubMed  CAS  Google Scholar 

  • Levy WJ, McCaffrey M, York DL, Tanzer F (1984b) Motor evoked potentials from transcranial stimulation of the motor cortex in cats. Neurosurgery 15: 214–227

    Article  PubMed  CAS  Google Scholar 

  • Levy WJ, McCaffrey M, York DL (1986) Motor evoked potentials in cats with acute spinal cord injury. Neurosurgery 19: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Lohse DC, Senter HJ, Kauer JS, Wohns R (1980) Spinal cord blood flow in experimental transient traumatic paraplegia. J Neurosurg 52: 335–345

    Article  PubMed  CAS  Google Scholar 

  • Macdonell RAL, Donnan GA (1995) Magnetic cortical stimulation in acute spinal cord injury. Neurology 45: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Weinstein SL, Imamura Y, Usui T, Yamada T, Kimura J, Toriyama S (1989) Compound muscle action potentials and spinal evoked potentials in experimental spine manoeuvre. Spine 14: 687–691

    Article  PubMed  CAS  Google Scholar 

  • Machida M, Weinstein SL, Yamada T, Kimura J, Toriyama S (1988) Dissociation of muscle action potentials and spinal somatosensory evoked potentials after ischemic damage of spinal cord. Spine 13: 1119–1124

    Article  PubMed  CAS  Google Scholar 

  • Mark RF, Steiner J (1958) Cortical projection of impulses in myelinated cutaneous affernt nerve fibres of the cat. J Physiol (Lond) 142: 544–562

    CAS  Google Scholar 

  • Martin SH, Bloedel JR (1973) Evaluation of experimental spinal cord injury using cortical evoked potentials. J Neurosurg 39: 75–81

    Article  PubMed  CAS  Google Scholar 

  • Meldrum B, Garthwaite J (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease. TiPs 11: 379–387

    PubMed  CAS  Google Scholar 

  • Meldurm B (1985) Excitatory amino acids and anoxic/ischemic brain damage. Trends Neurosci 8: 47–48

    Article  Google Scholar 

  • Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285: 227

    Article  PubMed  CAS  Google Scholar 

  • Mills CM, Brant-Zawadzki M, Crooks LE (1984) Nuclear magnetic resonance: principles of blood flow imaging. AJR 142: 165–170

    PubMed  CAS  Google Scholar 

  • Mohamed AA, McCulloch J, Mendelow AD, Teasdale GM, Harper AM (1984) Effect of the calcium antagonist nimodipine on local cerebral blood flow: relationship to arterial pressure. J Cereb Blood Flow Metab 4: 206–211

    Article  PubMed  CAS  Google Scholar 

  • Møller AR (1988) Evoked Potentials in Intraoperative Monitoring. Williams & Wilkins, Baltimore, pp 67–88

    Google Scholar 

  • Monaghan DT, Cotman CW (1985) Distribution of N-methyl-D-aspartate-sensitive L-[H3]glutamate binding sites in rat brain. J Neurosci 5: 2909–2919

    PubMed  CAS  Google Scholar 

  • Muir KW, Lees KR (1995) Clinical experience with excitatory amino acid antagonist drugs. Stroke 26: 503–513

    Article  PubMed  CAS  Google Scholar 

  • Nash CL, Brown RB (1989) Current Concepts Review: Spinal Cord Monitoring. J Bone Joint Surg 71-A: 627–630

    Google Scholar 

  • Nowicki JP, Mackenzie ET, Young AR (1982) Brain ischaemia, calcium and calcium antagonists. Pathol Biol (Paris) 30: 282–288

    PubMed  CAS  Google Scholar 

  • Patton HD, Amassian VE (1954) Single multiple unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17: 345–357

    PubMed  CAS  Google Scholar 

  • Perot PL, Vera CL (1982) Scalp-recorded somatosensory-evoked potentials to stimulation of nerves in the lower extremities and evaluation of patients with spinal cord trauma. Ann NY Acad Sci 388: 359–368

    Article  PubMed  Google Scholar 

  • Piper I, Guha A, Tator CH (1987) A microcomputer system for on-line collection of blood flow and related physiological data. Comput Biol Med 4: 279–291

    Article  Google Scholar 

  • Prestor B, Zgur T, Dolenc VV (1993) Incomplete spinal cord evoked injury potential in man. Spine 18: 252–256

    Article  PubMed  CAS  Google Scholar 

  • Rivlin AS, Tator CH (1978) Regional spinal cord blood flow in rats after severe cord trauma. J Neurosurg 49: 844–853

    Article  PubMed  CAS  Google Scholar 

  • Ross IB, Tator CH (1991) Further studies of nimodipine in experimental spinal cord injury in the rat. J Neurotrauma 8: 229–238

    Article  PubMed  CAS  Google Scholar 

  • Ross IB, Tator C (1994) Review of experimental methods for studying spinal cord or cerebral blood flow. In: Salzman SK, Faden AI (eds) The Neurobiology of Central Nervous System Trauma. Oxford University Press, Oxford, pp 57–67

    Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Rouen LR (1976) Physiological testing in clinical angiology. Angiology 27: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Roughton JE (1982) Non-invasive measurement. Instrument Sci Tech 15: 1207–1269

    Google Scholar 

  • Salzman SK (1990) Neural Monitoring. Humana Press, Clifton

    Google Scholar 

  • Sandier AN, Tator CH (1967) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord. J Neurosurg 5, p 638

    Google Scholar 

  • Sandier AN, Tator CH (1976a) Review of the effect of spinal cord trauma on the vessels and blood flow in the spinal cord. J Neurosurg 45: 638–646

    Article  Google Scholar 

  • Sandier AN, Tator CH (1976b) Effect of acute spinal cord compression injury on regional spina cord blood blow in primates. J Neurosurg 45: 660–676

    Article  Google Scholar 

  • Sarnowski RJ, Cracco RQ, Vogel HB, Mount F (1975) Spinal cord response in the cat. J Neurosurg 43: 329–336

    Article  PubMed  CAS  Google Scholar 

  • Schramm J, Drause R, Shigeno T, Brock M (1984) Relevance of spinal cord evoked injury potential for spinal cord monitoring. In: Homma S, Tamaki T, Shimoji K, Kurokawa T (eds) Fundamentals and Clinical Application of Spinal Cord Monitoring. Saikon, Tokyo, pp 113–124

    Google Scholar 

  • Schramm J, Drause R, Shigeno T, Brock M (1983) Experimental investigation on the spinal cord injury evoked potential. J Neurosurg 59: 485–492

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Winkler T, Stalberg E, Olsson Y, Dey PK (1991) Evaluation of traumatic spinal cord edema using evoked potentials recorded from the spinal epidural space. An experimental study in the rat. J Neurol Sci 102: 150–162

    Article  PubMed  CAS  Google Scholar 

  • Shiau JS, Zappulla RA, Nieves J (1992) The effect of graded spinal cord injury on the extrapyramidal and pyramidal motor evoked potentials of the rats. Neurosurgery 30: 76–84

    Article  PubMed  CAS  Google Scholar 

  • Simpson RK, Baskin DS (1987) Corticomotor evoked potentials in acute and chronic blunt spinal cord injury in the rat: correlation with neurological outcome and histological damage. Neurosurgery 20: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Singer PA, Prockop LD, Anderson DK (1977) Somatosensory cortical evoked response after feline experimental spina cord injury. Paraplegia 15: 160–165

    Article  PubMed  CAS  Google Scholar 

  • Steen PA, Newberg LA, Milde JH, Michenfelder JD (1983) Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischemia in the dog. J Cereb Blood Flow Metab 3: 38–43

    Article  PubMed  CAS  Google Scholar 

  • Stern MD (1977) Continuous measurement of tissue blood flow by laser-Doppler Spectroscopy. Am J Physiol 232: H441-H448

    Google Scholar 

  • Su CF, Haghighi SS, Oro JJ, Gaines RW (1992) “Backfiring” in spinal cord monitoring. High thoracic spinal cord stimulation evoked sciatic response by antidromic sensory pathway conduction, not motor tract conduction. Spine 17: 504–508

    Article  PubMed  CAS  Google Scholar 

  • Takakura S, Satoh Y, Satoh H, Mori J, Kohsaka M (1992) Effects of nilvadipine on regional cerebral blood flow and skin blood flow in anesthetized cats. Arch Internati Pharmacodym Therapie 319: 38–48

    CAS  Google Scholar 

  • Tamaki T, Takano H, Takakuwa K (1985) Spinal cord monitoring: Basic principles and experimental aspects. CNS Trauma 2: 137–149

    CAS  Google Scholar 

  • Tator C (1994) Ischemia as a secondary neural injury. In: Salzman SK, Faden AI (eds) The Neurobiology of Central Nervous System Trauma. Oxford University Press, Oxford, pp 209–215

    Google Scholar 

  • Tator CH (1991) Review of experimental spinal cord injury with emphasis on the local and systemic circulatory effects. Neurochirurgie 37: 291–302

    PubMed  CAS  Google Scholar 

  • Tator CH and Fehlings MG (1991) Review of the secondary inj ury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26

    Article  PubMed  CAS  Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13: 2085–2104

    PubMed  CAS  Google Scholar 

  • Tymianski M, Tator CH (1996) Normal and abnormal calcium homeostasis in Neurons: a basis for the pathophysiology of traumatic and ischemie central nervous system injury. Neurosurgery 38: 1176–1195

    PubMed  CAS  Google Scholar 

  • Wallace MC, Tator CH (1986a) Failure of blood transfusion or naloxone to improve clinical recovery after experimental spinal cord injury. Neurosurgery 19: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Wallace MC, Tator CH (1986b) Failure of naloxone to improve spinal cord blood flow and cardiac output after spinal cord injury. Neurosurgery 19: 489–494

    Article  PubMed  CAS  Google Scholar 

  • Wallace MC, Tator CH (1986c) Spinal cord blood flow measured with microspheres following experimental spinal cord injury in the rat. Can J Neurosci 13: 91–96

    CAS  Google Scholar 

  • Wallace MC, Tator CH (1987) Successful improvement of blood pressure, cardiac output, and spinal cord blood flow after experimental spinal cord injury. Neurosurgery 20: 710–715

    Article  PubMed  CAS  Google Scholar 

  • Wallace MC, Tator CH, Frazee P (1986) Relationship between posttraumatic ischemia and hemorrhage in the injured rat spinal cord as shown by colloidal carbon angiography. Neurosurgery 18: 433–439

    Article  PubMed  CAS  Google Scholar 

  • Wedeen FJ, Reto AM, Edilman RR (1985) Projective imaging of pulsatile flow with magnetic resonance. Science 230: 946–948

    Article  PubMed  CAS  Google Scholar 

  • Weinstein GB (1995) Effects of nimodipine and verapamil on cerebral blood flow and cerebrovascular reactivity in conscious rabbits. Ann NY Acad Sci 765: 334–335

    Article  PubMed  CAS  Google Scholar 

  • Winkler T, Sharma HS, Stalberg, Olsson Y (1993) Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potential and edema formation after trauma to the spinal cord: an experimental study in the rat. Neuroscience 52: 1057–1067

    Article  PubMed  CAS  Google Scholar 

  • Yanase M, Sakou T, Fukuda T (1995) Role of N-methyl-D-aspartate receptor in acute spinal cord injury. J Neurosurg 83: 884–888

    Article  PubMed  CAS  Google Scholar 

  • York DH, Watts C, Raffensberger M, Spagnolia T, Joyce C (1983) Utilization of somatosensory evoked cortical potentials in spinal cord injury. Spine 8: 832–839

    Article  PubMed  CAS  Google Scholar 

  • York DH (1987) Review of descending motor pathways involved with transcranial stimulation. Neurosurgery 1987 20: 70–73

    Article  PubMed  CAS  Google Scholar 

  • Young W (1982) Correlation of somatosensory evoked potentials and neurological findings in spinal injury. In: Tator CH (ed) Early Management of Acute Spinal Cord Injury. Raven Press, New York, pp 153–165

    Google Scholar 

  • Young W, Em V, Blight A (1982) Extracelluar calcium ionic activity in experimental spinal cord contusion. Brain Research 235: 105–130

    Article  Google Scholar 

  • Young W, Flamm ES, Demopoulos HB, Tomasula JJ, Decrescito V (1981) Effect of naloxone on posttraumatic ischemia in experimental spinal contusion. J Neurosurg 55: 209–219

    Article  PubMed  CAS  Google Scholar 

  • Young W (1980) H2 clearance measurement of blood flow: a review of technique and polarographic principles. Stroke 11: 552–564

    Article  PubMed  CAS  Google Scholar 

  • Young W, Flamm ES (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracelluar calcium in experimental spinal injury. J Neurosurg 57: 667–673

    Article  PubMed  CAS  Google Scholar 

  • Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365: 42–53

    Article  PubMed  CAS  Google Scholar 

  • Young W (1985) Somatosensory-evoked potentials (SEP) in spinal cord injury. In: Schramm J, Jones SJ (eds) Spinal Cord Monitoring. Springer, Berlin Heidelberg New York Tokyo, pp 127–142

    Chapter  Google Scholar 

  • Zappulla RA, Wang W (1993) Neural origins of the motor evoked potential. Experimental approach. Adv Neurol 63: 51–60

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Li, S., Tator, C.H. (1998). Spinal cord blood flow and evoked potentials as outcome measures for experimental spinal cord injury. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics