Skip to main content

A combination of microdialysis, electrophysiology and histology for exploring secondary damage upon spinal cord Injury

  • Chapter
Spinal Cord Monitoring
  • 191 Accesses

Abstract

Injury to the spinal cord is a major health care issue, causing lifelong disability to the victims. The damage worsens for hours after the initial trauma by secondary destructive processes that include release of agents that kill neurons, post injury ischemia, edema, inflammation, and oxidative damage. Agents suspected of causing secondary damage include excitatory neurotransmitters, free fatty acids, neuropeptides and free radicals. Oxidative damage to proteins, DNA and membrane lipids could be the final common pathway by which secondary injury substances cause neuronal degeneration. Reduction of secondary damage is the chief hope in the near future for reducing long term disability from spinal cord injury. A better understanding of the mechanisms behind secondary damage that accompany central nervous system trauma will pave the way to therapies that reduce damage following spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AR (1911) Surgery of experimental spinal cord injury equivalent to crash injury of fracture dislocation of spinal column. JAMA 57: 878–880

    Article  Google Scholar 

  • Amici A, Levine RL, Tsai L, Stadtman ER (1989) Conversion of amino acid residues inp roteins and amino acid homopolymers to carbonyl derivates by metal-catalyzed oxidation reactions. J Biol Chem 264: 3341–3346

    PubMed  CAS  Google Scholar 

  • Anderson DK, Demediuk P, Saunders RD, Dugan LL, Means ED, Horrocks LA (1985a) Spinal cord injury and protection. Ann Emer Med 14: 816–821

    Article  CAS  Google Scholar 

  • Anderson DK, Saunders RD, Demediuk P, Dugan LL, Braughler JM, Hall ED, Means ED,Horrocks LA (1985b) Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. J Neurotrauma 2: 257–267

    CAS  Google Scholar 

  • Archer S (1993) Measurement of nitric oxide in biological models. FASEB 7: 349–360

    CAS  Google Scholar 

  • Aruonma OI, Halliwell B, Dizdaroglu M (1989) Iron ion-dependent modification of bases in DNA by the Superoxide radical-generating system hypoxanthine’xanthine oxidase. J Biol Chem 264: 13024–13028

    Google Scholar 

  • Balentine JD (1985) Hypotheses in spinal cord trauma research. In: Becker DP, Povlishock JT (eds) Central nervous system trauma status report. N1H, Bethesda, pp 455–461

    Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and Superoxide. Proc Natl Acad Sei USA 87: 1620–1624

    Article  CAS  Google Scholar 

  • Birnboim HC (1988) Superoxide anion may trigger DNA strand breaks in human granulocytes by acting at a membrane target. Ann NY Acad Sci 551: 82–94

    Article  Google Scholar 

  • Brien JF, McLaughlin BE, Nakatsu K, Marks GS (1991) Quantitation of nitric oxide formation from nitrovasodilator drugs by chemiluminescence analysis of headspace gas. J Pharmacol Meth 25: 19–27

    Article  CAS  Google Scholar 

  • Bus JS, Aust SD, Gibson JE (1977) Lipid peroxidation as a proposed mechanism for paraquat toxicity. Tn: Autor AP (ed) Biochemical mechanisms of paraquat toxicity. Academic Press, New York, pp 157–174

    Chapter  Google Scholar 

  • Bus JS, Aust SD, Gibson JE (1974) Superoxide-and singlet oxygen-catalyzed lipid peroxidaton a possible mechanism for paraquat (methyl viologen) toxicity. Biochem Biophys Res Common 58: 749–755

    Article  CAS  Google Scholar 

  • Cao W, Carney JM, Duchon A, Floyd RA, Chevion M (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88: 233–238

    Article  PubMed  CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-reiated increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci USA 88: 3633–3636

    Article  PubMed  CAS  Google Scholar 

  • Cazevieilie C, Muller A, Meynier F, Bonne C (1993) Superoxide and nitric oxide cooperation in hypoxia/reoxygenation-induced neuron injury. Free Rad Biol Med 14: 389–395

    Article  Google Scholar 

  • Cerchiari EL, Hoel TM, Safar P, Sclabassi RJ (1987) Protective effects of combined Superoxide dismutase and deferotamine on recovery of cerebral blood flow and functions after cardiac arrest in dogs. Stroke 18: 869–878

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Chen SF, Yu ACH (1988) Induction of inlracellular Superoxide radical formation by arachidonic acid and by polyunsaturated fatty acids in primary astrocytic cultures. J NeurochemSO: 1185–1193

    Google Scholar 

  • Chan PH, Fishman RA (1980) Transient formation of Superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 35: 1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Chan PH, Fishman RA(1982) Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells. Brain Res 248: 151–157

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58: 293–297

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1987) ionic dependence of giutamate neurotoxicity. J Neurosci 7: 369–379

    PubMed  CAS  Google Scholar 

  • Choi DW, Maulucci-Gedde M, Kriegstein AR (1987) Glutamate neurotoxicity in cortical cell culture. J Neurosci 7: 357–368

    PubMed  CAS  Google Scholar 

  • Cohadon F, Rigoulet M, Averet N, Arrigoni E (1989) Membrane damage in acute brain trauma. Ital J Neurol Sci 10: 147–155

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695

    Article  PubMed  CAS  Google Scholar 

  • Cross CE, Reznick AZ, Packer L, Davis PA, Suzuki YJ, Halliwell B (1992) Oxidative damage to human plasma proteins by ozone. Free Rad Res Commun 15: 347–352

    Article  CAS  Google Scholar 

  • Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Nail Acad Sci USA 88: 6368–6371

    Article  CAS  Google Scholar 

  • Dawson TM, Dawson VL, Snyder SH (1992) A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 32: 297–311

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Daly MP, Faden AI (1989) Effect of impact trauma on neurotransmitter and nonneurotransmitter amino acids in rat spinal cord. 3 Neurochem 52: 1529–1536

    Article  CAS  Google Scholar 

  • Demediuk P, Faden AI, Romhanyi R, Vink R, Mclntosh TK (1988) Traumatic brain injury in the rat: effects of lipid metabolism, tissue magnesium, and water content. J Neurotrauma 5: 105–119

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1985a) Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc Natl Acad Sci USA 82: 7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Saunders RD, Clendenon NR, Means ED, Anderson DK, Horrocks LA (1985b) Changes in lipid metabolism in traumatized spinal cord. Prog Brain Res 63: 211–226

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos HB, Flamm ES, Pietronigro DD, Seligman ML (1980) The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand492: 91–119

    CAS  Google Scholar 

  • Faden AI, Chan PH, Longar S (1987) Alterations in lipid metabolism, Na+, K+-ATPase activity, and tissue water content of spinal cord following experimental traumatic injury. J Neurochem 48: 1809–1816

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244: 798–800

    Article  PubMed  CAS  Google Scholar 

  • Faden AI, Lemke M, Simon RP, Noble LJ (1988) N-metnyl-D-aspartate antagonist MK801 improves outcome following traumatic spinal cord injury in rats: behavioral, anatomic. and neurochemical studies. J Neurotrauma 5: 33–45

    Article  CAS  Google Scholar 

  • Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23: 623–626

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, Carney JM (1992) Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32: S22-S27

    Google Scholar 

  • Floyd RA, Henderson R, Watson JJ, Wong PK (1986c) Use of salicylate with high pressure liquid chromatography and electrochemical detection (LCED) as a sensitive measure of hydroxyl free radicals in driamycin treated rats, J Free Rad Biol Med 2: 13–18

    Article  CAS  Google Scholar 

  • Floyd RA, Watson JJ, Harris J, West M, Wong PK (1986a) Formation of 8-hydroxy-deoxyguanosin, hydroxyl free radical adduct of DNA in graulocytes exposed to the tumor promoter, tetradeconylphorbolacetate. Biocnem Biophys Res Commumn 137: 841–846

    Article  CAS  Google Scholar 

  • Floyd RA, Watson JJ, Wong PK, Altmiller DH, Rickard RC (1986b) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Rad ResComms 1: 163–172

    Article  CAS  Google Scholar 

  • Floyd RA, Watson JJ, Wong PK (1984) Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicyiate hydroxylation products. J Biochem Biophys Meth 10: 221–235

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, West MS, Eneff KL, Hogsett WE, Tingey DT (1988) Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch Biochem Biophys 262: 266–272

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1986) Biological effects of the Superoxide radical. Arch Biochem Biophys 247: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J (1991) Glutamate, nitric oxide and cell-cell signaling in the nervous system. Trends Neurosci 14: 60–67

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Garthwaite G, Palmer RMJ, Moncada S (1989) NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur J Pharmacol-Mol Pharmacol Sect 172: 413–416

    Article  CAS  Google Scholar 

  • Ginsberg MD, Watson BD. Busto R, Yoshida S, Prado R, Nakayama H, Ikeda M, Dietrich WD, Globus MY-T (1988) Peroxidative damage to cell membranes foliowing cerebral ischemia. Neurochem Path 9: 171–193

    CAS  Google Scholar 

  • Hall ED, Braughler JM (1986) Role of lipid peroxidation in post-traumatic spinal cord degeneration: A review, J Neurolrauma 3: 281–294

    CAS  Google Scholar 

  • Hall ED, Andrus PK, Althaus IS, Von Voigtlander PF (1993) Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. J Neurosci Res 34: 107–112

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1: 358–364

    PubMed  CAS  Google Scholar 

  • Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke? Acta Neuroi Scand 126: 23–33

    PubMed  CAS  Google Scholar 

  • Halliweil B, Grootveld M (1988) Methods for the measurement of hydroxyl radicals in biochemical systems: Deoxyribose degradation and aromatic hydroxylation. Meth Biochem Anal 33: 59–90

    Article  Google Scholar 

  • Halliwell B, Grootveld M (1987) The measurement of free radical reactions in humans. FEBS Leu 213: 9–14

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1990) The antioxidants of human extracellular fluids. Arch Biochem Biophys 280: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Hogg N, Darley-Usmar M, Wilson MT, Moncada S (1992) Production of hydroxyl radicals from the simultaneous generation of Superoxide and nitric oxide. Biochem J 281: 419–424

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Anderson JH, Long DM (1989a) Oxygen free radicals in the genesis of traumatic and peritumoral brain edema. Neurosurgery 24: 679–685

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Brelsford KL, Ikeda K, Long DM (1989b) Oxygen-free radicals in traumatic brain edema. Neurol Res 11: 213–216

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Ikeda K, Long DM (1989c) Comparative study of different iron-chelating agents in cold-induced brain edema. Neurosurgery 24: 820–824

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240: 1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos H, Zhu L, Chen J, Tsai M, Martin JC, Smith CD, Beckman JS (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by Superoxide dismutase. Arch Biochem Biophys 298: 433–437

    Google Scholar 

  • Ito K, Yamamoto K, Kawanishi S (1992) Manganese-mediated oxidative damage of cellular and isolated DNA by isoniazid and related hydrazines: non-Fenton-type hydroxyl radical formation. Biochemistry 31: 11606–11613

    Article  PubMed  CAS  Google Scholar 

  • Jesberger JA, Richardson JS (1991) Oxygen free radicals and brain dysfunction. Intern J Neurosci 57: 1–37

    Article  CAS  Google Scholar 

  • Kinuta Y, Kimura M, Itokawa Y, Ishikawa M, Kikuchi H (1989) Changes in xanthine oxidase in ischemie rat brain. J Neurosurg 71: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Knowles RG, Palacios M, Paimer RMJ, Moncada S (1989) Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for stimulation of the soluble guanylate cyclase. Proc Natl Acad Sci USA 86: 5159–5162

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP (1986) Superoxide production in experimental brain injury. J Neurosurg 64: 803–807

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP, Ellis EF, Jenkins LW, Povlishock JT, Rowe GT, Hess ML (1985) Appearance of Superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ Res 57: 142–151

    Article  PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP, Povlishock JT, Christman CW (1984) Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats. Circ Res 55: 295–303

    Article  PubMed  CAS  Google Scholar 

  • Kuehl FA Jr, Egan RW (1980) Prostaglandins, arachidonic acid, and inflammation. Science 210: 978–984

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependenl Superoxide production and neurotoxicity. Nature 364: 535–537

    Article  PubMed  CAS  Google Scholar 

  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A-G, Ahn B-W, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Meth Enzymol 186: 464–478

    Article  PubMed  CAS  Google Scholar 

  • Li XY, Chow CK (1994) An improved method for the measurement of malondialdehyde in biological samples. Lipids 29: 73–75

    Article  PubMed  CAS  Google Scholar 

  • Linsemann KL, Larson P, Braughler JM, McCall JM (1993) Iron-initiated tissue oxidation: lipid peroxidation, vitamin E destruction and protein thiol oxidation. Inhibition by a novel antioxidant. Biochem Pharmacol 45: 1477–1482

    Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lel SZ, Chen H-SV, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitrosocompounds. Nature 364: 626–632

    Article  PubMed  CAS  Google Scholar 

  • Liu D (1993) Generation and detection of hydroxyl radical in vivo in rat spinal cord by microdialysis administration of Fenton’s reagents and microdialysis sampling..1 Biochem Biophys Meth 27: 281–291

    Article  CAS  Google Scholar 

  • Liu D (1994) An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for studying excitotoxicity in spinal cord injury: effect of NMDA and kainate. Mol Chem Neuropath 23: 77–92

    Article  Google Scholar 

  • Liu D, Li L (1995) Prostaglandin F20, rises in response to hydroxyl radical generated in vivo. Free Rad Biol Med 18: 571–576

    Article  PubMed  CAS  Google Scholar 

  • Liu D, McAdoo DJ (1993a) Methylprednisolone reduces excitatory amino acid release following experimental spinal cord injury. Brain Res 609: 293–297

    Article  PubMed  CAS  Google Scholar 

  • Liu D, McAdoo DJ (1993b) An experimental model combining microdialysis with electrophysiology, histoiogy, and neurochemistry for exploring mechanisms of secondary damage in spinal cord injury: the effect of potassium. J Neurotrauma 10: 349–362

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Sybert TE, Qian H, Liu J (1998) Superoxide production after spinal cord injury detected by microperfusion of cytochrome C. Free Rod Biol Med 25: 298–304

    Article  CAS  Google Scholar 

  • Liu D, Thangnipon W, McAdoo DJ (1991) Excitatory amino acid rise to toxic levels upon impact injury to rat spinal cord. Brain Res 547: 344–348

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Valadez V, Sorkin LS, McAdoo DJ (1990) Norepinephrine and serotonin release upon impact injury to rat spinal cord. J Neurotrauma 7: 219–227

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Xu GY, Pan E, McAdoo DJ (1998) Glutamate neurotoxicity in the spinal cord: A histological and neurochemical study. Neuroscience (submitted)

    Google Scholar 

  • Liu D, Yang J, Li L, McAdoo DJ (1995) Paraquat-a Superoxide generator-kills neurons in the rat spinal cord. Free Rad Biol Med 18: 861–867

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Yang R, Yan X, McAdoo DJ (1994) Hydroxyl radicals generated in vivo kill neurons in spinal cord: electrophysiological, histological, and neurochemical results. J Neurochem 62: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA, James EA, Waitersdorph AM (1988) Mutagenesis by the autoxidation of iron with isolated DNA. Proc Natl Acad Sei USA 85: 3918–3922

    Article  CAS  Google Scholar 

  • McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 332: 159–163

    Google Scholar 

  • Mitsuhata H. Shimizu R, Yokoyama MM (1995) Role of nitric oxide in anaphylactic shock. J Clin Immun 15:277–283

    Article  PubMed  CAS  Google Scholar 

  • Muller K, Gurster D (1993) Hydroxyl radical damage to DNA sugar and model membranes induced by anthralin (dithranol) Biochem Pharmacol 17: 1695–1704

    Google Scholar 

  • Nagafuji T, Sugiyama M, Matsui T, Muto A, Naito SF (1995) Nitric oxide synthase in cerebral ischemia. Possible contribution of nitric oxide synthase activation in brain microvessels lo cerebral ischemic injury. Mol Cell Neuropath 26: 107–157

    CAS  Google Scholar 

  • Nihei H, Kanemitsu H, Tamura A, Oka H, Sano K (1989) Cerebral uric acid, xanthine, and hypoxanthine after ischemia: the effect of allopurinol. Neurosurgery 25: 613–617

    Article  PubMed  CAS  Google Scholar 

  • Nowicki IP, Duval D, Poignet H, Scatton B (1991) Nitric oxide mediates neuronal death after focal cerebral ischemia in the mouse. Eur J Pharmacol 204: 339–340

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (3979) Assay for lipid peroxides in animai tissues by thiobarbituric acid reaction. Anal Biochem 95: 351–358

    Article  Google Scholar 

  • Oliver CN, Levine RL. Stadtman ER (1987) A role of mixed-function oxidation reactions in the accumulation of altered enzyme forms during aging. JAGS 35: 947–956

    CAS  Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-Induced injury to gerbirain. Proc Natl Acad Sci USA 87: 5144–5147

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Ho OL, Rhee V (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp Brain Res 14: 61–76

    Article  PubMed  CAS  Google Scholar 

  • Olney J, Price M, Salles KS, Labruyere J, Frierdich G (1987) MK-801 powerfully protects against N-methyl aspartate neurotoxicity. Eur J Pharmacol 141: 357–361

    Article  PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (3988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333: 664–666

    Article  Google Scholar 

  • Panter SC, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 27: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Liu D (1997) The time course of malondialdehyde production following impact injury to rat spinal cord as measured by microdialysis and high pressure liquid chromatography. Neurochem Res 22: 1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991a) Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of Superoxide and nitric oxide, j Biol Chem 266: 4244–4250

    PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (199lb) Peroxy ni trite-induced membrane lipid peroxidation: the cytotoxic potential of Superoxide and nitric oxide. Arch Biochem Biophys 288: 481–487

    Google Scholar 

  • Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19: 105–111

    Article  PubMed  CAS  Google Scholar 

  • Saunders RD, Dugan LL, Demediuk P, Means ED, Horrocks LA, Anderson DK (1987) Effects of methylprednisolone and the combination of a-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissue. J Neurochem 49: 24–31

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HHHW, Nau H, Wittfoht W, Gerlach J, Prescher K-E. Klein MM, Niroomand F, Bohme (1988) Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol 154: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Siesjo BK (1993) Basic mechanisms of traumatic brain damage. Ann Emerg Med 22: 959–969

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1992) Nitric oxide: first in a new class of neuro transmitters? Science 257: 494–496

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Bredt DS (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol Sci 12: 125–128

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1990) Metal ion catalyzed oxidatives of proteins: biochemical mechanism and biological consequences. J Free Rad Biol Med 9: 315–325

    Article  CAS  Google Scholar 

  • Stadtman ER, Oliver CN (1991) Metal-catalyzed oxidatives of proteins. J Biol Chem 266: 2005–2008

    PubMed  CAS  Google Scholar 

  • Starnler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and itsredox-activated forms. Science 258: 1898–1902

    Article  Google Scholar 

  • Takemura H, Tamaoki J, Tagaya E, Chiyotani A, Konno K (1995) Isoproterenol increases CI diffusion potential difference of rabbit trachea through nitric oxide generation, J Pharmacol Exp Ther 273: 584–588

    Google Scholar 

  • Talum VL, Changchit C, Chow CK (1990) Measurement of malondialdehyde by high performance liquid chromatography with fluorescence detection. Lipids 25: 226–229

    Article  Google Scholar 

  • Tkeshelashvili LK, McBride T, Spence K (1991) Mutative spectrum of copper-induced DNA damage, J Biol Chem 266: 6401–6406

    PubMed  CAS  Google Scholar 

  • Traystman RJ, Kirsch JR, Koehler RC (1991) Oxygen radical mechanisms of brain injury following ischemia and reperfusion. J Appl Physiol 71: 1185–1395

    PubMed  CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malondialdehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86: 271–278

    Article  PubMed  CAS  Google Scholar 

  • Watson BD, Ginsberg MD (1989) Ischemic injury in the brain. Role of oxygen radicalmediated processes. Ann NYAcad Sei 559: 269–281

    Article  CAS  Google Scholar 

  • Weber GF (1990) The measurement of oxygen-derived free radicals and related substances in medicine. J Clin Chem Clin Biochem 28: 569–603

    PubMed  CAS  Google Scholar 

  • Willmore LJ, Triggs WJ, Gray JD (1986) The role of iron-induced hippocampal peroxidation in acute epileptogenesis. Brain Res 382: 422–426

    Article  PubMed  CAS  Google Scholar 

  • Willmore LJ, Ballinger WE Jr, Boggs W, Sypert GW, Rubin JJ (1980) Dendritic alterations in rat isocortex within an iron-induced chronic epileptic focus. Neurosurgery 7: 142–146

    Article  PubMed  CAS  Google Scholar 

  • Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochem Med 15: 212–216

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi M, Fukuda K, Hara S, Nakamura M (1986) Fluorimetric high-performance liquid-chromatography of prostaglandins and its application to their determination in human seminal fluid. J Chromatogr 380: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Young W (1992) Role of calcium in central nervous system injuries. J Neurotrauma 9: 1 S9–S25

    Google Scholar 

  • Young W, Yen V, Blight A (1982) Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Res 253: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Young W, Koreh I (1986) Potassium and calcium changes in injured spinal cords. Brain Res 365: 42–53

    Article  PubMed  CAS  Google Scholar 

  • Zuccarello M, Anderson DK (1993) Interaction between free radicals and excitatory amino acids in the blood-brain barrier disruption after iron injury in the rat. J Neurotrauma 10: 397–403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Liu, D. (1998). A combination of microdialysis, electrophysiology and histology for exploring secondary damage upon spinal cord Injury. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_12

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics